
Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 1205 - 1214

1205

Research Article

Bugging and De-Bugging the Dataset using Improved Hidden Morkov Model (IHMM)
for Cybersecurity Applications

Abdullah Moaid Mohammed Al-Shehri

a and Mourad Elloumib

a
Masters students, Faculty of Computing and Information Technology, University

of Bisha, Bisha, Saudi Arabia

bProfessor, Faculty of Computing and Information Technology, University of Bisha, Bisha, Saudi Arabia

Article History: Received: 10 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021;
Published online: 28 April 2021

Abstract: The priority has been gravely given to cyber security events’ finding, calculation or treatment in the wake

of research field for the sake of the centers that are available for response of security. In such a surrounding or

situation, the automation is a vital requirement for many processes in quest of finding a solid solution to the damage

caused by the threats and assailings to the companies as well to the citizens. The process of bug handling is almost

as a manual process which is but as at large a costly administration or maintenance of software systems. While a

vast sum of time as well as effort is poured upon dealing the bug reports, this way automating thus the parts of this

process of bug handling can save the wasted vast sum of time as well as effort while dealing the bug reports. Bug

cause comes handy for bug perception and bug localization, which to enkindle the developers must have scrutinized

the source code during the process of bugging (bug fixing) and debugging.

 This paper aims at exploiting the corresponding relationship between bug that fixes to automatically classify bugs

from dataset using Improved Hidden Morkov Model (IHMM) which utilize Baum-welch genetic algorithm

optimization process for better convergence. The aim of this work is to save the time as well as effort from being

wasted in fixing the bugs while modifying (towards the improvement) the overall software’s quality. The model

proposed achieves 98.3% accuracy, 81.2% precision, 79.9% recall and 90.2% AUC under Mozilla setup and 97.1%

accuracy, 88.4% precision, 91.4% recall and 83.7% comparatively with its performance as when compared with

other models under android firefox setup.

Keywords: Cyber security, Deep learning, Bugging, Debugging, Feature extraction

1. Introduction

With the ever increasing incorporation between the society’s normal life and internet, internet modifies

and moulds the life of the society, yet it often makes the society yield the security threats. Along with the lots of

learning, the society has to yield to the threats such too. Can we easily spot out the network threats and attacks?

How it will be feasible to find out the variant attacks of the network, particularly the unseen so far? The main crisis

is to detect the way out of all these attacks but for that we have to spot out such attacks is the further main criteria.

Cyber security is such a technology that protects very meticulously the computers or intact networks, programs as

well as data from attacks and access unauthorized [Milenkoskiet al., (2015)]. Both the network security system

as well as computer security systems are available for us in the world and each includes IDS (Intrusion Detection

Systems, firewalls, and antivirus software, which detects, fixes and identifies unauthorized system behaviors such

as use, copying, modification and destruction [Modi et al., (2016)].Categorizing a cyber security‘s inherent

damage is a main procedure in the cyber security field to find out, calculate, and respond to an event in a

manipulated way. These days we have variant modes or scoring standards that permit us to evaluate the harsh

sense or severity of a cyber-event. The taxonomies assign [Sun et al., (2019)]. Including the information addressed

in the global reports for the calculation, the taxonomies assign indeed attacks’ severity and these indicators are

nowadays assigned manually by experts all by means of laborious or large qualitative descriptions. Such procedure

as this is one of the main crises in management centers of cyber-incidents [Sampathkumar et al., (2020)]. When

it all comes to be a malfunction in a program that is computer oriented, then such erroneous malfunction or flaw

is defined as a software bug, which is all utilized in cyber-attacks towards benefits and as well as towards the

systems’ behaving away from their virtual intention. Software bugs cause vulnerabilities of software, which when

exploited result in cyber-attacks. A large number of cyber-attacks are caused thus only. There are algorithms that

are feasible and automatic that categorize a cyber-event’s severity using deep learning techniques for the sake of

solving such a situation as this. This study comes handy in assisting in the wake of perceiving the merit of the

algorithms of deep learning to categorize and as well to correlate malignant activities that are grasped or caught

interrupting from many out sources like Domain Name System (DNS), email, Uniform Resource

Locator (URLs)etc.,[Rhode et al., (2018)]. Unlike traditional machine learning approaches, these deep learning

algorithms don’t follow any engineering feature and don’t have any illustration ways.

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 1205 - 1214

1206

Research Article

Figure 1: Deep Neural Network

Figure 1 shows such levels as that correspond to the concepts’ distinct levels. Yet it is so that the options

of the further domain level ought to outline the ways of deep learning in the field of information science and its

several tasks. The cyber security events contemplated and concentrated during this study are enclosed by text

[Aminanto (2017)].

For the sake of recognition, the sensitive data is contained by the input data and thus as to the Deep

Learning machines. The user feels safer when the user installs the model of the Deep Learning on its platform as

well as handles the model for the use .And it is not so possible for the user to use the Deep Learning model always,

for it does consist of massive data and it processes such massive data [Sampathkumar et al., (2018)]. Every

enterprise wishes a secret administration of its data, for its competitor enterprise may still fish out the data of its

own and use such for their business purposes [Rinaldi et al., (2001)]. We come to a finding of three cardinal

requirements:

• The training model’s stored data shouldn’t be exposed to the server

• The user request too shouldn’t be exposed to the server

• The configurations of the server as well ought not to be disclosed to the user

No intruder can disclose information and no attacker too can disclose the information. Thus is the course

of computation and while sharing such computation the privacy or the secrecy of the information is still as

protected and so only it is all as advisable for the organizations to make use of the deep learning so that the frame

works of cyber security can be strongly established. Thus we come to a conclusion that the identified bug handling

is indeed as a costly and laborious task and the more automation of the bug handling process occurs, the more

efficient process of it can be done and also less wasteful process of it can be made.

Organization of this paper is as: Section 1 explained the introduction about cyber security, bugging in

software and role of deep learning in cyber security applications. In section 2 various existing deep learning and

classification techniques in cyber security. Section 3 illustrates the proposed model with feature extraction, dataset

minimization and feature selection. The performance analysis is illustrated by means of Section 4 along with

results as well as graphs and this work ends by presenting the future work in section 5.

2. Literature Survey

Sepahvand et al., (2020) suggests a new and strange model of deep learning called rather as Deep Long

Short Term Memory Prediction (DeepLSTMPred), which transforms constituent terms into a vector of real

numbers by means of considering the semantic meaning of the numbers, and finds out the long-term dependencies

feasible between terms by means of deep Long Short Term Memory (LSTM) and finally categorizes the sequences

into short or long fixing time. DeepLSTMPred is assessed on bug reports that are as emendated from the Mozilla

project. Experimentally it is come to be known that DeepLSTMPred accomplishes 15-20% further elevation so far

as accuracy, f-score, as well as recall are concerned. But implementation rules are by far inferred inductively from

training data is a limitation [9].

 Ferenc et al., (2020) made the metrics of static source code as to become revitalized and thus made these

metrics amidst predictors that are meaningful as well as easily calculable and combined such with deep learning

amidst the techniques that are very assuring and common to flag code segments. The authors took up some deep

neural networks to apply to a large dataset of bug as to find out the bug prediction. The authors thus finally applied

the taken deep neural networks to a data set of a large kind that contained about 8780 bugged Java classes as well

as 38,838 not bugged Java classes and then, finally compared the same neural networks practically to several

algorithms that are traditional. Ensemble model that consists of a deep learning component model has an F-measure

of 53.59%, that increases to 55.27% for the best. The limitation is there is no information about relative difference

during bugging and debugging process [10].

Sushant Kumar Pandey et al., (2019), suggested or proposed Bug Prediction [which is as a rudimentary

classification based framework, and which combinedly applies together the Ensemble Learning (EL) and Deep

Representation (DR)] by using Deep representation and Ensemble learning (BPDET) Technique. Mostly the

traditional metrics of software are used for Software Bug Prediction (SBP). A strong feature learning method is

this encoder called SDA (Staked Denoising Auto-encoder), which comes to be of much use in representing

software metrics. The authors use SDA in representing software metrics. The authors grasp dual stages such as

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 1205 - 1214

1207

Research Article

deep learning stage as well as Two layers of Ensemble Learning stage (TEL) as proposed by dividing SDA into

two stages but the authors didn’t concentrate much to address the problem of class imbalance [11].

In search of bug reports’ deep calculation or prediction, Waheed YousufRamay et al., (2019) suggests

an approach that is both automatic as well as neural (net work based).In this approach, after applying processing

techniques of inherent (natural) language for the sake of bug reports’ text preprocessing, an emotion score is

calculated and assigned for every one of the bug reports. Then it so occurs that after creating a vector rather for

each and every bug report that is as preprocessed, the every bug report’s so constructed vector as well as emotion

score are passed by us to a classifier that is as deeply as neural network based and thus for the wake of severely

predicting but due to this way a proceeding there can be a drawback, that is, overall improvement in f-measure is

very less [12].

Duc Tran et al., (2018), in order to fight the botnet type, gave a Long Short-Term Memory network

(LSTM), which functions on raw domains and is easy to apply for immediate applications though it is however

prone to yield to multiclass imbalance problem, which becomes even more significant in malware detection. The

original LSTM is taken for to make a strange Long Short-Term Memory Machine Learning (LSTM-ML) algorithm

to give a combination of both binary and multiclass classification models, and further to make it to be cost-

sensitive, the original LSTM is taken. The experiments are conducted on a real-world collected dataset to prove

that LSTM.MI gives such an improvement as of at least 7% in terms of macro-averaging recall and precision

comparatively, and thus when compared to the original LSTM as well as other state-of-the-art cost-sensitive

methods. But this method achieves not too far an accuracy but a less accuracy only and that is the limitation of this

method, and hence the author gives further future work to improve the accuracy [13].

 Dharmendralalgupta et al., (2017) have developed an object-oriented model and that is, Software Bug

Prediction System (SBPS), which can find out by means of metrics the bugs’ existence in a class and can predict

rather the bugs’ occurrences too. This model has accomplished an aggregate accuracy of 76.27% when tested on

dataset and Combined Dataset validated. The limitation is fault-prone classes is not included which results in high

computation cost [14].

JifengXuan et al., (2014) face data reduction problem for the end result of bug triage. We mix both the

instance selection as well as feature selection together to obtain the attributes from historical bug data sets and then

to sequently build a predictive model for a new bug data set and the results demonstrate that our data reduction

can efficiently do the data scale’s reduction and thereby, as a result, the bug triage’s accuracy can be improved.

The limitation is, because of a lot of bug repositories there occurs a lagging of apt labels to observe and due to

such cause there occurs a redundancy [15].

ShivkumarShivajiet al., (2012) researched techniques which are as multiple feature selection, which are

also as commonly as can be applied to bug prediction methods that are classification-based. Till we get maximized

classification performance, the techniques throw off less important features. The sum total of the features employed

for training is brought down to less than 10 percentage of the original and while thus the reduction is substantial

and as often, the SVM’s improvement in buggy F-measure is as 9 percentage. When it comes to be the matter of

performance analyzing, a strong performance is achieved at even 1% of the original number of features [16].

Sureka et al.,(2010), in quest of sharpening the accuracy of the detection of automatic duplicate bug

report and hence, proposed an approach called as a character-level n-gram approach. The character-level n-grams

are independent of language saving languages specific pre-processing time. As envisioned as per their experiments,

their approach performed modestly to accomplish almost 21 percentage and 34 percentage recall rates for the top

10 as well as top 50 recommendations, correspondingly [17].

2. Research Methodology

In this section, Improved Hidden Morkov Model (IHMM) is proposed by hybridizing Baum-Welch (BW)

and Genetic algorithm. Fig. 2 shows the proposed model’s architecture, whereas variant dataset types like Iris1.6,

Glass 6.0, Ant 1.7, jEdit4.3, Apache Tomcat 2.0, arc, Q-teaching, berekal, forest 0.8, Zuzel and Intercafe are

deemed for bugging and debugging processes. These datasets undergone bugging and debugging process and

hence the bug report was updated. Some of the features are extracted for the purpose of dataset minimization. This

extracted features undergone Learning process which consists of three stage process. After learning process,

Expectation maximization is done by Baum-welch genetic algorithm method for the purpose of likelihood

function.

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 1205 - 1214

1208

Research Article

Figure 2: Architecture of the proposed model

Dataset consideration

Open source projects of the same mould kinds (Iris1.6, Glass 6.0, Ant 1.7, jEdit4.3, Apache Tomcat 2.0,

arc, Q-teaching, berekal, forrest 0.8, Zuzel and Intercafe) have been preferred, and such are indeed as up to the

mark or modern as well as got from Promise Software Engineering Repository.

XML file of Bug Reports is taken as input with the summary and on the textual summary the tokenization,

Stop Word Removal and stemming are done and these are standard preprocessing steps.

a) Tokenization: When we removing periods, commas, punctuation, hyphens and brackets, we call such

task as tokenization.

b) Stop Word Removal: When we reduce the textual data as removing unwanted words, we call such task

as Stop Word Removal and as a result of this task the system’s performance is improved.

c) Stemming: When we reduce the textual data as cutting the word from their root node, we call such task

as Stemming.

Feature extraction and dataset minimization

Feature selection is a main processing step applied usually to the dataset before running the machine

learning algorithm for evicting the irrelevant or weakly relevant features and choosing the optimal subset of all

features. Feature selection identifies exactly the proper subset of all the data features. It only makes the data as

serviceable.

Deep learning classification using Improved Hidden Morkov Model (IHMM)

Process of Markov indeed deems with all its assumptions that (while in HMM the states are as hid) the

states are obviously seen to the system produced observation data. But every hidden state’s output (i.e., the state

transition’s probability) is as according to the observation data. An HMM model’s training needs must have the

defining of the parameters following:

Hidden states’ Number: In order to accomplish one HMM model’s training, we ought to arrange the

hidden states’ count or number (N) in the process of Markov. Let us assume that the very clear(distinct) states in

a Markov process are as M(n) , n= { 0 , 1 , …, i− 1 } and let us assume that the notation does represent the sequence

of hidden states M(n) at time t.

Number of observation symbols: We ought to arrange the number of observation symbols (obs(n)) in order

to train an HMM model. Let us assume the distinct observation symbols as distobs(n), n= { 0 , 1 , …, obs(n)− 1 }

and let us further assume the notation as obs(n))= distobs(n), as that does represent the observed symbol distobs(n), at

time t for the given observations (obsΩ0, obsΩ1,obsΩ2…, obsΩT-1) sequence , where T is as that sequence’s length.

Learning process using stochastic method

State transition probability distribution: The probability distribution matrix of first-row B= { b𝑖𝑗}. B is

an N ×N square matrix and each element’s probability { bij} is computed by means of the following equation:

b𝑖𝑗= 𝑃(𝑠𝑡𝑎𝑡𝑒M(n)j𝑎𝑡𝑡+ 1 |𝑠𝑡𝑎𝑡𝑒M(n)i𝑎𝑡𝑡), 𝑖, 𝑗= { 0 , 1 , …, 𝑁− 1 } (1)

Observation symbol probability distribution: The probability distribution matrix of the second-row 𝐵= {

M(n)j(distobs(n)) } . is an N ×M matrix which is calculated based on the sequences of observation (i.e., the stack

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 1205 - 1214

1209

Research Article

traces’ temporal order). The probability of each element M(n)j(distobs(n)) is provided by means of the following

equation:

M(n)j(distobs(n))= 𝑃(𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠𝑦𝑚𝑏𝑜𝑙distobs(n)𝑎𝑡𝑡and 𝑠𝑡𝑎𝑡𝑒M(n)j𝑎𝑡𝑡) (2)

Initial state probability distribution: The probability distribution matrix of the third-row β= { β𝑖} . βis a

1 ×N row matrix and the probability of each element { βj } is provided by means of the following equation:

β𝑖= (𝑠𝑡𝑎𝑡𝑒M(n) 𝑎𝑡𝑡= 0) (3)

Baum-Welch Genetic algorithm:

HMM model’s training targets the maximizing of HMM model’s training targets the maximizing of the

likelihood function (Ω |𝜆) and the Baum-Welch (BW) algorithm is all very normally used employed algorithm

called as expectation-maximization (EM) algorithm towards calculating the parameters of HMM . It is a genetic

algorithm and it can be as at each iteration to efficiently assess the likelihood function (Ω |𝜆). The model parameters

are updated by it until either the likelihood function reaches no further improvement or until an optimum number

of iterations is accomplished or either until the slow convergence problem is suppressed by sheer means of

applying an iteration of Baum-Welch (BW) algorithm and the initial generation Pop (a) that isn’t at all rather

generated at random as in normal Genetic Algorithm (GA).

Fitness function calculation: The fitness function is a mechanism of evaluation and it evaluates the

mechanisms of the chromosome; a higher fitness value reflects the chromosome’s chances to be chosen in the next

generation. The log likelihood has been used, which represents the likelihood that the training observation

utterances have been generated by means of the current model parameters and it is a function of the following form

 A(n) = ∑ log⁡(𝑝(
𝑚

𝑘=1 ak/𝜆n)))/m (4)

Selection and Crossover: Few chromosomes are randomly selected by mutation and some genes are

alerted to produce new chromosomes. Selection imitates the fittest mechanism’s survival seen in Nature.

Chromosomes of higher fitness values can rather survive amidst the forthcoming generations and further, to apply

crossover, some elements will be chosen from the pool of population.

Improved Hidden Morkov Model (IHMM) algorithm:

1. Number of hidden states (N)

2. Distinct states M(n)

M(n)<=n = { 0 , 1 , …, i − 1 }

𝑋 (𝑡)<= M(n)

3. Distinct observation symbols be distobs(n)

distobs(n)<= n = { 0 , 1 , …, obs(n)− 1 }

4. Apply stochastic method

B= { b𝑖𝑗}

If

(𝑠𝑡𝑎𝑡𝑒M(n)j𝑎𝑡𝑡+ 1 |𝑠𝑡𝑎𝑡𝑒M(n)i𝑎𝑡𝑡),
 Else

𝐵= { M(n)j(distobs(n)) }

 (𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠𝑦𝑚𝑏𝑜𝑙distobs(n)𝑎𝑡𝑡and 𝑠𝑡𝑎𝑡𝑒M(n)j𝑎𝑡𝑡)
 Else

 β= { β𝑖}

 β𝑖= (𝑠𝑡𝑎𝑡𝑒M(n) 𝑎𝑡𝑡= 0)

 end if

5. BW algorithm can be applied to produce the initial population pop(a) where pop(a) = {D1, D2, ... , DN},

and Dj is one chromosome

6. Measure every chromosome Dj’s fitness function Fit(Dj) as within the original population pop(t).

7. For intermediate population pop'(t), select only a few chromosomes.

8. A certain crossover can be applied to some chromosomes pop'(t).

9. A certain mutation can be applied to few chromosomes pop'(t).

10. Apply a certain three iterations of B-W algorithm to the population pop'(t) for each ten generations.

11. t = t+l; if not convergence, and then go to step 6

4. Performance Analysis

In order to evaluate the value of the proposed Improved Hidden Morkov Model (IHMM) with two existing

classification algorithms such as Deep Long Short Term Memory Prediction (DeepLSTMPred) and Predicting

Bug adopting Deep representation and Ensemble learning (BPDET) Technique experiments are conducted. Variant

data sets like Iris1.6, Glass 6.0, Ant 1.7, jEdit4.3, Apache Tomcat 2.0, arc, Q-teaching, berekal, forrest 0.8, Zuzel

and Intercafe are considered with two experimental areas such as, Mozilla and Android FireFox. As for the purpose

of evaluating the proposed model, the performance measures such as accuracy, precision, recall as well as F-

measure were used.

The table 1 shows the simulation parameters for Improved Hidden Morkov Model (IHMM)

Table 1: Parameters of Simulation

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 1205 - 1214

1210

Research Article

Parameter Value

Learning rate 0.05-0.10

Number of epoch 200

Number of hidden nodes 50-500

Batch size 1500

Optimization Baum-Welch genetic algorithm

Number of iterations 200

The table 2 shows the construction of confusion matrix for bugging and debugging process to analyze

parameters such as, precision, accuracy, recall and Area Under Curve(AUC)

Table 2: Confusion of Matrix

Confusion of Matrix
Class Predicted

Bugging Debugging

Class Actual
True Positive False Negative

False Positive True Negative

TP is True Positive

TN is True Negative

FP is False Positive which is Type-I error

(a) (really bugging instances are categorized as debugging)

FN means False Negative which is Type-II error

(b) (really debugging instances are categorized as bugging)

Sum total of instances = aptly categorized instances +inappropriately categorized instances

Aptly categorized instance = TP + TN

Inappropriately categorized instance = FP + FN

• Accuracy(acc):It is as the ratio of the number of correctly classified bugging and debugging datasets to

the sum total of bugging and debugging reports

Accuracy =
TP+TN

TP+TN+FP+FN
 (1)

• Precision(Pre): It is the ratio of precisely classified bugging and debugging datasets to the total number

of bugging and debugging reports

Precision=
𝑻𝑷

𝑻𝑷+𝑭𝑷
 (2)

• Recall(Rec): It is aptly as even as the ratio of aptly classified bugging and debugging datasets to that total

available datasets

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3)

• Area Under Curve (AUC):It is used for single numeric measurement to predict a classifier’s

potential indeed. Mostly a higher AUC is well and good. The table 3 represents the analysis of accuracy

between existing DeepLSTMPred and BPDET with proposed IHMM method.

Table 3: Comparison of Accuracy(%)

Dataset

DeepLSTMPred [9] BPDET[11] IHMM(proposed)

Mozilla
Fireox

Android
Mozilla

FireFox

Android
Mozilla

FireFox

Android

Iris1.6 77.2 85.2 60.2 80.2 97.2 96.2

Glass 6.0 77.4 85.4 60.4 80.4 97.4 96.4

Ant 1.7 77.6 85.6 60.6 80.6 97.6 96.4

jEdit4.3 77.8 85.8 60.8 80.8 97.6 96.8

Apache

Tomcat 2.0
78 86 61 81 97.8 96.8

arc 78.2 86.2 61.2 81.2 98 97

Q-teaching 78.4 86.4 61.4 81.2 98.2 97.2

berekal 78.6 86.6 61.6 81.4 98.4 97.4

forrest 0.8 78.8 86.8 61.8 81.6 98.6 97.6

Zuzel 79 87 62 81.8 98.8 97.8

Intercafe 79 87 63 82 99 98

The table 4 represents the analysis of precision between existing DeepLSTMPred and BPDET with

proposed IHMM method.

Table 4: Comparison of precision(%)

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 1205 - 1214

1211

Research Article

Dataset

DeepLSTMPred [9] BPDET[11] IHMM(proposed)

Mozilla
FireFox

Android
Mozilla

FireFox

Android
Mozilla

FireFox

Android

Iris1.6 60 73 55 76 80.2 87

Glass 6.0 60.2 73.2 55.4 76.3 80.4 87.3

Ant 1.7 60.4 73.4 55.6 76.5 80.6 87.5

jEdit4.3 60.6 73.6 55.8 76.5 80.8 87.8

Apache

Tomcat 2.0
60.8 73.8 56 76.8 81 88

Arc 61 74 56 77 81.2 88

Q-teaching 61.2 74 56.2 77.2 81.2 88.2

Berekal 61.4 74.3 56.4 77.4 81.4 88.4

forrest 0.8 61.6 74.6 56.6 77.6 81.6 88.6

Zuzel 61.8 74.9 56.8 77.8 81.8 88.8

Intercafe 62 75 57 78 82 89

The table 5 represents the analysis of recall between existing DeepLSTMPred and BPDET with proposed

IHMM method.

Table 5: Comparison of recall(%)

Dataset

DeepLSTMPred [9] BPDET[11] IHMM(proposed)

Mozilla
FireFox

Android
Mozilla

FireFox

Android
Mozilla

FireFox

Android

Iris1.6 57 83.2 70 86.2 78.4 90.2

Glass 6.0 57.2 83.4 70.2 86.4 78.4 90.4

Ant 1.7 57.5 83.4 70.4 86.6 78.6 90.6

jEdit4.3 57.8 83.6 70.6 86.6 78.8 90.8

Apache

Tomcat 2.0
58 83.8 70.6 86.8 78.8 90.8

Arc 58.2 84 70.8 87 79 91

Q-teaching 58.2 84.2 71 87.2 79.2 91.2

Berekal 58.4 84.4 71.2 87.4 79.4 91.4

forrest 0.8 58.6 84.6 71.2 87.6 79.6 91.6

Zuzel 58.8 84.8 71.6 87.9 79.8 91.8

Intercafe 59 85 72 88 80 92

The table 6 represents the analysis of Area Under Curve(AUC) between existing DeepLSTMPred and

BPDET with proposed IHMM method.

Table 6: Comparison of AUC(%)

Dataset

DeepLSTMPred [9] BPDET[11] IHMM(proposed)

Mozilla
FireFox

Android
Mozilla

FireFox

Android
Mozilla

FireFox

Android

Iris1.6 76 83.2 80.2 75 89.3 82.2

Glass 6.0 76.2 83.4 80.4 75.2 89.5 82.4

Ant 1.7 76.4 83.4 80.6 75.4 89.8 82.6

jEdit4.3 76 83.6 80.8 75.6 90 82.8

Apache

Tomcat 2.0
76.2 83.8 81 75.6 90 83

Arc 76.4 84 81.2 75.8 90.3 83.4

Q-teaching 76.6 84.2 81.2 75.8 90.5 83.5

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 1205 - 1214

1212

Research Article

Berekal 76.8 84.4 81.4 76.2 90.8 83.6

forrest 0.8 76.8 84.6 81.6 76.4 90.8 83.8

Zuzel 77 84.8 81.8 76.8 91 83.8

Intercafe 77 85 82 77 91.2 84

The table 7 represents the comparative analysis of various parameters between existing DeepLSTMPred

and BPDET with proposed IHMM method when applied in Mozilla setup

Table 7: Comparative analysis of proposed and existing methods for experiment-1 (Mozilla setup)

Method Accuracy(%) Precision (%) recall(%) AUC (%)

DeepLSTMPred[9] 78.2 61.4 58 77

BPDET[11] 61.3 56 71 81

IHMM(proposed) 98.3 81.2 79.9 90.2

The table 8 represents the comparative analysis of various parameters between existing DeepLSTMPred

and BPDET with proposed IHMM method when applied in android firefox setup

Figure 3: Comparison of various parameters for Mozilla setup

Figure 3 depicts the delay comparison of existing DeepLSTMPred and BPDET with proposed IHMM

method when applied in Mozilla setup.X axis and Y axis shows that various parameters and the values obtained in

percentage respectively. When compared, existing method achieves better accuracy, precision, recall and AUC

values.

Table 8: Comparative analysis of proposed and existing methods for experiment-2 (Android firefox setup)

Method Accuracy (%) Precision (%) Recall (%) AUC (%)

DeepLSTMPred[9] 86 74 84.2 84

BPDET[11] 81 77.56 87.4 76.76

IHMM(proposed) 97.1 88.4 91.4 83.7

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 1205 - 1214

1213

Research Article

Figure 4: Comparison of various parameters for android firefox

Figure 4 depicts the delay comparison of existing DeepLSTMPred and BPDET with proposed IHMM

method when applied in Android firefox setup. X axis and Y axis shows that various parameters and the values

obtained in percentage respectively. When compared, existing method achieves better accuracy, precision, recall

and AUC values

5. Conclusion

Both the bugging as well as debugging of software do progress forth as up against the cyber networks even

enough as to outwit the capacity of the cyber defenders rather. Total lot of the bugs don’t relate to critical issues;

some are of indeed light weighted and need must have refinement, however, manual severity classification is often

tremendously tedious as well as time-consuming. The deep learning methods offer a rich opportunity to apply on

cyber security applications for better classification. In this particular paper, a novel approach has been sincerely

presented by us and it has also been aimed so by us as at automatically classifying the bug from dataset by bugging

and debugging using Improved Hidden Morkov Model (IHMM). The IHMM model has been validated upon

eleven real datasets under tow experimental scenarios such as Mozilla and android firefox setup. As a result the

proposed IHMM model achieves 98.3% accuracy, 81.2% precision, 79.9% recall and 90.2%AUC under Mozilla

setup and 97.1% accuracy, 88.4% precision, 91.4% recall and 83.7% under android firefox setup.

References
1. Milenkoski, M. Vieira, S. Kounev, A. Avritzer, and B. D. Payne, “Evaluating Computer Intrusion Detection

Systems:A Survey of Common Practices”, AcmComput. Surv., vol.48, no.1, pp.1-41, 2015.

2. N. Modi and K. Acha, “Virtualization layer security challenges and intrusion detection/prevention systems in cloud

computing: a comprehensive review”, J. Supercomput., vol.73, no.3, pp.1-43, 2016.

3. Sun N, Zhang J, Rimba P, Gao S, Zhang LY, Xiang Y,“Data-driven cybersecurity incident prediction: a

survey”,IEEE CommunSurv Tutor; vol.21, no.2, pp.1744-1772, 2019

4. Sampathkumar A, JaisonMulerikkal and M. Sivaram,“Glowworm swarm optimization for effectual load

balancing and routing strategies in wireless sensor networks”, Wireless Networks,pp.1-12, 2020.

5. M. Rhode, P. Burnap and K. Jones, “Early-stage malware prediction using recurrent neural

networks”, Computers & Security, vol.77, pp.578-594, 2018.

6. M. E. Aminanto, R. Choi, H. C. Tanuwidjaja, P. D. Yoo and K. Kim, “Deep abstraction and weighted

feature selection for Wi-Fi impersonation detection”, IEEE Transactions on Information Forensics and

Security, vol.13, no.3, pp.621-636, 2017

7. Sampathkumar A and P. Vivekanandan,“Gene selection using multiple queen colonies in large scale

machine learning”, International Journal of Electrical Engineering, vol.9, no.6, pp.97-111, 2018.

8. Rinaldi SM, Peerenboom JP, Kelly TK,“Identifying, understanding,and analyzing critical infrastructure

interdependencies”,IEEE Control Systems Magazine,vol.21, no.6, pp.11-25, 2001.

9. Sepahvand, Reza, Reza Akbari and SattarHashemi,“Predicting the bug fixing time using word

embedding and deep long short term memories”, IET Software, 2020.

10. Ferenc, Rudolf, DénesBán, TamásGrósz and TiborGyimóthy,“Deep learning in static, metric-based bug

prediction”, Array,2020.

11. Pandey, Sushant Kumar, Ravi Bhushan Mishra and Anil Kumar Tripathi,“BPDET: An effective

software bug prediction model using deep representation and ensemble learning techniques”, Expert

Systems with Applications , vol.144, 2019.

12. Ramay W.Y, Umer Q, Yin X.C, Zhu C and Illahi I, “Deep neural network-based severity prediction of

bug reports”, IEEE Access, vol.7, pp.46846-46857, 2019.

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 1205 - 1214

1214

Research Article

13. Tran, Duc, Hieu Mac, Van Tong, HaiAnh Tran and LinhGiang Nguyen,“A LSTM based framework for

handling multiclass imbalance in DGA botnet detection”, Neurocomputing , vol.275,pp.2401-2413,

2018.

14. Gupta, DharmendraLal and KavitaSaxena,“Software bug prediction using object-oriented

metrics”, Sādhanā , vol.42, no.5,pp.655-669, 2017.

15. Jifeng, Xuan, He Jiang, Yan Hu, ZhileiRen, WeiqinZou, ZhongxuanLuo and Xindong Wu,“Towards

effective bug triage with software data reduction techniques”, IEEE transactions on knowledge and

data engineering, vol.27, no.1, pp.264-280, 2014.

16. Shivaji, Shivkumar, E. James Whitehead, Ram Akella and Sunghun Kim,“Reducing features to improve

code change-based bug prediction”, IEEE Transactions on Software Engineering, vol.39, no.4,pp.552-

569, 2012.

17. Sureka and P. Jalote, “Detecting duplicate bug report using character N-gram-based features”, Journal

of Software Engineering, pp.366-374, 2010.

