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Abstract. In this paper, we try to extend and obtain some more results inspired by P. Goswami and Aljouiee [9]. Here we are
introducing a new subclass of biunivalent functions by using g-derivative operator, quasi-subordination and convolution
analytic bi-univalent functions. Also we find both some initial and general coefficient bounds.
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1. Introduction and Preliminary

Let f(z) be analytic and univalent in A. Then, since f'(0) # 0, the function
f2)=z+Yr_,a,z"™ (1.2)

In the open unit disk Adefined as A= {z:z € Cand |z| < 1}, these functions are analytic and follows the
normalization condition f(0) = f'(0) —1 =0

Assume subclass S of A to be univalent in A. According to koebe one quarter theorem [1], all the functions
belonging to S has their inverse in A.Therefore if f € S, then we have f~1defined as

frf@) =z (z€4)
and
ey =w, (Wl <n@in() 2?)
where
f1w) =w — a,w? + (2a, — az)w? — (5a3 — 5a,a; + a,)w*+... (1.2)

f is said to be biunivalent function if its inversef ~* is also univalent in A. We denote the class of biunivalent
function by symbol o.

Suppose M is class having functions which are of the form,

$(2) = 1+ Xn=g Pnz" (1.3)
and are also regular in A.
Definition 1.1. [2] Let B,,(y) denote the class of analytic functions K (z) in A, satisfying the properties K(0) =

1, and
2
)

where z = re®,m > 2and0 <y < 1.

Form = 2,P,(y) = P(y). When y = 0, B,,(y) reduces to the class P,,(0) = B,, defined by Pinchuk [3]. And
with the help of this we get the class P,(0) = Pof caratheodory function of positive real parts.

Many mathematicians have worked in the field of biunivalent functions and obtained interesting results. The
class o of biunivalent functions was first investigated by Lewin [4]. He also found the bound for second coefficient.
Certain subclasses of biunivalent functions similar to the subclasses of starlike, strongly starlike and convex
functions are studied by Brannan and Taha [5].

In recent years, various researchers like Goyal and Goswami [8], Ali et al. [6], Aljouiee et al. [9], Srivastava et
al. [7] have worked on the subclasses of bi-univalent functions and found the initial coefficient bounds.

Robertson [10], in 1970, introduced concept of quasi-subordination which is defined as follows:

Definition 1.2. If f(z) and K(z) be analytic function in A, them f(z) is quasi-subordinate to K(z) in A,i.e.

RK(z) —vy
1-y

|d9$m7r,

f(2) <q K(2), (z€eh)
if there exist an analytic function ¥, (| (2)| < 1), such that (%)is analytic in A,and
f(2)
(w (Z)) < K(2), (z €A)

i.e. there exist the Schwarz function w(z) such that
f(2) =¥ (2).K(w(2))
And we know from [1] that f(z) is subordinate to K(z)i.e. f(z) < K(z), if there exist a Schwarz functions
w(z) in A such that f(z) = K(w(2)), with w(0) = 0and |w(2)| < 1, (z €A).
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Jacson [11], in 1908, introduced the concept of q-derivative, which is defined as follows:
Definition 1.3. The g-derivative of a function fis defined on a subset of Cis given by

(Def)(2) = HELED, (2% 0) (1.4)

and(D,f)(z) = f'(0) provided £'(0) exists.
If fis differential, then

. _ e f@-fG0) _ @)
M (D)) = lom === ==

From (1.4) and (1.1), we get

(qu)(Z) =1+ Xn-.[nlganz"™! (1.5)
Where [n], = —@#1
Definition 1.4. If f(z) be a function defined by (1.1), thsn for any functionl(z) of the form,

l(z)=z+ Z Lz"
n=2

Convolution of f(z) and I(z) is defined by,
(f*D(@)=z+Xn-sa,l,z" z€EA (1.6)
Sahsene Altinkaya [11] in 2018 introduced the class T;(gq,») and obtain the upper bounds for coefficient of
functions of this subclass.
A function f € gisin T,;(g,»), (x= 1) if satisfy the condition as follows:

A2 45 0, ) (@) <4 ¥(@

And
F (w)

(1 =X)—=+X (DgF)(w) <4 Y(w)

where F = f~1,and ¢ € Mbe univalent in Aand ¥ (A) be symmetrical about the real axes with 1’(0) > 0.
Definition 1.5. Let ¢ € Mbe an univalent function in Aand let 1)(A) be symmetrical about the real axis with
Y'(0) > 0. A function f € g, is in the class MZ(q,»), (= 1, a € R), if it satisfy the conditions given below:

(1% (F2)" 45 (0N @) <, ¥(@), (2 €1) (17)
and

(1 =% (22)" 45 (@YW <q W), W €4) (1.8)
where F = f1

Considering these definitions, we will define a new subclass of bi-univalent functions by g-derivative and
convolution, and also obtain general and initial coefficient bounds by means of Taylor expansion formula.

1. Main Results

Lemma 2.1. [3] Suppose &be a function defined by £(z) = 1 + Yo, cp,z"isconvexin A. If §(z) € B, then
lcn| < m, (m€eN)
Definition 2.1.A function f(z) € o, is said to be in class MZ(f, ;x; t), for x= 0,t € (1/2,1], ¢ €R, if the
following condition is satisfied:

(1- )<(f D(z )) x (Dol * D)D) <y B2 (2 €A)

and

F a
1- )<( D(w )) +x ((Dq(F*l))(W)) <o YW), (w €A)

whereF = f~1,
This is very clear from the above definition that f € MZ(f, ;»; t), if there exist a function (|2 (2)| < 1),
satisfying following conditions:
1= (LLDY s (g (£ )"
h(z)

< Y(2), (z en) (2.2)

and
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15 (EDWN L (p o (Friyyw))®

a-» (=2 )h(w)(( g bw), (W €A) 2.2)
where F = f~1. Here we suppose that i € Mis of the form

Y(z) =1+ c1z+ cz%+...,(c, > 0,z EA)
and the function h analytic in Ais taken as
h(z) = Xo + X1z + X,z°+..., (|h(2)| < 1,z €A)
Now our main results are as follows:
Theorem 2.1. Let f be function given by (1.1) be in the class MZ(f,l;x;t), ifa,, =0,for2<m <n -1,
then

c1+|Xn-1l

< -
lanl < R tm - Tl

(n > 3).
Proof: We have

f@)=z+ i a,z",

l(Z) =z+ Z lnznt
n=2

)

(f*D@)=z+ a,l,z"
Now

Ffuxmr B

7 - 4 n'*n

and
[(D (f * l))(z) 1+ Z lqanl, 2™~ 1]

Denoting "

N@) = (L229)%;0(2) = [(0y(f * D)@
vw) = (T2 W w) = [0, (F * )W)

Then we have

(1 =>)N(2) +* Q(2) <4 ¥(2), (2.3)
and
(1 =)V (Ww) +x W(w) <4 p(w), (2.4)
By Taylor expansion formula we obtain
N(z) = ((f e )) = N(0) + zN'(0) +%N~(0)+...+%N(“)(0)+---
We can calculate ' .
N(0) =1,
N'(0) = aa,l,

N"(0) = a(a — 1)(a,l,)? + 2aasl;
N"(0) = a(a — 1)(a — 2)(ayly)® + 6a(a — 1)aazl,l; + 3l aayl,

N®D0) =B(a(e —1)(a—2)...(a =n+1),a3,a3,...,ap_1, 13, ls,... L_1) + a(n — D!ayly,
where B(a(a — 1)(a — 2)...(a = n+1),a,,a3...,a,_1,13,15,...1,,_1,) is the sum of the functions formed

by the product of a(a — 1)(a —2)...(a —n+1),a,,a3...,a,_1,15,15,...1,_;and atleast one of the product
factoris q;l;,2 <i<n-— 1 50

N(z) =1+ aayl,z + [a(a —1)a3ls + 2aa;ls]

[a(a —D(a—2)a3li +3la(a — Vayaslyl; + 3laa,l,]+

n-1)! [B(a(a - 1)(“ - 2) (a -—n+ 1) a2l a3’ sy an—lﬂ l2’ l3l e ln—l) +

a(n—1)! anln]+ (2.5)
Now,
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Q@ = [(D(f * D)D" = |1 + Z[n]qanznz"—l]
n=2

= [1+ [2]4a,1,2" + [3]4a3l32%+...]¢
By Taylor expansion formula,
2 n
0(2) = Q(0) + zQ'(0) + %Q”(O)+...+%Q(n)(0)+...
By calculations, we get ' '
Q) =1,
Q'(0) = a[z]qazlz;

Q"(0) = a(a — 1)([2]gazly)” + 2a[3]4asls,
Q"(0) = a(a — 1)(a — 2)([2]qa212)3 + 6a(a — 1)([2],a,1,)([31,a3ls) + 3! a([4],a4l),
.”Q("‘l)(O) =Y(a(a—D(a—2)...(a —n+1),a50s,...,ay-1, 15, l3,...[_1) + a(n — D! [n],a,l,,
Therefore, we get

2
Q(2) =1+ (a[2]4a,l)z + %(a(a — 1)([2]qa212)2 + 2a[3]a3l3)+. ..

zn—l

Dl [Y(a(a—1)(a—2)...(a —n+1),a;3,a3,...,a,_1, 15, l3...[,_1) + a(n — 1)! [n],a,1,]+... (2.6)
where Y(a(a — D)(a —2)...(a —n+1),a,,a3,...,a,-1, 15, I5... 1,_1) the sum of the functions formed by
the product of a(a — 1) (a — 2)...(a —n + 1),a,,as,...,a,-1, 15, 15...1,,_;and at least one of the product factors
isail;;2<m<n-1,
Using (2.5) and (2.6) in (2.3), the coefficients of ZH, if a,, =0for2 <i<n-—1,isgiven by
[1 + ([n]q - 1) x]aanln
Similarly, we can find the coefficient of w™~1 in (2.4), i.e.
[1 + ([n]q - 1) x]abnln
Where
Fw) =w+ Xu, b,w™, F=f1
From definition (2.2), it is clear that there exist two Schwarz functions ¢(z) = Yo, d, z"and @(w) =
Yo 1 Sywh |dy] <1, s,| < 1, such that

(1 =) [Z29] 45 [(Dy(f * D) D]" = @) ($(2), (27)
and
(1 =) [F290% 0 [(Dy (7 = D)W)]* = h(w)p(p(w)), (28)
Thus from definition (2.2), and (2.7)
[1 + ([n]q - 1) >\]Ofanln = Xno1 + 2821 Xhe1 Ck Afz (dpdz:---dn)-Xn—(t+1),(X0 =1) (2.9)

Similarly by definition (2.2) and (2.8), we get

[1 + ([n]q - 1) x]abnln = Xn—l + z z Ck A;Cl (51'52...,Sn)'Xn—(t+1)'

t=1 k=1
Fora,, =0, (2<m<n-1) wehaveb, =—a,and so
a[1+ ([nl, — 1) Xanl, = aaply + ax ([nl, — 1) = cydp_y + Xns (2.10)
and
a[1+ ([nly — 1) X|bnly = €150-1 + Xnq (2.11)
Now taking the absolute value of the above equations, we get
lc1dn—1+Xn—1l c1+1Xn-1l

la,| = (n > 3).(2.12)

- la[1+([n]g-)x]|ltnl — a[1+(nlg—1)x]ltnl’
This completes proof.
Theorem 2.2. Let the function f € MZ(f, I;x; t), be given by (1.1). If a,, = 0for 2 < k < n — 1, then we have

Janl < 70, (n23)
Proof: We have from (2.5)
(f = D(@)\* z? 2 n
(T) = 1+ aaalyz + 55 (ala ~ 1)(@h)? +2aask) 4 o,

[Bla(a—D(a—=2)...(a—n+1),a50a3,..., 01,15, 5. [,_1 +a(n — D'a,l,]+..., (2.13)
Similarly, forF = f~* = w + Y%_, b,w",
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. " 2 n-1
(2N 2 1 4yt + 7 (aa — D L) + 2abala) (= 1)

[Ala(e =) (¢ —2)...(a =—n+1),by,bs,..., b1, 15, 5. L) + a(n — 1) b,l,], (2.14)
By definition and Lemma (2.1), there exist two functions

w(z) =14 X7-1unz" € Py, (2.15)
v(w) =14 X7, vw™ € By, (2.16)
|un| S m’ |vTL| S ml
such that
[24
(£22)" =x +1 - u(2)
=1+ (1 =2)uz+ (1 —XN)uyz?+.., (2.17)
[24

(22)" = +(1 =5 )w(w)

=1+ (1 —)vw+ (1 —=XN)vw?+..,, (2.18)

Now comparing the coefficients of (2.13) and (2.17),
(n—ll)! [B(a(a — D(a—2)...(a —n+1),a,,a3,..., 001,13, l3,. .. lp_1 +a(n —D'a, )] = (1 —XN)u,_4
(2.19)
also comparing the coefficients of (2.14) and (2.18)
(n_ll)! [A(a(a — 1)(@=2)...(@ =n+1),by, by, ..., by_1, 13, L3, Ly g + a(n — 1) byl)] = (1 =X)vp_y
(2.20)

Ifa,, [, = 0for 2< k <n — 1, then
a(n—Dla,l,

(n — 1), = (1 _x)un—l

or
1
an = a_ln(l _>‘)un—1
Similarly
1
b, = a_ln(l —X)Vp—q

Taking absolute value, we get

o] 5 Sl < o 22
Here we get the desired result.

If we relax the conditiona;, = 0for2 < k < n — 1, then we have the following consequence:
Corollary 2.1. Ifa;, # Ofor 2 < k < n — 1, then we have,

2m(1 —x) 2all,|?
; ,0Sx<1— .
0] < 44 @1@ = DILF +2[L]] mi(a = DILP + 2151 |
1—x 2a|l,|?
md =y | all et
ally| ml(a — DIl |* + 2|L5]
and
2m(1l —x 2all,|?
( 2) <n< 1 |2|2
lay| <4 al(a — D> + 2]15]] m[(a — DI + 2|L5]]
2(1 —»)? 1—x 2all,|?
MmN all |
a?|l,| alls| m[(a — D|l,|* + 2|15]]
Proof: If a;, # 0for 2 < k < n — 1, then from (2.21), we have
Jay| < S (2.22)
Again, on comparing the coefficients of z2in (2.13) and (2.17), we get
%(a(a — 1D (ayly)? + 2aasl;) = (1 —2)c, (2.23)

Using (2.14) and (2.18), comparing the coefficients ofw?,we get
%(a(a —1(azlx)* + 22205 — az)ls) = (1 —2)d,  (2.24)

Now adding (2.23) and (2.24), we get

,  (A=2)(c; +dy)

a; = >
a((a— 15 + 213)

taking absolute value, we get the result.
Again subtracting (2.24) from (2.23), we get
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_ (1-»)(c2—dp)+2aa3ls
- 2lza

as (2.25)

Taking absolute value, and using the value of|a,|?,we get the required result.
Remark 2.1 Fora = 1, we get,

2
Jm =) o1kl
la,| < |15 m|l;|
m->) Ll _
. m|l;| —
and
2
(m’o <n<1-— |Ls|
las| < |15 m|l;]
T Im2(A -x)2 m(1-x») |1, |2 e 1
1,2 5] m|lz| —
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