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Abstract: The Aligned magnetic field with Williamson fluid has been analyzed using a stretching sheet with Newtonian 
heating. The governing partial differential equations are transformed to the nonlinear ordinary differential equation by 
employing the similarity transformations and then solved by using the MATLAB inbuilt solver bvp4c. The influence of various 

parameters on dimensionless velocity and temperature was graphically explored. Comparisons of all conditions for a particular 
situation have been made and a very effective agreement has been reached. 
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1. Introduction  

Fluid dynamics caused by a stretching sheet play an important role in extrusion processes. Recent research 

has shown that the non-Newtonian fluid has advanced significantly. The specific character of the fluid used in 

diverse engineering and manufacturing applications such as polymer sheet industrial, glass blowing, paper 

making, and aerodynamic extrusion of plastic sheets can be used to track this growth.   Kumaran and Ramanaiah 

[1] studied on a note on the flow over a stretching sheet. Elbashbeshy[2] examined the flow and heat transfer of 

viscous fluids using the exponential stretching sheet. Kumar[3] investigated the impact of MHD boundary layer 

flow on heat and mass transfer over a stretching sheet with slip. Salleh et al.[4] inspected boundary layer flow 

and heat transfer over a newtonian heating stretch sheet. S.Nadeem and Hussain[5] address heat transfer effects 

on the Williamson fluid over an elastic exponentially stretching surface, as well as fluid model boundary layer 

equations for two-dimensional flow with heat transfer. Hasmawani et al. [6] looked into the impact of thermal 

radiation on the MHD stagnation point flow of Williamson fluid across a stretching surface. Salahuddin et al.[7] 

have considered Williamson fluid with slip conditions over an extended cylinder on the mixed convection 

boundary layer flow. Srinivasulu and Goud[8] studied the effect on a stretching surface with a convective 

boundary conditions, of aligned magnetic field on Williamson's nanofluid. Arifin et al.[9] investigated aligned 

magnetic field on a dusty Casson fluid with Newtonian heating through a stretch sheet. Several authors studied 

in different fields like ref [10-18]. 

This work was carried out with the aim of investigating fluid flow based on the above literature, non-

Newtonian Williamson fluid, with the corresponding Newtonian heating boundary condition and aligned 

magnetic field. 

Mathematical Formulation 

A steady 2-D incompressible Williamson fluid over a vertical stretching sheet with x- axis is 

 
Fig.1. Schematic diagram. 
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The boundary conditions are  
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𝑢 = 𝑢𝑤(𝑥),   𝑣 = 0,
𝜕𝑇

𝜕𝑦
= −ℎ𝑠𝑇       𝑎𝑡 𝑦 = 0

𝑢 = 0,        𝑇 → 𝑇∞          𝑎𝑠 𝑦 → ∞
}    (4) 

Here the velocity factors  𝑢 and v are  along the 𝑥, 𝑦  axis directions, respectively. Additionally, 𝜈 is the kinematics 

viscosity, Γ refers to the time constant, 𝛽0 indicates the magnetics field strength, 𝑇 is the fluid temperature in the 

boundary layer, and ℎ𝑠 refers to the heat transfer coefficient, 𝛼 is the thermal diffusivity. 

By employing the similarity transformations to the Eqs.(1)-(4) are as follows [4]    

  𝜂 = √
𝑎

𝑣
𝑦, 𝜓 = √𝑎𝑣𝑥𝑓(𝜂), 𝜃(𝜂) =

𝑇−𝑇∞

𝑇∞
    (5) 

Where  𝜂  and 𝜃(𝜂)  is the dimensionaless parameter, while 𝜓  is the stream function & with this velocity 

components can  be defined as 𝑢 =
𝜕𝜓

𝜕𝑦
 and 𝑣 = −

𝜕𝜓

𝜕𝑥
 , these components satisfies the Eqn.(1). By solving 𝑢 and 𝑣 

obtained as  𝑢 = 𝑎𝑥𝑓′(𝜂)  , 𝑣 = −√𝑎𝑣𝑓(𝜂)       (6) 

By substituting Eqn.(5) and (6) in Eqn.(2)–(3), the following are obtain:  

   (1 + 𝜆𝑓′′)𝑓′′′ + 𝑓𝑓′′ − (𝑓′)2 − (𝑀𝑠𝑖𝑛2𝜙)𝑓′ = 0     (7) 

    𝜃′′ + 𝑃𝑟𝑓𝜃′ = 0      (8)  

The flowing appropriate boundary conditions are  

𝑓(𝜂) = 0, 𝑓′(𝜂) = 1,  𝜃′(𝜂) = 𝛾(1 + 𝜃(𝜂))    𝑎𝑡 𝜂 = 0

𝑓′(𝜂) ⟶ 0,        𝜃(𝜂) → 0                                        𝑎𝑠 𝜂 → ∞
}   (9) 

Where ′  denote the differentiation with respect to 𝜂 , 𝜆 = 𝑥Γ√
2𝑐3

𝑣
  is the parameter of the  non-Newtonian 

Williamson fluid, 𝑀 =
𝜎𝛽0

2

𝑎
 is Magnetic field parameter,  and 𝑃𝑟 =

𝑣

𝛼
 is Prandtl number, 𝛾 = ℎ𝑠 (

𝑣

𝑎
)
1/2

 is the 

conjugate factor for Newtonian heating. Noted that 𝛾 = 0 is for the insulated plate and also 𝛾 → ∞ is the surface 

temperature does not change i.e, remains constant.. 

The skin friction coefficient 𝐶𝑓 which is provided by physical quantities of interest is 𝐶𝑓 =
𝜏𝑤

𝜌𝑢𝑤
2 , 

and the Nusselt number is defined as 𝑁𝑢𝑥 =
𝑥𝑞𝑤

𝑘
. 

Where 𝜌 is the density of the  fluid density, the surface shear stress 𝜏𝑤 is given by 𝜏𝑤 = 𝜇
𝜕𝑢

𝜕𝑦
[1 + Γ√

1

2

𝜕𝑢
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] with 

the dynamic viscosity 𝜇 = ρυ  with the help of the similarity transformation (5) give  

𝐶𝑓𝑅𝑒𝑥
−1/2

= 𝑓′′(0) +
𝜆

2
(𝑓′′(0))

2
, and the Nusselt number coefficient is defined as 𝑁𝑢𝑥𝑅𝑒𝑥

−1/2
= −𝜃′(0). 

Where 𝑅𝑒𝑥 =
𝑢𝑤𝑥

𝑣
 is the Reynolds number. 

2. Solution of the Problem 

The MATLAB tool bvp5c is used to implement the list of nonlinear ODE’s (8-9) as well as the boundary conditions 

(10). In order to do this, the set of  ODE’s are first modified to ODE’s of first order. The following substitutes are 

included 

ℊ(1) = 𝑓(𝜂), ℊ(2) = 𝑓′(𝜂), ℊ(3) = 𝑓′′(𝜂) 

ℊ(4) = 𝜃(𝜂), ℊ(5) = 𝜃′(𝜂) 

Now the first ODE get the following ways. 

(
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The appropriate initial conditions are  

(
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0
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0
0 )

 
 

 

The boundary was stable to 10−5.In this approach, the choice of η∞ = 3, confirms that each numerical outcome 

approach asymptotic assets exactly. 
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3. Results and Discussion 

The observed numerical results are checked using −𝜃′(0) reference values. Table 1 shows the relation 

with [4],[6] and [9] and table 2 with [6]. Both have been numerically resolved using MATLAB inbuilt software's 

tool bvp4c. The numerical figures were well agreed, so we know the accuracy of the results. From the Table 1 with 

an increase of Pr the values of −𝜃(0)  decreases. From the table 2 with an increase of aligned parameter  the results 

in  𝐶𝑓𝑅𝑒𝑥
1/2

 and −𝜃(0) is also increases.  The influence on temperature profiles for different values of Prandtl is 

shown in Figure 2. When Pr values rise and reduce the temperature distribution due to a high Pr-value, extremely 

viscous fluid is present with low thermal conductivity. Physically, the Prandtl number  is called the association 

between the momentum and thermal diffusivities, the higher values of 𝑃𝑟 have low conduction and the thermal 

conductivity of lower 𝑃𝑟  values.  Figure 3 depicts the temperature curves for many values of the conjugate 

parameter 𝛾 . As  𝛾  increases, so does the thickness of the boundary sheet. Furthermore, the thermal transfer 

coefficients as well as the wall temperature often increase due to boundary conditions (9). Figure 4 shows the 

velocity curves for various magnetic field parameter parameters M values. The rise in M effects is observed to 

decrease the velocity profile. Physically, the rise in M decreased the boundary layer width, which meant that the 

velocity gradient was increasingly magnitude, thereby enhancing the declines the skin friction factor. 

For changed values aligned angle parameter(𝜙) on the velocity profile is depicted in figure 5 presents the velocity 

profile. The relevant results are the effects of alignment which may vary from 0 to 90 and where the magnetic 

influence is considered absent by 𝜙 = 0. The rising angle has been shown to decrease the velocity gradient. The 

increased physical density of 𝜙 improves magnetic field strength and thus produces identical results to Figure 4. 

Figure 6 show that the deviation of the Nusselt number(𝑁𝑢𝑥𝑅𝑒𝑥
−1/2

) with 𝜆 for changed values of 𝜙 when the 

remaining values are fixed. The results found that from figure Nusselt number enhances with the increase the 

values of 𝜙, while Nusselt number enhances with increase in 𝜆 for constant values of 𝜙. Similar results achieved 

in figure 7, Nusselt number increases with enhances values of 𝑀, while Nusselt number enhance with rise in 𝜆 for 

fixed values of 𝑀 

 
Fig.2: Temperature v/s Pr. 

 
Fig.3: Temperature v/s γ. 
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Fig.4: Velocity v/s M. 

 
Fig.5: Velocity v/s ϕ. 

 

Fig.6: Variations of Nu v/s λ with ϕ. 
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Fig.7: Variations of Nu v/s λ with M. 

Table 1: The comparison between the previous and existing results of 𝜃(0)𝑎𝑛𝑑 𝜃′(0) for changed values of 𝑃𝑟 

when 𝜙 = 𝜆 = 𝑀 = 0  and 𝛾 = 1. 

𝑃𝑟 
Salleh et 

al.[4] 

Arifin et 

l.[9] 

Hasmawani 

et al.[6] Present study 

Salleh et 

al.[4] 
Present study 

 −𝜃(0) −𝜃(0) −𝜃(0) −𝜃(0) −𝜃′(0) −𝜃′(0) 

3 6.0258 6.0513 6.05159 6.051715 7.02577 7.051715 

5 1.7659 1.7604 1.76039 1.760392 2.76594 2.760392 

7 1.1351 1.1168 1.11681 1.116814 2.13511 2.116814 

10 0.7653 0.7645 0.76452 0.764524 1.76531 1.764524 

100 0.1612 0.1478 0.14782 0.147801 1.16115 1.147801 

Table 2: The comparison  between the previous and existing results of  𝐶𝑓𝑅𝑒𝑥
1/2

 and −𝜃(0) for different  values 

of 𝜆 when Pr = 7, 𝜙 =
𝜋

2
, 𝛾 = 1 𝑎𝑛𝑑 𝑀 = 1.5. 

 Hasmawani[6] Present Study 

𝜆 𝐶𝑓𝑅𝑒𝑥
1/2

 −𝜃(0) 𝐶𝑓𝑅𝑒𝑥
1/2

 −𝜃(0) 

0.1 -1.14957 2.17873 -1.147283 2.177361 

0.15 -1.13578 2.18523 -1.133595 2.183812 

0.2 -1.12127 2.19243 -1.119184 2.190956 

0.25 -1.10589 2.20049 -1.103918 2.198952 

0.3 -1.08947 2.20965 -1.087610 2.208029 

4. Conclusion 

 The current research investigated the aligned magnetic field with Newtonian heating on a stretched sheet of 

Williamson fluid. Skin friction values as well as velocity and temperature curves, influenced by non-Newtonian 

Williamson fluid parameter(𝛾), Magnetic parameter(𝑀), Prandtl number(𝑃𝑟), Aligned angle parameter(𝜆), 

numerically analyzed. The following are significant observations. 

• Increasing the Williamson fluid parameter has led to a negative value   

𝐶𝑓𝑅𝑒𝑥
1/2
 because of the opposite direction of fluid movement with the stretching plate. Note that the Fluid 

Parameter Williamson gives no impact on the distribution of temperature and velocity. 

• Increased 𝑃𝑟 values lead to a reduction in the temperature profile. Increased the thickness of the boundary 

laying in 𝛾 by taking the conjugate parameter into account. 

• Increasing 𝑀  values results in to decline in the velocity profile while increasing 𝜙 causes a reduction in 

the velocity gradient for the aligned angle parameter. 
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