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Abstract: A numerical study of heat transfer problem by natural convection of a fluid inside a square cavity 

with two inner bodies is presented. This subject is of great interest in the engineering area, mainly in 

applications involving development of heat exchangers and cooling or heating systems of bodies by natural 
convection mechanism. Two cases have been studied. The inner bodies are square in case 1 and circular in case 

2. In both cases, the bodies are solid and thermally conductive, the cavity lower and upper horizontal surfaces 

are isothermal with high temperature Th and low temperature Tc, respectively. Both vertical surfaces are 

adiabatic. A FORTRAN code using Finite Element Method (FEM) is developed to simulate the problem and 

solve the governing equations. The distributions of stream function, ψ, dimensionless temperature, θ, and 

vorticity, ω, are determined. Heat transfer is evaluated by analyzing the behavior of the average Nusselt number. 
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1. Introduction  

In present days, research on natural convection in cavities has been the topic of the many studies. Natural 

convection in open cavities and slots is encountered in many engineering applications, like solar thermal 

receivers, heat convection from extended surfaces in heat exchangers, and solar power collectors with insulated 

strips Cavities with a side opening and internal heat source are often seen in many electronic devices, where 

the openings facilitate the cooling of the interior components of the apparatus. Furthermore, the study of this 

case has relevancy in many other applications, among which may be cited: construction and operation of 

nuclear reactors, solar power collectors, energy storage systems, design and construction of indoor 

environments, and grain storage. Many studies are reported within the literature, where the behavior of fluids 

within the cavities was evaluated, a number of which are cited below. The natural convection in cavities 

induced by the difference in temperature between vertical (or horizontal) walls is a case widely studied [2–15]. 
In those studies, the authors evaluated the influence of the temperature gradient [2–5,7–12], partial opening and 

dispositions of the cavity [6,13,15] thermal properties. A numerical study on heat distribution and thermal 

mixing during steady laminar natural convective flow within fluid-saturated porous square cavities has been 

considered for three different cases: uniformly heated bottom wall, discrete heat sources on walls, and 

uniformly heated left and bottom walls in Kaluri et al. [10]. Deng and Chang [11] study numerically a two 

dimensional steady and laminar natural convection in an air-filled rectangular enclosure where the horizontal 

walls are thermally insulated and the vertical side walls have two spatially varying sinusoidal temperature 

distributions of different amplitudes and phases. Michalek [12] conducted experiments to measure the water 

flow inside a cubical cavity with isothermal vertical walls and adiabatic horizontal walls for values of Ra 

greater than 109. 

 The transition from stationary to non-stationary flow was below the theoretical value of the critical 
Rayleigh number. Bilgen and Oztop [13] performed a numerical study of heat transfer by natural convection in 

an inclined and partially open 2D cavity. A parametric study was conducted for values of Ra between 103 and 

106, concluding that the value of Nusselt number was maximized for angles between 30_ and 60_ for low 

values of Ra, while at high values of Ra, the value of the Nusselt number was maximized for angles between 

60 and 90. Kuznik et al. [14] used the Lattice–Boltzmann method with a non-uniform mesh for the 

simulation of natural convection in a square cavity.  

 The authors determined the Rayleigh numbers for the transition region between 103 and 109, and 

observed a good agreement with those reported in the literature. The same method was used by Mezrhab et al. 

[15], where the influence of the cavity inclination and the existence of an internal partition were evaluated. 

There was a maximum reduction in heat transfer for the range of Rayleigh numbers between 6   103 and 2 

104. Some study combine effect of radiation and natural convection in cavities differentially heated [16– 18]. 

When there is an internal heat source in cavities large changes in the internal flow characteristics occur. Studies 
on natural convection in cavities with internal heat source can be found in Kuznetsov and Sheremet [19], Nakhi 

and Chamkha [20], Oztop and Bilgen [21], Oztop and Abu-Nada [22], and Bazylak et al. [23], or with internal 
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baffles in Fontana et al. [24]. In many cases, the cavity presents a partial opening, which facilitates mass flow 

and therefore the cooling process [25–29]. Mariani and Silva [28] conducted a numerical study of the thermal 

and fluid dynamics behavior of air in partially open 2D enclosures based on two aspects of the radius, H/W= 1 

and 2. The enclosure had an opening on the right wall and a small heat source located on the bottom or left 

wall, occupying three different positions. Numerical simulations were performed for Ra in the range of 103 and 
106 and it was found that changes in this parameter have significant effects on the average and local Nusselt 

numbers (Nu) of the enclosures. Another study was conducted by Mariani and Coelho [29] to investigate 

steady heat transfer and flow phenomena of natural convection of air in enclosures, with three aspect ratios 

(H/W = 1, 2, and 4), within which there is a local heat source on the bottom wall at three different positions. A 

similar study was carried out by Kandaswamy et al. [30], where the influence of the position and the size of the 

heat source were evaluated. This study was conducted for Grashof numbers between 103 and 105. Hence, this 

study investigates natural convection in a partially open square cavity with an opening in the right wall of three 

different sizes H/4, H/2, and 3H/4, where H is the cavity height. The cavity was submitted to temperature 

differences between the left and right vertical walls and had an internal heat conduction source. The influence 

of the internal heat source at intensities of R = 400, 1000 and 2000, and external Rayleigh numbers of 103   

Ra   105, on the thermal and fluid dynamics of the air inside the cavity and the mass inflow rate at the 

opening, was investigated. In the current study, Finite Element Method has been used to convert the non-linear 

coupled partial differential equations for flow and temperature field into a matrix form of equations, which can 

be solved iteratively with the help of a computer code. The Galerkin Finite Element Method of three nodded 

triangular elements is used to divide the physical domain into smaller segments, which is a pre-requisite for 

finite element method. Numerical results are presented in terms of stream functions, isotherms, temperature 

profiles and Nusselt numbers. 

   This study investigates natural convection in a partially open square cavity with an opening in 
the right wall of three different sizes H/4, H/2, and 3H/4, where H is the cavity height. The cavity was 

submitted to temperature differences between the left and right vertical walls and had an internal heat 

conduction source. The influence of the internal heat source at intensities of R = 400, 1000 and 2000, and 

external Rayleigh numbers of 103   Ra   105, on the thermal and fluid dynamics of the air inside the cavity 

and the mass inflow rate at the opening, was investigated. In the current study, Finite Element Method has been 

used to convert the non-linear coupled partial differential equations for flow and temperature field into a matrix 

form of equations, which can be solved iteratively with the help of a computer code. The Galerkin Finite 

Element Method of three nodded triangular elements is used to divide the physical domain into smaller 

segments, which is a pre-requisite for finite element method. Numerical results are presented in terms 
temperature profiles and Nusselt number. 

 

 

 

 

 

 

 

 

 

 

Fig.1: Schematic diagram of the physical system 

 

1.2. MATHEMATICAL FORMULATION: 

  

Fig. 1 shows a schematic diagram of the problem under consideration and the coordinate system. The 

system to be considered is a two-dimensional square cavity of width W and height H, where the two vertical 

walls are kept at different temperatures, Th (left wall) and Tc (right wall), Th > Tc. Zero heat flow is assumed at 

the top and bottom walls. The walls are rigid and no-slip conditions are imposed at the boundaries. The internal 

heat source is placed on the bottom horizontal wall, midway between the vertical walls, occupying 1% of the 

total volume of the cavity. The opening is placed on the right vertical wall of the cavity being evaluated for 

three conditions H⁄ = H/4, H/2, and 3H/4. The flow field is considered to be steady and the fluid is 
incompressible. Thermo physical properties of the fluid are assumed constant, with the exception of the density 

variation in the buoyancy term, i.e., the Boussinesq approximation is valid. The equations for the conservation 

of momentum and energy are  
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with boundary conditions 
   u (x , 0) = u(x, H) =u(0 , y) = u(H , y) = 0, 

            v (x , 0) = v(x, H) = v(0 , y) = v(H , y) = 0, 

            T (x, 0) = hT ,     
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The Continuity equation (3.1) can be satisfied automatically by introducing the stream function ‘’ as 

u =
y


                   (1.4a) 

v =
x





                   (1.4b) 

where x and y are the distances measured along the horizontal and vertical directions respectively u and v 

are the velocity components in the x and y directions respectively T denotes the temperature 𝜗 and   are 

kinematic viscosity and thermal diffusivity respectively K is the medium permeability P is the pressure and 𝜌 is 

the density Th and Tc are the temperatures at hot bottom wall and cold vertical wall respectively L is the side of 

the square cavity. 

 Using the following non dimensional variables, 
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The governing equations (3.1)-(3.3) reduce to non-dimensional form as 
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with the non dimensionless boundary conditions are 
U (X , 0) = U(X, 1) = U(0 , Y) = U(1 ,Y) = 0, 

V (X , 0) = V(X, 1) = V(0 , Y) = V(1, Y) = 0, 

  (X, 0) =1,  YYYX
Y
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


1),1(),0(,0)1,( 


 

where X and Y are dimensionless coordinates varying along horizontal and vertical directions 

respectively U and V are dimensionless velocity components in the X and Y directions respectively   is 

the dimensionless temperature P is the dimensionless pressure Ra and Pr are Rayleigh Prandtl numbers 

respectively. 
 

1.3. SOLUTION OF PROBLEM: 

  Thus far we have derived the partial differential equations, which describe the heat and fluid 

flow behavior in the vicinity of porous medium. The development of governing equations is one part but 

the second and important part is to solve these equations in order to predict the various parameters of 

interest in the porous medium. There are various numerical methods available to achieve the solution of 

these equations, but the most popular numerical methods are Finite difference method, Finite volume 

method and the Finite element method. The selection of these numerical methods is an important decision, 

which is influenced by variety of factors amongst which the geometry of domain plays a vital role. Other 

factors include the ease with which these partial differential equations can be transformed into simple 

forms, the computational time required and the flexibility in development of computer code to solve these 

equations.In the present study, we have predominantly used Finite Element Method (FEM). The following 
sections enlighten the Finite element method and present its application to solve the above-mentioned 

equations. 

  The Finite Element Method is a deservingly popular method amongst scientific community. 

This method was originally developed to study the mechanical stresses in a complex airframe structure 

popularized by Zienkiewicz and Cheung (23) by applying it to continuum mechanics. Since then the 

application of Finite Element Method has been exploited to solve the numerous problems in various 

engineering disciplines. The great thing about finite element method is its ease with which it can be 

generalized to myriad engineering problems comprised of different materials.   

    Another admirable feature of the Finite Element Method (FEM) is that it can be 

applied wide range of geometries having irregular boundaries, which is highly difficult to achieve with 

other contemporary methods. FEM can be said to have comprised of roughly 5 steps to solve any particular 
problem. The steps can be summarized as  

 

 Descritizing the domain: This step involves the division of whole physical domain into smaller 

segments known as elements, and then identifying the nodes, coordinates of each node and 

ensuring proper connectivity between the nodes.  

 Specifying the equation: In this step, the governing equation is specified and an equation is 

written in terms of nodal values  

 Development of Global matrix: The equations are arranged in a global matrix which takes into 

account the whole domain  

 Solution: The equations are solved to get the desired variable at each table in the domain  

 Evaluate the quantities of interest: After solving the equations a set of values is obtained for 
each node, which can be further processed to get the quantities of interest.  

 

There are varieties of elements available in FEM, which are distinguished by the presence of number of 

nodes.  The present study is carried out by using a simple 3-noded triangular element as shown in fig. 2 
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Let us consider that the variable to be determined in the triangular area is ‘ ’.    The polynomial function for ‘

 ’ can be expressed as: 

   = 1 + 2 x + 3y        (1) 

The variable   has the value  i,  j and  k at the nodal position i, j, and k of the element. The x and y 

coordinates at these points are xi, xj, xk and yi, yj and yk respectively. Substitution of these nodal values in 

the equation (1) helps in determining the constants 1 , 2 , 3  which are: 

1 = 1/2A [(xj yk – xk yj )  i + (xk yi – xi yk)  j + (xi yj – xj yi)  k ] (2) 

2 = 1/2A [(yj  - yk )  i + (yk – yi )  j + (yi – yj )  k ]   (3) 

3 = 1/2A [(xk  - xj )  i + (xi – xk )  j + (xj – xi )  k ]   (4) 

where A is area of the triangle given as 
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Substitution of 1, 2, 3 in the equation (1) and mathematical arrangement of the terms results into 

  = Ni 


i + Nj  j + Nk  k                                   (6) 

In equation (6), Ni, Nj and Nk are the shape function given by 
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, m = i, j, k                                  (7) 
 

The constants can be expressed in terms of coordinates as  

ai = xj yk – xk yj 

bi = yj – yk                                   (8a) 

ci = xk - xj 

aj = xk yi – xi yk 

bj = yk – yi                                      (8b)             

cj = xi – xk 

ak = xi yj – xj yi 

bk = yi - yj                       (8c) 

ck = xj – xi 
 

The triangular element can be subdivided into three triangles with a point in the center of original triangle 

as shown in fig.3. 

 

 

 

 

 



The Numerical Study Of Natural Convection Heat Transfer In A Partially Opened Square Cavity 

With Internal Heat Source 

36 

                                                                           k 

    

 

 

 
 

 

 

 

      p 

 

 

                                  i                                                                 j 

 

Fig.3: showing the sub triangular areas 

 

Defining the new area ratios as 
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It can be shown that 

           L1 = N1        (10a) 

          2L  = N2        (10b) 

          3L  = N3        (10c) 

 

Good insight into the FEM is given in Segerlind [24], Galerkin method is employed to convert the partial 

differential equations into matrix form for an element. The steps invented are as given below. Please note 

that the nodal terms i, j & k are replaced by 1,2 & 3 respectively in subsequent discussions for simplicity. 

The momentum and energy balance equations are solved using the Galerkin finite element method. 

Continuity equation will be used as a constraint due to mass conservation and this constraint may be used 

to obtain the pressure distribution. In order to solve equations, we use the finite element method where the 

pressure P is eliminated by a penalty parameter    and the incompressibility criteria given by equation 

(3.5) which results in
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The continuity equation (3.5) is automatically satisfied for large values of  .  

Using equation (3.8) and introducing stream function, the momentum equation (3.6) reduce to 
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Application of Galerkin method to equation (3.10) yields: 
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where Re is the residue.         

Considering the terms individually 
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   Thus the whole equation (3.10) can be written in matrix form as 
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             (1.18) 

Introducing stream function, the energy equation (3.7) reduces as 

(1.19)
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Considering the terms individually 
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Thus the whole equation (3.19) can be written in matrix form as 
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1.4. NUSSLET NUMBER: 

 

The average dimensionless Nusselt Number ( Nu ) can be evaluated using the formula 

(1.26)
n

Nu



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where n denotes the normal direction on a plane.   

The average   Nusselt numbers at bottom wall ( bNu ) and at the side wall   ( sNu ) are defined as 

)27.1(

1

0

dXNuNu bb   

)28.1(

1

0

dYNuNu ss 
 

 

1.5. RESULTS AND DISCUSSION: 

 

The computational domain consists of 20   20 bi-quadratic elements which correspond to 41   41 grid 

points. The bi-quadratic elements with lesser number of nodes smoothly capture the non-linear variations of the 

field variables which are in contrast with finite element method solutions available. Figs. 4 – 9 illustrate the 

stream function and isotherm contours for various values of Ra = 103–105 and Pr = 0.7–10 with uniformly 

heated bottom wall and linearly heated side walls where the top wall is well insulated. As expected due to the 
linearly heated vertical walls and the uniformly heated bottom wall, fluids rise up from the middle portion of 

the bottom wall and flow down along two vertical walls forming two symmetric rolls with clockwise and anti-

clockwise rotations inside the cavity. At Ra = 103, the magnitudes of stream functions are considerably lower 

and the heat transfer is due to purely conduction. During conduction dominant heat transfer the temperature 

  0.3 occur symmetrically near the side walls of the enclosure. The other temperature contours with  0.4 

are smooth curves which span the entire enclosure and they are generally symmetric with respect to the vertical 

symmetric line. The temperature contours as indicated in Fig. 4 remains invariant up to Ra < 104. At Ra = 104, 

the circulation near the central regimes are stronger and consequently, the temperature contour with   = 0.5 

starts getting shifted towards the side wall and break into two symmetric contour lines (Fig.5) The presence of 

significant convection is also exhibited in Fig. 6 at Ra = 104 where temperature contour for  = 0.6 starts 

getting deformed and pushed towards the top plate. In addition, it may be noted that the secondary circulations 

appear at the bottom corners for Ra = 104 due to convection as the lower half of the vertical walls are hot and 

the hot fluids move towards the center of the cavity. Consequently at   Ra = 104 the stronger secondary 

circulations enhance the mixing process which result in the rejoining of temperature contour   = 0.6 (Fig. 7). 

Further at Ra = 105 the primary circulation pushed towards the upper part of the cavity and due to enhanced 

convection from the linear hot vertical wall, the isotherm lines with greater values   > 0.5 covers almost 70% 

of the cavity (Fig. 8). It is interesting to observe that due to two pairs of symmetric circulations, ‘hot’ and 

‘cold’ fluid regimes appear distinctly across the temperature contour   = 0.6. In contrast at    Ra = 105 for Pr 

= 10 the strength of secondary circulations appearing at corners of bottom wall is less as compared for Pr = 0.7 

case due to the viscous force dominating the buoyancy force for Pr = 10 (Fig. 9). As the strength of the primary 

circulation increases for Pr = 10 case, the isotherm lines with temperature contours   > 0.5 covers 

approximately 90% of cavity. The significant effect of convective heat transfer will be illustrated later via 



The Numerical Study Of Natural Convection Heat Transfer In A Partially Opened Square Cavity 

With Internal Heat Source 

40 

average Nusslet number vs Rayleigh number plot. Figs. 10 –12 illustrate the stream function and isotherm 

contours for various values of Ra = 103–105 and Pr = 0.7 –10 with uniformly heated bottom wall, cooled right 

wall and the left wall is linearly heated. As expected, due to linearly heated left wall, fluids rise up along the 

side of left wall and flow down along the cooled right wall forming a roll with clockwise rotation inside the 

cavity. As Ra increase from 103 to 105, the value of stream function increases i.e., the flow rate increases. At 
the left corner of the top wall, secondary circulation formed due to convection and the hot fluids move towards 

the left corner of the cavity. Fig. 10 shows that the isotherm lines change its value smoothly from hot vertical 

wall to cold vertical wall for        Ra = 103. At Ra = 104 the circulations are stronger and consequently the 

temperature contour with   = 0.5 pushed towards the right corner of top wall (Fig. 11). At      Ra = 105 in Fig. 

12 due to enhanced convection from the hot left wall to the cold right wall, the isotherm lines with greater 

values  > 0.5 covers around 50% of the cavity for Pr = 0.7 and Pr = 10. In addition for Pr = 10, the strength 

of secondary circulation increases. Fig. 13 and Fig. 14 display the effects of Ra and Pr on the local Nusselt 

numbers at the bottom and side walls (Nub, Nus) for linearly heated side walls. At the edges of the bottom wall 

the heat transfer rate Nub is 1 due to the linearly heated side walls (Fig. 13). For Ra = 104, the heat transfer rate 

is minimum value at the center of the bottom wall due to the higher values of stream function (i.e., flow rate) 

with two symmetric circulations about the vertical symmetric line at the center of the bottom wall. Heat 

transfer rate prevails at  Ra = 105 and   Pr = 10. In contrast for Ra = 105 and Pr = 0.7 the heat transfer rate is 

maximum at center of the bottom wall due to the presence of strong secondary circulations leading to a high 

temperature gradient at the center of the bottom wall. In Fig.14 the heat transfer rate at the bottom-edge of side 
wall is zero due to uniformly heated bottom wall and the heat transfer rate is maximum at the top-edge of side 

wall due to insulated top wall. For Ra = 103 and Pr = 0.7, due to weak circulations the heat transfer rate is 

almost zero upto Y = 0.7 and Nus = 3 at Y = 1 whereas at Ra = 104, the heat transfer rate Nus = 4 at Y = 1 due 

to stronger circulations. For Ra = 105, due to the presence of a pair of symmetric secondary circulated cells 

with clockwise and anti-clockwise rotations, the heat transfer rate is oscillatory in nature in the lower half of 

the side walls and the increasing trend of heat transfer rate is observed in the upper half of the side walls with 

Nus = 6 and  Nus = 8 at Y = 1 corresponding to Pr = 0.7 and      Pr = 10 respectively. The overall effects upon 

the heat transfer rates are displayed for linearly heated side walls in Fig. 15 and Fig.16, where the distributions 

of the average Nusselt number of bottom wall and side walls respectively are plotted vs the Rayleigh number. 

It is observed that the average Nusselt number is almost constant up to Ra = 104 due to dominant heat 

conduction mode and smoothly increases as Rayleigh number increases further. It is interesting to note that the 
smoothness breaks at Ra = 104 and Pr = 0.7 for both bottom and side walls as the oppositely rotated secondary 

cells becomes prominent. The smoothly increasing trend of average Nusselt numbers is observed for Pr = 10 

due to insignificant secondary cells. Fig. 17 and Fig. 18 display the effects of Ra and Pr on local Nusselt 

numbers at the bottom and side walls (Nub, Nus) for linearly heated left wall and cooled right wall. The heat 

transfer rate Nub is 0 at the left-edge of the bottom wall due to the linearly heated left wall and it is maximum 

at the right-edge of the bottom wall due to the cooled right wall (Fig. 17). As Ra increases from  103 to 105, the 

heat transfer rate increases from the left edge to the right-edge of the bottom wall. In Fig. 18, the heat transfer 

rate at the bottom edge of the left wall is zero due to the uniformly heated bottom wall and linearly heated left 

wall and its magnitude increases from the bottom edge to the top edge of the left wall. At   Ra = 105, local 

Nusselt number (exhibits oscillatory behavior due to the presence of secondary circulation near the top edge of 

the left wall. The inset plot shows the local Nusselt number distribution for the right wall. For all values of Ra 

and Pr it is observed that Nusselt number is maximum at the bottom edge and decreases towards the top edge.  
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Fig. 4: Contour plots for linearly heated vertical walls,  (0, Y) = (1, Y) = 1-Y   with Pr = 0.7 

and Ra = 103. Clockwise and anti-clockwise flows are shown via negative and positive signs of stream 

functions (Left) and Isotherms (Right) respectively. 
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Fig. 6: Contour plots for linearly heated vertical walls  (0, Y) =  (1, Y) = 1-Y with    Pr = 0.7 and Ra = 

104. Clockwise and anti-clockwise flows are shown via negative and positive signs of stream functions (Left) 

and Isotherms (Right) respectively. 

 

 

Fig. 5: Contour plots for linearly heated vertical walls,  (0, Y) = (1, Y) = 1-Y   with Pr = 0.7 and Ra = 

104. Clockwise and anti-clockwise flows are shown via negative and positive signs of stream functions (Left) 

and Isotherms (Right) respectively. 
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Fig. 7: Contour plots for linearly heated vertical walls,  (0, Y) = (1, Y) = 1-Y   with Pr = 0.7 and Ra 

= 104. Clockwise and anti-clockwise flows are shown via negative and positive signs of stream functions 

(Left) and Isotherms (Right) respectively. 
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Fig. 8: Contour plots for linearly heated vertical walls,  (0, Y) = (1, Y) = 1-Y   with       Pr = 0.7 and Ra = 

105. Clockwise and anti-clockwise flows are shown via negative and positive signs of stream functions (Left) and 

Isotherms (Right) respectively. 
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Fig 9: Contour plots for linearly heated vertical walls  (0, Y) =  (1, Y) = 1-Y with   Pr = 10 and Ra = 

105. Clockwise and anti-clockwise flows are shown via negative and positive signs of stream functions (Left) 

and Isotherms (Right) respectively. 
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Fig 10: Contour plots for linearly heated vertical walls,  (0, Y) = 1-Y, and cooled vertical wall  (1,Y)=0  

with Pr = 0.7 and Ra = 103. Clockwise and anti-clockwise flows are shown via negative and positive signs of 

stream functions (Left) and Isotherms (Right) respectively. 

Fig. 11: Contour plots for linearly heated vertical walls,  (0, Y) = 1-Y and cooled vertical wall  (1, Y) =0  

with Pr = 0.7 and Ra = 104. Clockwise and anti-clockwise flows are shown via negative and positive signs of 

stream functions (Left) and Isotherms (Right) respectively. 
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Fig. 12: Contour plots for linearly heated vertical walls  (0, Y) = 1-Y and cooled vertical wall  (1, Y) =0 

with Pr = 10 and Ra = 105. Clockwise and anti-clockwise flows are shown via negative and positive signs of 

stream functions (Left) and Isotherms (Right) respectively. 
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