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Abstract— The cognitive radio has been proposed as a promising technology to effectively utilize the radio 

spectrum to allow unlicensed users by allocating the spectrum dynamically on a non-interfering basis. The main 

challenge of cooperative spectrum sensing is the control channel overhead when the number of cognitive users 

becomes very large. Therefore, Cluster-based approach is applied to avoid the congestion on the control channel 

and reduce the sensing time. In this paper, an energy-efficient clustering approach is applied for electing cluster 

head in a distributed way assuming that a cluster head with more energy is selected in each round and sends the 

information to the fusion centre. The simulation results prove that the energy-efficient clustering approach 

enhances the lifetime of cognitive radio sensor network and try to maintain a balance energy consumption of 

cognitive users. The proposed approach shows that it is more robust than other conventional schemes in term of 

energy consumption. 

Keywords— cognitive radio, clustering, energy-efficient clustering approach, fusion centre, MATLAB 

 

1. INTRODUCTION 

The recent revolution in wireless services and applications expanded the interest for additional frequency 

spectrum for new users. This inspires researchers and telecom organizations to streamline the usage of current 

spectrum allocations. The Federal Communications Commission (FCC) and different organizations carried on 
several studies on the licensed portion of the spectrum [1]. These studies demonstrated that a large portion of a 

licensed spectrum is incomprehensibly under-used. Therefore, cognitive radio (CR) technology is proposed to 

enhance spectrum exploitation [2]. The term ‘‘Cognitive Radio’’ was initially authored by Joseph Mitola in his 

PhD postulation [3].  

CR gives opportunistic access to unused licensed bands. With CR, unlicensed secondary users (SUs) can 

utilize licensed frequencies when the primary user (PU) is idle [3,4]. Since Spectrum Sensing (SS) is the first 

stage of cognitive communications, it plays a significant role accomplishment of the entire procedure. 

Therefore, SS has received a lot of attention to perform it efficiently. In literature, many SS techniques are 

available out of which energy detection has been widely employed because of its simple execution and also it 

doesn't require any prior information about PU [4]. To enhance the reliability of SS a very promising solution is 

cooperative spectrum sensing (CSS) [5-7], where the sensing users, after their sensing, collaborate to make a 

final decision about the used/unused status of the frequency spectrum under analysis. Cooperation is empowered 
by reporting the results of the local sensing to a central entity, called fusion centre (FC), where the results are 

combined and a final decision is taken [6]. Performance evaluation of CSS is through two indicators; the 

detection probability (Pd) and the false alarm probability (Pfa). Pd is defined as the probability of identifying the 

used spectrum as used, while Pfa is the probability of identifying the unused spectrum as used. Lower detection 

probability results in a higher interference at the licensed users, though high false alarm probability leads to 

inefficient usage of the available spectrum.  

In CSS, if the more number of cooperative SUs increases, the further performance improvement can be 

attained, but, too many SUs adversely affect gathering global sensing data at the FC and results in higher 

overhead in sensing data collection and less time allotted to data transmission [7]. Cluster-based CSS approach 

is proposed to ease the traffic load of the reporting channel in order to address such a challenge. In [8], the 

performance of CSS scheme based on hard and soft fusion rules are evaluated, respectively. 
Clustering technique has been recently adopted in cooperative spectrum sensing for cognitive radio networks 

to improve the cooperative sensing performance under imperfect channel conditions [9-14], in which CRs are 

grouped into clusters and the user with highest reporting channel’s SNR is chosen a cluster head (CH), which 

sends the cluster decision to fusion centre or base station.  
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In the literature, there are numerous studies on cluster-based CSS in CRNs. Different clustering algorithms 

are also discussed in [9]. In [15-16] different fusion rules and optimal parameter setup are studied. In [17], a 

multi-cluster multi-group based cooperative spectrum sensing scheme is proposed, which pursued the optimal 

number of the cluster by minimizing the error rate of each cluster. In [18], the performance for log-normal 

channels with noise uncertainty is investigated. In [19], a weighted cooperative sensing framework is proposed 
to increase spectrum sensing accuracy.  

Cognitive radio sensor networks (CRSNs) are a smart combination of wireless sensor network and cognitive 

radio, these have recently attracted increased attention [20]. In a CRSN, a cluster head is generally responsible 

for all spectrum controlling tasks, such as obtaining the sensor information from the nodes in the cluster and 

sending it to the fusion centre [21].  

An energy-efficient LEACH protocol has been proposed in [22], whereby selection of cluster heads with 

predetermined probability and energy drain is done, and then other nodes join their nearest cluster heads. In [23] 

studied a DEEC protocol, where nodes are independently elected as cluster heads constructed on the initial and 

residual energy. The nodes with high initial and residual energy are more likely to be cluster heads than nodes 

with low energy, under a DEEC protocol. In [24] the hybrid energy-efficient distributed (HEED) protocol has 

been proposed which involves selecting a node with more residual energy and more neighbouring nodes as the 

cluster head through a coordinated election.  
In this paper, we propose energy-efficient clustering approach (EECA) electing cluster-head in a distributed 

way assuming that a cluster head with more energy is selected in each round and sends the information to the 

fusion centre. We exhibit that our EECA enhances the lifetime of CRs and try to maintain a balance energy 

consumption of CRs. Our approach shows that it is more robust than other conventional schemes in the term of 

energy consumption.  

The rest of this paper is organized as follows. Section II; describes the system model. Section III describes in 

detail the formation of energy-efficient clustering approach. Simulation results are presented in Section IV. 

Finally, the paper is concluded in Section V.  

2. MODEL OF PROPOSED SYSTEM 

This section describes the system model, and explain how the optimal number of clusters can be computed in 

CRSNs with heterogeneousnodes in their initial amount of energy.  
A. Conventional Scheme 

In the conventional scheme, when all nodes have an initial energy level 𝐸0, active nodes will choose 

themselves as cluster heads based on the probability of selecting a cluster head utilizing a distributed algorithm. 

Nodes that have already been cluster head cannot become cluster head again for P round, where P is the desired 

percentage of cluster head. In each round node arbitrarily picks a number between 0 and 1 and compares this 

number to a threshold value T(N), which is determined as follows: 

 

𝑇(𝑁) = {

𝑃

1−𝑃∗((𝑓𝑖𝑟𝑠𝑡𝑟𝑜𝑢𝑛𝑑)𝑚𝑜𝑑(1
𝑃⁄ ))

∀𝑁 ∈ 𝐴

0,                                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
     (1) 

      

where 𝐴 is the set of active nodes in the first round. 

B. EECA Approach 

In a proposed approach, each node identifies the total energy of the sensor network and afterwards adjusts its 

selection probability to become a CH according to its residual energy [22].  

Assuming the situation where a percentage of the population of sensor nodes is equipped with more energy 
resources than the rest of the sensing nodes. Let m be the fraction of the total number of nodes n, which are 

furnished with α times more energy than the others. These powerful nodes are referred to as advanced nodes and 

the rest (1−m)×n as normal nodes. Assuming that all nodes are distributed uniformly over the sensor field. 

EECA approach is to allocate weight to the optimal probability popt. This weight must be equivalent to the 

initial energy of each node divided by the initial energy of the normal node.  Where pnrm is defined as the 

weighted election probability for normal nodes, and padv is defined as the weighted election probability for the 

advanced nodes. 

There are n×(1+α.m) nodes with energy equivalent to the initial energy of a normal node. In order to maintain 

the minimum energy consumption in each round within an epoch, the average number of cluster heads per round 

per epoch must be consistent and equal to n×popt. In the heterogeneous situation, the average number of cluster 

heads per round per epoch is equal to n.(1+α.m)×pnrm (because each virtual node has the initial energy of a 
normal node.) The measured probabilities for normal and advanced nodes are, respectively: 

 

𝑝𝑛𝑟𝑚 =  
𝑝𝑜𝑝𝑡

1+ 𝛼∙𝑚
       (2) 
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𝑝𝑎𝑑𝑣 =  
𝑝𝑜𝑝𝑡

1+ 𝛼∙𝑚
×  (1 +  𝛼)       (3) 

 

In Equation (1), P is replaced by the weighted probabilities to obtain the threshold that is used to elect the cluster 

head in each round. Where T(Snrm) defined as the threshold for normal nodes, and T(Sadv) the threshold for 

advanced nodes. 

Thus, for normal nodes, we have: 
 

𝑇(𝑠𝑛𝑟𝑚) = {

𝑝𝑛𝑟𝑚

1−𝑝𝑛𝑟𝑚∙(𝑟𝑚𝑜𝑑
1

𝑝𝑛𝑟𝑚

𝑖𝑓𝑠𝑛𝑟𝑚 <∈ 𝐺′

0,                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     (4) 

 

where r is the current round, G’ is the set of normal nodes that have not become cluster heads within the last 

1/pnrm rounds of the epoch, and T(Snrm) is the threshold applied to a population of n.(1−m) (normal) nodes. This 
promises that each normal node will become a cluster head exactly once every 1/popt. (1+α.m) rounds per epoch, 

and that the average number of cluster heads that are normal nodes per round per epoch is equal to n.(1−m)× 

pnrm. 

Similarly, for advanced nodes, we have: 

 

𝑇(𝑠𝑎𝑑𝑣) = {

𝑝𝑎𝑑𝑣

1−𝑝𝑛𝑎𝑑𝑣∙(𝑟𝑚𝑜𝑑
1

𝑝𝑎𝑑𝑣

𝑖𝑓𝑠𝑎𝑑𝑣 <∈ 𝐺′′

0,                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    (5) 

 
where G” is the set of advanced nodes that have not become cluster heads within the last 1/padv rounds of the 

epoch, and T(Sadv) is the threshold applied to a population of n.m (advanced) nodes. This guarantee that each 

advanced node will become a cluster head exactly once every 1/popt.(1+α.m)/1+α rounds. This period is defined 

as sub-epoch. It is clear that each epoch has 1+α sub-epochs and as a result, each advanced node becomes a 

cluster head exactly 1+α times within a heterogeneous epoch. The average number of cluster heads that are 

advanced nodes per round per heterogeneous epoch (and sub-epoch) is equal to n.m×padv. Thus the average total 

number of cluster heads per round per heterogeneous epoch is equal to: 

 

𝑛 ∙ (1 − 𝑚) × 𝑝𝑛𝑟𝑚 + 𝑛 ∙ 𝑚 × 𝑝𝑎𝑑𝑣 = 𝑛 × 𝑝𝑜𝑝𝑡      (6) 

 

which is the desired number of cluster heads per round per epoch. Equations 

3. ENERGY MODEL OF EECA 

In EECA analysis radio model described earlier [22] is used. If there are N nodes and K is the optimal 

number of CH, then the average number of nodes in each cluster will be 

 

(
𝑁

𝐾
− 1)           (7)    

  

The energy required to transmit or receive an L−bit message over a distanced, is given by 
 

ETX (L, d) = {
𝐿 . 𝐸𝑒𝑙𝑒𝑐 +  𝐿 . 𝐸𝑓𝑠. 𝑑2  𝑖𝑓𝑑 ≤  𝑑0

𝐿 . 𝐸𝑒𝑙𝑒𝑐 +  𝐿 . 𝐸𝑚𝑝. 𝑑4  𝑖𝑓𝑑 > 𝑑0

     (8) 

 

where Eelec is the energy dissipated per bit to run the transmitter or the receiver circuit, Efs and Emp depend on the 

transmitter amplifier model we use, and d is the distance between the sender and the receiver. d2 is the free 

space path loss, andd4 is the multipath fading loss, and 𝑑0=√
𝐸𝑓𝑠

𝐸𝑚𝑝
 is the threshold distance[25]. ERX = L.Eelec is 

the energy consume by the receiver. 

Assume an area A = M × M square meters over which n nodes are uniformly distributed. For simplicity, 
assume the FC is located in the center of the field, and that the distance of any node to the FC or its cluster head 

is ≤ d0. Thus, the energy dissipated in the cluster head node during a round is given by: 

 

ECH = (
𝑁

𝐾
− 1) L∙ 𝐸elec + 

𝑁

𝐾
L∙ 𝐸DA+ L∙ 𝐸elec+𝐿 . 𝐸𝑓𝑠. 𝑑𝐹𝐶

2     (9) 

 

where K is the number of clusters, EDAis the processing (data aggregation) cost of a bit per report to the FC, and 

dFCis the average distance between the cluster head and the FC. The energy used by each cluster member is 

equal to:  
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ECM = L∙ 𝐸elec+𝐿 . 𝐸𝑓𝑠. 𝑑𝐶𝐻
2       (10) 

 

where dCHis the average distance between a cluster member and its cluster head. Assuming that the nodes are 
uniformly distributed, thus, the d2

CH becomes: 

 

𝑑𝐶𝐻
2 =

𝑀2

2𝜋𝐾
    (11) 

 

The energy dissipated in a cluster per round is given by: 

 

Ecluster ≈ 𝐸CH + 
𝑁

𝐾
𝐸CM     (12) 

 

The total energy dissipated in the network is equal to 

 

Etotal= L (2N𝐸elec + NEDA + 𝐸𝑓𝑠(K𝑑𝐹𝐶
2 + N𝑑𝐶𝐻

2 ))               (13) 

 

By differentiating Etotal with respect to K and equating to zero, the optimal number of constructed clusters can be 

found: 

 

kopt = √
𝑁

2𝜋

𝑀

𝑑𝐹𝐶
=  √

𝑁

2𝜋

2

0.765
   (14) 

 

because the average distance from a cluster head to the FC is given by [26]: 

 

𝑑𝐹𝐶 =  ∫ √𝑥2 + 𝑦2
𝐴

1

𝐴
dA = 0.765

𝑀

2
   (15) 

 

The optimal probability of a node to become a cluster head, popt, can be computed as follows: 

 

𝑝
𝑜𝑝𝑡 = 

𝑘𝑜𝑝𝑡
𝑛

   (16) 

 

4. RESULT EVALUATIONS 

A. Simulation Setup 

Using MATLAB to simulate the performance of the proposed scheme, where the nodes n = 100 both normal 

and advanced, are randomly (uniformly) distributed over the 100m × 100m area. This means that the horizontal 

and vertical coordinates of each sensor are randomly selected between 0 and the maximum value of the 

dimension. The fusion centre is placed at (50 x 50) the initial energy of a normal node is set to E0 = 0.5 Joules. 

The simulation parameters are summarized in Table I. The size of the message that nodes send to their cluster 

heads as well as the size of the (aggregate) message that a cluster head sends to the FC is set to 5000 bits. 
A normal node is denoted with ◦, an advanced node is denoted with +. As long as all the nodes are alive, the 

nodes that are included in the same cell will report to the cluster head of this cell.  

TABLE I.  SIMULATION PARAMETERS 

Parameter Value 

No. of nodes 100 

Area of network 100 m x 100 m 

Desired CH 10% 

Initial Energy 0.5 Joule/Node 

Packet Size 5000 bits 

Location of the base station [50, 50] 

Eelec 50n Joule/bit 

Eamp 

EDA 
ETX 

ERX 

0.0013p Joule/bit 

5 n Joule/bit 
50 n Joule/bit 

50 n Joule/bit 

Path loss exponent 2 

Fusion energy 5n Joule 

Fusion rate 0.20 

Control message size 32 bits 

Maximum no. of rounds 5000 

Steady-state time 5 mins 
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B. Results Analysis 

 

Figure 1 shows that out of 100 alive nodes the first node in the EECA scheme died around 862 and the 

remaining nodes died quickly. While advanced nodes die in a slow pattern because they are not elected cluster 
head as quickly. Number of CHs formed in each round is shown in Figure 2.  

Figure 3 represents the data transmission to the FC against the number of rounds. In EECA scheme there 

were fewer data transmitted to the FC because only advanced nodes take part in data transmission to the CHs.  

The number of the packet sent to CH is shown in Figure 4. In each round, some nodes transmit data packets only 

and some nodes perform both reception and transmission. 

 

 
Fig. 1.  Randomly deployment of CRSN 

 

 
Fig. 2.  Number of CH formed each round 
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Fig. 3.  Data transmitted to the FC each round 

 
Fig. 4.  Data transmitted to the CH each round 

 
Fig. 5.  Number of dead normal node each round 
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Fig. 6.  Number of dead advanced node each round 

 

The required energy for transmission of data packets is given by ETX and for the reception of data packets is 

given by ERX.  

relative total extra energy (x m)
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Fig. 7.  Comparative analysis between Conventional and EECA scheme 

 

Assuming L=5000 bits, Eelec=50n Joule/bit and Eamp=0.0013p Joule/bit. d is the distance between Source and 
destination. With initial energy of each node 0.50 J, after 5000 rounds where steady-state time t=5 mins, the 

total energy used during the simulation for data transmission to the FC is 48.96 J. 

Figure 5 illustrates a graph of the number of dead normal nodes against the number of rounds. Figure 6 shows a 

graph of the number of dead advance nodes against the number of rounds. 

Figure 7 presents a comparison between conventional and proposed scheme in which a graph is plotted 

between lengths of the stable region (in rounds) versus total extra energy. 

It is observed that the gain of the EECA over conventional increased up to 33 % indicating efficient energy 

management by the advanced nodes by EECA over conventional method. 

5. CONCLUSIONS 

This work proposes an energy-efficient clustering approach for CSS in CRSN. The main objective of the 

study comprises of the independent election of CH by every sensor node based on its initial energy concerning 
that of other nodes. EECA scheme does not require the global knowledge of the network for data transferring so 

it shows the energy distribution among all nodes is effective in reducing energy dissipation from global 

perspective view and improve the network life span of the sensor networks at a great extent. 
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