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Abstract: In this paper, the error estimate of H!-Galerkin expanded mixed finite element methods (EMFEMs) is
studied by investigating the semi discrete and fully discrete for parabolic integro-differential equations (PIDES) with
a nonlinear memory. We carried out theoretical survey for studying the existence and uniqueness of the numerical
schemes.
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. INTRODUCTION
Consider the PIDEt below with nonlinear memory [1]:
u, — Au+ f k(t —s)[-V- (a(x, w)Vu + b(x, u)) +cl,u) Vu+gl,u)lds = f(x, t),(x,t) EQX],
ulx,t) =0, ’ (x,t) € 0O X, (1.1
u(x, 0) = uy(x), x € Q,

Where, Q € R4(d = 1,2,3) is a bounded domain in accompany of a smooth boundary dQ andj = (0, T] is interval
of time with 0 < T < co. The kernel k is positive definite and a smooth neither nonsmooth memory. f is a definite
function. Consider the function a(x,u) is a tensor one, b(x,u) and c(x,u) stand for vector ones and g(x,u)
represents the function of scalar one. Thus, the functions a(x,u), b(x,u),c(x,u) and g(x,u) stand as constant
distinguishable for each variable too smooth as well as bounded. We take into consideration.

Equations of the class (1.1), or the linear types thereof, can appear in many material processes where it required to
take in value the effects of memory due to the shortage of the frequent diffusion equations[2,3,4]. In order to find an
approximate solution u, much numerical methods are developed for solving such as these equations. finite element
methods have been used widely for both linear or nonlinear integro-differential problems [5,6,7,8,9].

To the valuable mixed finite element methods (MFEMS). In [10], Sinha et al. investigated the semi discrete MFEMSs
for parabolic IDEs that seem via the modelling of nonlocal reactive streams in pored media as well as got a priori L2
error estimates for pressure and velocity can be happened in accompany of the two smooth and nonsmooth primary
data. Ewing et al. [11] have derived maximum norm estimates and superconvergence results for mixed semi discrete
adduction to PIDEs by mixed Ritz-Volterra projection and a way of close Green’s function.

Regarding the H*-Galerkin MFEM, Pani and Fairweather [12], H! -Galerkin MFEMs have studied the PIDEs that
are used in mathematical tools. Error estimates can be got by semi discrete and discrete for equations with mono-
dimension space. Shi et al [13], H! -Galerkin nonconforming MFEMs can be studied to PIDE. Through employing
the standard property of the factors, we attain that the Galerkin mixed approximations obtain identical rates of
convergence like the traditional mixed method, but not with LBB stability environment.

Likewise, H. Che et al. [14] H'-Galerkin MFEM boned by extended mixed element method can be investigated by
nonlinear pseudo-PIDEs. A priori error estimates are obtained for the unknown function, gradient function, and flux.
They make theoretical analysis to discuss the existence and uniqueness of numerical solutions to the discrete scheme.
H. Che et al. [15], H1-Galerkin MFEM is discuss for nonlinear viscoelasticity equations based on H!-Galerkin
method and expanded mixed element method. The existence and uniqueness of solutions to the numerical scheme are
proofed. A priori error estimation is obtained for the unknown function, the gradient function, and the flux.
Furthermore, concerning a little MFEMSs. Y. Liu et al. [16]. A new extended mixed procedure has been discussed
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and studied to linear PIDEs. The existence and uniqueness of solution for semi discrete method are proved as well as
the fully discrete error estimates depend on backward Euler scheme can be classified. H. Li et al. [17], A new positive
known EMFEM is advanced for PIDEs. Contrary to extended mixed method, the new extended mixed factor system
is symmetric positive definite as well as the two-descent equation as well as the flux equation have been split out
from its scalar indefinite equation. The presence and closeness for semi discrete have been got as well as error
estimates have been confirmed to the two semi and fully discrete systems.

The aim of this study is for investigating the error estimates of a new H!-Galerkin EMFEM of PIDE with nonlinear
memory, it represents the approximation of four variables at once, since the scalar variable is approximated on the
space H1(Q), and the other three vector variables are approximated on the space H(div, (). We action theoretical
analysis to discuss the existence and uniqueness of numerical methods of the method and get error estimates for the
fully discrete.

The outline of the research is as follows: In Section 2, a new H-Galerkin EMFEM of PIDE with nonlinear memory
is present of weak formulation. In Section 3, we will error estimates for the fully discrete scheme of the H!-Galerkin
EMFEM are proved.

For brevity, through research we have used and will use the following expressions a(u), b(u), c(u) and g(u) instead
of a(x,w), b(x,u), c(x,u) and g(x,w) respectively.

2. A New H!- Expanded mixed formulation

2.1 Mixed Weak Form
By rewritting the initial Governing problem as follows:

u, — V- Vu-— f k(t — s)(a(u)Vu + b(u))dr + J k(t— s)(c(u) -Vu + g(u))dr = f(x,t), 2.1
0 0

to explain the extended H!-Galerkin MFEM . We classify PIDEs with nonlinear memory (2.1) to first-order system
as below:

q=VVu-— J k(t — s)(a(u)Vu + b(u))dr, p= jk(t — s)(c(u) -Vu + g(u))dr,
0 0

and
o=Vu,
Thus, (2.1) turns to
(@ u-V-q+p=f
(b) o=Vu
(c) q=0- f k(t —s)(a@)o + b(w))dr (2.2)
0

o) p=fka—9@wya+mwwn

0

(©) u(x,0) = uy(x). 1
Let W = H(div, @) = {w € (12()":V-w € 1*(@)}, in addition to norm Il w llyuiay= (I W I2+1 V- w 17)2
and V = H}(Q) = {v € HY(Q):v = 0 on 0Q}. First, multiply (3.2)(a) by V-w for w € W, and integrating on Q,
then apply the relation (i, Vv) = —(V - ¢, v) (Divergence theorem) to the first term on the left side and substituting
of derivative the equation (3.2)(b) to the final equation to have a weak from for (3.2)(a). then, multiplying (3.2)(b) by
Vv for v € H(Q), (3.2)(c) by z € H(div,Q) as well as (3.2)(d) by € H(div, Q), then incorporating the resulting
equations on Q give to the variational formulation for (3.2)(b), (3.2)(c) and (3.2)(d). Thus, the variational
formulation for (3.2) is to find (u, 0,9,p ) € H(Q) x W x W x W such that

(@ (o,w)+V-qV-w)—{@V-w)=—(f,V-w), vwew,

() (o,Vv) = (Vu,Vv), vv € HE(Q),

(o) (q.2)=(0,2)— fk(t —s)(a(w)e,z)dt | + fk(t —s)(b(w),z)dt |, VzeW, (2.3)
0 0
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t t

d @r)= (f k(t —s)(c(w) - o, r)d‘r) + (f k(t — s)(g(u),r)dr), vrew.
0 0

(e) a(0) = Vu,(x).

2.2 Semi Discrete Scheme

The semi discrete MFEM for (2.3) is to determine find

{up, 0, 4, Pr}:[0,T] » V,, x W, x W, X W, such that

(@) (@pe, wy) + (V- qp, V-wy) — (0r, V-wy) = =(f,V-wy), Vwy, € Wy,
(b) (ahl Vvh) = (Vuhl Vvh)l Vvh € Vh’

¢ ¢
() (qn, zp) = (op, zp) — (f k(t— S)(a(u)o'h,lh)d’f) + (f k(t —s)(b(uy), Zh)dT>;
0 0

vz, € W, (2.4)

t t
(d) (ph: rh) = (f k(t - S)(C(u) *Op, rh)dT) + <f k(t - 5)(9(71}1)' rh)dT> B Vrh S Wh'
0 0

(e) 0,(0) = R,Vuy(x).
Where V,, and W/, stand as finite dimensional subspaces from V and W, consequently. Thus,
V, ={v, € C°(Q) N H}|v, € Py(K),VK € T},

w, = {w, € (1?@) Iw, € P,(K),VK € T, },

and Let T}, be a quasi-uniform family of partitioning of domain (. Let h refers to the diameter of K.
Set h =max hy.

KEeTp
2.3 Existence and Uniqueness
We will study the existence and uniqueness of solution for semi discrete scheme (2.4).
Theorem 2.1. There is a only discrete solution to the scheme (2.4)
Proof. Let {¢;}Y_; and {1);(x)}}L, be bases of V, and W), respectively. Let

N M

M M
U, = Z u; () (x), 04 = Z o;(OY;(x), q5 = 1 q;(OY;(x),py = Z p;(OY; (%), (2.5)
= =

i=1 j=1 j

and placing these terms to (2.4) as well as choosing vy, = @i,k =1,2,...,N, ,wy, =z, =1, =y, =1,2,.., M,
thus (2.4) turns as:

(@)  AX'(8) + BQ(t) — CP(t) = —F(b),
(b) DX(t) —EU(t) =0,

(o) AQ(t) + AX(t) — f k(t —s)MU)Z(t)dt — f k(t —s)Rdt = 0, (2.6)
0 0

(d) AP(t) — f k(t —s)NU)Z(t)dT — f k(t —s)HdT =0,
0 0

Where

A= (lpj'lpl)MxM' B= (V- l»bj'v V) mxm
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C= (ll)j,V Y mxms F=&V-Y)ixm
D= (¢jﬂv¢k)M><N' E= "o, Vo )nxn
M) = (a(U)lpj'lel)MxM' R = (bW, Y)ixm
MU) = (cU)- Vi, VY )uxm, H = @MW), Y ixms
Y= (0_110_21 "'lO_M)T: Q= (ql' qz, -, qM)T'
P = (p1, 09, -, )7 U= (ug,uy, .., uy)’,

The first value problems (2.6) can be written as follows:

(a) () + ATIBQ(t) — ATICP(t) = —ATIF (),
(b) U(t) = ET'DE(d),

(c) Q) +X(t)— A" f k(t —s)MU)X(t)dr — fk(t —5S)Rdt =0, 2.7

(d) P(t)— A fk(t —s)NU)Z(t)dr — fk(t —s)Hdr =0,

replacing (2.7c) and (2 7d) into (2.7a) to have

@) =A"Cc| A fk(t—s)N(U)Z(t)dI+A jk(t —s)Hdt
—A"'B A‘lfk(t—s)M(U)Z(t)dI+A_1Jk(t—s)RdI —A7F(t) + 2(t) (2.8)
0 0

Thus, by the differential equations theorem [18], (2.8) has a unique solution Z(t), then (2.7b), (2.7¢c) and (2.7d)
has a unique solution U(t), Q(t) and P(t), respectively. Equivalently (2.3) has a unique solution.

3. New H'- Expanded mixed projection

For to discuss the convergence of the method, in start, we insert the new H*- expanded mixed elliptic projection
connected with our equations.

Let (uy, 04, 91, PR):[0,T] — V,, x W, Xx W, X W, be given as follows:

(@ (V-(@—q),V-wp)+ @n—pV-wy) =0, Vwy, € Wy,

(b) (0 — o0y, Vvy) — (V(u —uy),Vv,) =0, Vv, €V,

(© (@—qnz,)—(0—o0p,2,) =0, Vz, € Wy, 3.1
d @-ppr) =0, vr, EW,.

Now, we will present some important lemmas.

4. Some Theorems
Theorem 4.1. There is the operator Ry,: H(div, Q) — W, like

(6 — R,o,VVy) =0, Vv, EW,, 4.1
and

llo — Ryonll < ch**lollsq, (4.2)

Theorem 4.2. There is the operator Ry,: H(div, Q) — W, like

V-(q—qp),V-wy) =0, Ywy, € Wy, (4.3)
and
llg — Rugnll < ch**1Iqll s, (4.4)
V- (q—q)ll <
ch*llqllis1, (4..5)

It has the evidence of the aforementioned theorems from [19,20].
Theorem 4.3. There is the operator IT,,: H3 () — V;, such that
(V(u - uh), Vvh) = 0, Vvh € Vh' (4.6)
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and
llu — Mpupll + RNV — u)ll < ch™ [ull gy, (4.7)
we can get the proof of the above theorem from [21].

5. Error Estimates The Semi-discrete Method
In this section, the study clarifies the convergence results and error estimates for the new H-Galerkin EMFEM given
in this paper . To explain a priori error estimates, we get the errors as below:
06—0,=0—Ry0+Ro—0,=6+86,
9—qn =9 - Rpq+Ryg—qn=a+p,
P—pPn=P—Rpyp+Rpp—pr=p+¢
and
u—uy,=u—Iyuu+Mu—-—u,=n+.
to get the error equations, applying (2.3) and (2.4) with the projections (3.1)

(@) B, wp) + (V-B,V-w,) — (&, V.wy,) = (6, wp), vw, € W,,
(b) (91 Vvh) - (V(, Vvh) = 0, Vvh S Vh,
t

t
(c) (B, zy) =(6,2,) — fk(t -s)(a@) — a(uy))adr, z, | — fk(t — s)a(u)édr, z,
0 0
- fk(t —s)a(uw)bdr, z, |+ jk(t —s)(b(w) — b(wy))dr,z), |, Vz, €W, (5.1)
0 0
OIANE fk(t = s)(c@) — c(wy)) - adr, Ty, |+ jk(t —s)c(u) - &dr, Ty,
0 0

+ Jk(t —s)c(uw) - 6dr,ry, |+ Jk(t —5) (g(u) — g(uh))dr, r,|. Vvrpew,,
0 0

note that the equation
a(u)o — a(uy)oy, = a(u)o — a(uy)o + a(u,)o — a(uy)ay,
= (a(u) - a(uh))a +a()(o — o+ 0 — gy,)
= (a(u) - a(uh))o +a(w)(s + 6),
similarly, we get
(c(u) — c(uh)) co=cw)-o—cluy)-o=clw)-a—cluy) o+ cluy) o—clu,) - ay
= (C(u) - C(uh)) o+ c(w) (o —Ijo+ 10— 0y)
= (C(u) - C(uh)) o+ c(u)-(5+0).
Now, we derive the error estimates for semi discrete method.
Theorem 5.1 suppose that a},(0) = R, Vuy(x) and let (u, 0, q,p ) and (u, 64, q,, py,) are the solution of (2.3) and
(2.4), respectively, then we have the following estimates
(a) ||u _ uh”1 < Chmin(k+1,m)
(b) “p _ ph“ < Chmin(k+1,m+1)
(©) NIV-(g - gp)ll < Chmintem+1)
(@) llu—upll+ llo = anll + g = qpll + Ip — pyll < Chmnt+Lm+D),

Proof. Let u—u,=u—-IMu+iu—u,=n+{,p—popr=p—Ryp+Ryp—p,=p+¢,
q—qn=9—-Ryq+Rygq—qy=a+p,0—0,=0—-Ry0+Ro—0,=6+96,
an estimates of n, p, @ and § can be get it from (4.2), (4,4), (4.5) and (4.7), and now we find an estimates of ¢, ¢, 8 and
6. Setting z,, = B in (5.1(c)) and 7, = & in (5.1(d)) then we add the two resulting equations
t

1817 = ©.6) - | [ ke = 9)(at) - aw)odnp | - | [ ke - atrsar,p
0 0
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- (f k(t — s)a(u)@dr,ﬁ) + <f k(t —s) (b(w) — b(uy))dr, [;). (5.2)

0 0

1112 = (f k(t —s)(cw) — c(uy)) - adr, f) + <f k(t —s)c(u) - &dr, f)
0 0
+ (f k(t —s)c(u) - 6dr, f) + (f k(t —s)(gw) — g(up))dr, f). (5.3)
0 0

181 + 1112 = (6, B) — ( f k(t - 5)(au) - a(uh))adr,ﬁ> - ( f k(t — s)aw)ddr, ﬂ)
0 0

t t
- (f k(t - s)a(u)Bdr,B) + (f k(t —s) (b(w) — b(uy))dr, ﬁ)
‘ t ° t
+ (f k(t — s)(c(u) - c(uh)) - odr, f) + <f k(t —s)c(u) - &dt, E)
0 0
+ (f k(t —s)c(u) - 6dr, f) + <] k(t—s) (g(u) - g(uh))dr, f). (5.4)
0 0

Using Young’s inequalities with appropriately small € and Cauchy-Schwartz inequalities to obtain

16,1 < clloll* + sIIﬁII2 (5.5)
(] k(t — )(a@) — a(uy))odr, B)‘ < cerc, j(nnnz T IgI)de + ellBIP, (5.6)
where, ¢; depends on k(t —s), ¢, depends on ||0'||W°}D(Loo)

— (J k(t — s)a(u)&d‘r,ﬁ)
0

¢; depends on the bound of a(w),

t
< cescs j||5||2 dr + €lBII, .7)
0

- (J- k(t — s)a(u)@d‘r,ﬁ) < cccy j||9||2 dr + €||BI?, (5.8)
0 0

[ e =) (b - b(uh))dr,ﬁ>‘ < ce, [l + gIyae + ellgIP, (59)
0 0
J-k(t —s)(cw) - c(uh)) - odr, f) < e, f(llnllz + I¢1I?)dt + c;c, fllfllzd‘r, (5.10)
0 0 0
J-k(t —s)c(u) - édr, f) < C1C4.f"6”2 dt +cic, fllfllzdr, (5.11)
0 0 0

Where, ¢, depends on the bound of c(u).
t t

(f k(t —s)c(u) - 0dr, f) < C1C4.f"9”2 dr + c1c4f||§||2d‘r, (5.12)
0 0 0
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t

ka—S)@ﬁO—gﬁmndﬂf

replacing (5.5)-(5.13) into (5.4) we have
t

t t
SQImwﬁHmmm+quWm. (5.13)
0 0

IBI1Z + 1IE11* < ¢, 116112 + €, f(llnll2 + IS + 1112 + 161> + 1E1) (5.14)
0

where C; = C,(c, &) and C, = C,(c, ¢, ¢y, C3,Cy)-
Now, we estimates of ¢ and 8, selecting v, = ¢ in (5.1(b))
(V¢,v¢) = (8,V9),
applying the Young’s inequality, to get
c IV¢II? + & IIVSII> < clIBll* + & NIVII%,
Thus,
V¢ < l1ell>. (5.15)
Since { € V,, € H}(Q), after that, |[C]] < ¢,|IVZ]|, thus we have
121 < c,ll6lI%. (5.16)
Thus, placing w;, = 6, in (5.1(a)) leads to

1d 2 —
S 1eIF + (V- B,V-6) = (£, V.0) = (6,,6),

Then, using &-Young’s inequality, we have

1d

S 1817 < cUgl? + 18112 + 1V - BII7) + £llV - 11 + llell?, (5:17)
and efficiently small &, must

1d

S 1017 < cCgl® + 18I + 1V - BIIZ) + 11V - 011> + llgll?. (5.18)
Integrating every expression of (5.5) regarding ‘t” from 0 to ¢, and 6(0) = 0, we get

t

el < cJ(IIfII2 + WS+ V- Bl + V- 611> + 1611>)dz (5.19)
0
By Gronwell’s lemma, yields
t
lel* < cJ(IIfII2 + 11611 + IV - BlI*)dr (5.20)

0
here, we need to estimate of V- .
Considering w;, = B in (5.1(a)) we have

IV-BII? + (6, 8) = (6. B) + €, V.5), (5.21)
The study has Cauchy-Schwartz inequalities on the right hand side of (5.21) must
V- BIZ + 16117 < 811 + [1EN> + lIBIIZ. (5.22)

replacing (5.22) into (5.20) we get
61 < ¢ [ el + ol + 1), (5.23)
Then, using (5.§3t) into (5.16) we have
1817 < [ el + 18,1+ g1, (5.24)
0

Where C3 = C3 (Co, C),
putting (5.23) and (5.24) into (5.14) we get
t

IB11Z + IS < C4-f(”n”2 + 1612+ 1BIZ + 118117 + 1§11 dx, (5:25)

0
Where €, = C,(c, Cy, Cy).
Employing Gronwell’s lemma, we have
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117 + 116117 < C4f(”77”2 + 18117 + ll811*)dr, (5.26)

0
Hence are estimates of § and &, replacing the the estimates in (5.23) to get the estimate of 6
t
617 < ¢ [l + 1512 + 18,1, (5.27)

0
Where, Cs = Cs (C, C4)
setting (5.23) into (5.15), to have the estimates of ¢, V¢,
t

1611 < G5 [ Qnll + 13112 + 5, ) (5.28)

Follow from (5.1?0) that

161 < s [ QnlE + 1812 + 1,11 (5.29)
Thus, replacing ?5.26) to (5.22)

V- BIIZ + 6117 < 118.11* + C4f("77”2 + 116117 + ll811?)dz, (5.30)

0
Finally, we calculate the required data from our theorem ,
lu —uplly = llu — Dpu + Mu —uylly < IV = Tl + IV u — up)ll
< chm||u||m+1 + Chmin(k+1,m)
< Chmin(k+1,m) (5.31)
Thus, the first requirement of the theorem has been proven.
Remark: placing (4.4) and (4.7) into (5.28) results

”VZHZ < Csthin(k+1,m) (llo'tllzoo(HKﬂ) + ”0'"§oo(HK+1) + ”u”ioo(Hmﬂ) );

”v(” < Chmin(k+1,m)’
C relies on Cs ”u”m+1| and ”0'15”200(HK+1), ”0'"§oo(HK+1) and ||u||i°O(Hm+1)-
In the same way, we can prove what remains of the required theorem.
Particularly, utilizing (4.4) with (5.26) to make full the theorem (5.1(b)), thus (4.5) and (5.30) to have (c) from the
Theorem 5.1, therefore the full evidence by (4.2), (4.4) and (4.7) with (5.30).
6. Fully-discrete and error estimates
In this part, the error estimates concerns with fully discrete. We well depend on backward Euler method, take 0 =
to <ty < <t, < <t,=T with At =t, —t,_,,n=1,2,..,M stands for the time grid and At =T/M, for
some plus integer M, and put t,, = nAt. For a smooth function At¢ on [0, T1, define

n n-—1
¢n =™, O ="""—. (6.1)

Regarding approximate the integral term we employ the rlght rectangle quadrature rule

() = At Z ko §) ~ f k(t, — $)$(s)ds, (6.2)
where k,,_; = k(t — 5). This quadrature rule is posrtlve [22,23], particularly.
an(qb)qb"—AtZan,¢1¢">01—1 63)
n=1 j=
The quadrature error .
@) =" @) - | ke, —0()as (64)
0

holds
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IR™(¢)] < CAt f Up()| + e (5) s, (6.5)

Where k, ¢ € C[0,T].
The equation (2.3) can be write as follows:

(a) (0,0™, W)+ (V-q",V-w)—(P",V-w) =—(f",V-w) + (R],w), vw e W,
(b) (™, Vv) = (Vu™,Vv), Vv € H}(Q),
(o) (q"2) — (o™, 2) + (At kn_ja (u(tj)) af,z) + <Atz kn_jb (u(tj)),z>
j=0 j=0
=(—R} + R}, 2),VzEW, (6.6)

(@) (p*,r) — (Atz ky_jc (u(tj)) . af,r) + <Atz kn_jg (u(tj)),r> = (R}+RLT), Vrew.

j=0 j=0
Where

tn
n — n j— 1
R} =0,0™" — 0, = Ar f (tp, —S)uyds
Ry = Atz kneya(u()) 0’ —j k(t — )a@o(@)dr = cmj (lo@| + lo.(@)dz,
j=0 0 0
Ry = Atz ey b (u(t)) - f k(t — $)b(w)ds,
Jj=0 0
n-1 tn tn
R} = Atz k_j C(u(tj)) o’ —J k(t —s)c(u) -o(t)dt = CAtj (le@)| + lo.(0)DdT,
j=0 0 0
n-1 tn
RI = At Z k._;g (u(tj)) — J k(t —s)g(uwdr,
Claim: = "
From the integral form of the remainder for the Taylor series of f(x),
" (n) 1 x
@ =@+ @0 -0+ 2 4t D oy L [ oo - orar
Then o
& £ () 17 - .
F00) = Z 2 —a) +Et=faf( (OG- e

And

1
n!

= O () r
feo - Zf 7 Y-y == f fr ) (x - )"dt.
j=0 ) t=a
Then, using the above equations as shown below:

n X
At At At
u™ 1 =y + Atdu + Eattu + ot z,—la(")u + Ff o+ Dy dt
! = Jj! H
There is four,
n—-1

c"—o
—o=7—(@"-d"")—o0,

90" — 0, = ————
to T % At At
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tn
“ oo —nto,o—~ [ o0, —var | |-
Al 9 o T o(t, —1)dT o
.fn—1
tn
=l 0"—0"+At00—i 0,,0(t,—1)dt | — 0
At t At tt n t
th—1

n tn
1 1
=0t~ f 0o (t, —1)dT — 0, = ~ A f 00 (t, —T)dT
t th—1

n-1
tn

1
= f 00 (t,_y —T)dT = RY,

tn—1
Also, by the quadrature error then (6.4) and (6.5) we get
t

tn

R} = Atz kn_ja(u)o’ —f k(t —s)a(w)o(t)dr = CAtf (le(@)| + lo. () dx,
j=0 0 0

tn

RZ| < CAt j (o] + lo, (@) dx,
0

So that

tn

IRT| < CAt j (6@ + lo, (@),
0

Complement of the claim.

Then, we give a complete discrete way: figure out (u, oy, qn, pr) € Vy X Wy, X Wy, X W,
(n=0,1,2,..,M — 1), such that

(a) (ata;‘tlfwh) + (V ) qﬁ;v ) wh) - (pZJV ) wh) = _(fn:V ) wh)! vwh € wh)

(b) (oh, V) = (Vup, Vvy), Vv € Vy,
n-1 n-1

© (aozn) = @fz) +{ 86 ) kja(wa(8)) oz | = 86 kussb (a(5)), 20
=0 =0

= (—RSl + R?'Zh)' VZh € Wh’
n-1 n-1
@ @) = 86 ) ke (w(6))- 0 ra | = | 86 ) sy (a(5)) 7
j=0 j=0

= (R} +RL, 1), vr, EW,.

To selected the required error estimates, now we divide the errors,

o(t,) —op =o(t,) —Ruo + Rpop — o =6+ 6™,

q(ty) — qn = q(t,) — Rpqy + Rpqy — g = a™ + B,

; p(t,) —pi = p(ty) — Rypp + Ryuppy —pi = p" + &7,

an

uty) —uft = u(t,) = Myuf + Myu —uft = 9™ + 7,
putting (6.2) from (6.1) with (3.1) at t = t,, we get the error equations below:

(a) (0,0™,wy) + (V- ",V -wp) — (", V.wy) = (8,6™,wy) + (R}, wp) Vwy, € Wy,
(b) (gnivvh) - (V(nivvh) = 01 Vvh € Vhi

© (8% 2) = @ 2) = | 86 ) ks (a(u(t)) - a (ua(5)) ) ol 20
j=0

6.7)
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0

_<Atj - (u(t,-)))df.zh) - <At
+<At _1kn_,- (»
(

ko (a (u(tj))) Qf,zh>

J

B

- (REI + Rg’lzh)l Vzh E Wh; (68)

u(t)) = b (u(5))). 20

—y

-,

~—_—

=

n

(
(@) @¢",ry) = <Atz ey (e (u(6)) = ¢ (wi()) ) a> + (mZ o) -sf,rh>
+<Af1kn i(e(u(v))) e, rh)+ (Q ey (9 (u(1) - (uh<t,->)),rh>

j=1
+(R} + RZ,13,),Vr, € Wy,

Theorem 6.1 let 0, (0) = R, Vu,(x) and there is constant C independent of h, At and ||ull,;41 + llogllees +
||p||k+1l “q”k+1, ||ke

tn tn
@ lu(t)-wll, <c (h’"i“m"‘“) + j llugelldr + j (ol + ||at(r)||)dr> + At
o [0

tn tn
®) |p(t)-pill<c (hmin(m“"f“) + j lluge lldT + j (le()l + ||at(r)||)dr> + At
o

tn tn

© |v-(a(e)-ar)ll<c (hmmm“'k) + j llugelldz + j (Nle@Il + llo,@Ddr | + At
@ ut) —wll +llo(t;) - ahll + IIq(t])o— g}ll + IIp(;)t: pill

<C (hmi”(m“"‘“) + J [luglldT + J (le@Il + ||0t(r)||)dr> + At
Proof. Supposing z, = " in (6.8(c)) , o o
18117 = (6™, 8™) ~ (Atz kny (@ ()~ a (w(®)) ) oh. 8
K <a (u(tj))> 0/, ﬁ")

n—-1

IO AR

j=0
+ (Atz ko ( u(y)) - (uh(tj))>, B | = (R: + R, M), (6.9)
employing Cauchy-Schwartz inequalities for every expression on the right hand side of the above equation to have
|(9”nﬁ’z)| < lle™ s, (6.10)
B (Z oy (a (u(8)) = a ((5)) o ﬁ") < cac, <Z(||n’ |+l II)> 8™, (6.11)
j=0

where, c; relieson k c, relieson |7 o u(¢;) ) is Lipchitz constant concerning u,
1 n—jr “2 W1 L)’

(an i (a(us)))s” ﬁ")

< cercy ZIIS’IIIIﬁ"II (6.12)
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c; depends on the bound of a (u(tj)),

(an i (a(u()))er, ﬁn>
(S o)) )

where b (u(tj)) is Lipchitz fixed regarding u,

n-1

< ceicy ZIIBJIIII[J’"II (6.13)

j=0

< ce, Z(Ilnfll +|1¢Z[Dnse I, (6.14)
=0

At
then, in the light of (6.2), we have

n-1 tn
(Atz kn_; b)), /3n) - (f k(t — $)b(w)d, [3”)
j=0 0

Replacing (6.10)-(6.16) into (6.9) we have Type equation here.

I < C1<||9"||+<Z(||n"||+ ||<f||>)+2||sf||+Z||ef||+2(||nf||+ <)
j=0 j=0 j=0 j=0
1 n
+A_t< fllutt(r)lldt)+At> 8™, (6.17)

th-1
where C; = C,(c, 1,5, C3,C4),
Multiplying by At, as well as summing (6.17) from n = 1 to J, and in the light of (6.3), the second, third, fourth and
fifth terms on the left hand side are nonnegative, we have

[=(R%, BMI < IRZII? + ellg™1I* < —( f IIutt(T)IIdT> ™ Il. (6.15)

th—1

|=(R%, B™)| = < Atllgnl, (6.16)

tn
At < ¢, (Atllefll + At J [lu (D) ldT + (At)2>, (6.18)
th-1
Then,
tn
871l SC<||6]||+ f||utt(T)IIdT+At>. (6.19)
th-1

Here find the estimate of ™ ,we selecting r;, = &™ in (6.3(d)) we have

g2 = (Z ey ( (u(6)) -  (un(5))) - o, E”) - <Z by (e (u())) -, f“)
+<Atz ey (¢ (u(8) )0, c’">+<Atz ey (9 (u(t)) - (uh(t;))),f">

+(R + Rg, €M), (6.20)
Employing Cauchy-Schwartz inequalities for every expression on the right hand side of the equation to have:

(Z s (¢ (106)) =€ (6 f) <ac, (i(nwu - ||<f'||)> e, (621

where ¢ (u(t)) is Lipchitz continuous regarding u,

(an,( u(t))5’€>

c, depend on the bound of ¢ (u(tj)),

< 6164Z|I6’IIII€“II (6.22)
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1

Kn_ (c (u(tj))) 67,6

kn-; (9 (u(tj)) -9 (uh(tj)))'fn

=0

B
|

n-1
< 6164Z||9"||II€”II. (6.23)
=0

= o

S -

> U+ 171 Jnee, (6.24)
=0

—.

where g (u(tj)) is Lipchitz fixed concerning u,
therefore, in view of (6.5) we get:
t

I®Rz,E91 < cae| Aol +lo@Ibar |, (6.25)
Now, in view of (6.2), we have:

[(RE,$MI| = < Atllgnl, (6.26)

n-1 tn
2y s (u(0)). 6 )~ | [ K- 9gane
j=0 0

Replacing (6.22)-(6.27) into (6.21) we have:

n-1 n-1 n-1
g2 < esea | D (Al + 1671 Jigm+eves D lloligm i+ | D (nll+ 671 Jnen
j=0 j=0 j=0

16y ZII&'IIIIf”II + CAt f(lla(r)ll + lloe (@ IDdz | IE™ ] + AtllE™]], (6.27)
j=0 0

According to (6.28) from n = 1 to J, as well as in the light of (6.3), the first, second, third and fourth terms on the left
hand side are nonnegative, we have

e < ¢ j Ulo@Il + llo, (@D de + At |, (6.28)
0

Then, we estimate 6/, select w, = 8™ in (6.8(a)) as well as use the Cauchy-Schwarz inequality and Young’s
inequality to have:

1
§0t||9"||2 < CUla, ™17 + 1™ + IV - ™12 + [IRTNIZ) + C 6™ 12 + IV - 67™]2), (6.29)
Note that
]
AtZII@tcS"IIZ < Ch2eD|g, |12, (6.30)
n= 1
ty
AtZIIR" I2 < cAt f g, (D12 dr, 6.31)

on replacing (6.30) and (6.31) mto (6. 29) as well as summlng it fromn = 1to/, we obtain:
ty

lo7112 < Ch2+Dlla +1+ZIIE"II2+ZIIV B + Cae f ||un(r)||2dr+ZC(||en||2+||v 0112,

Use Gronwell’s lemma to get

167112 < CR2EDllay I, + an"w * va B + Cae f e (@2, (6:32)
combining (6.28) and (6.32) and also applylng Gronwell’s lemma to obtain

ty tn
g7l + 1671 < €| R+ llogllyesr + Atfllutt(r)lldr + f (le@Il + llo.(DIDdz + At ), (6.33)
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Now putting the estimate of 8/ into (6.33) we get the estimate of g/,

t‘)’l fn
Ip71I < | K+ Hloelless + Atf llue (Dlldz + + f (le@ Il + llo.(@)IDdr + At |. (6.34)
0 0
Taking v, = ™ in (6.8(b)), we have
Vel < lle™ll, (6.35)
by Poincare inequality, we obtain
™ < Ivg™ il < lle™l, (6.36)
then
ty tn
IC™ll < ¢ | h**Hloyllrs +Atf llue (@lldT + f (le@Il + lloe (@) Ddz + At ). (6.37)
0 0
After that using of the triangle inequality with (6.37), (6.33), (6.34), (4.5), (4.4), and (4.7) complete the proof.
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