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Abstract: -Sparse representation has numerous benefits over traditional picture representation approaches as a novel multiscale 

geometric analysis technique. The normal sparse representation, on the other hand, ignores inherent structure and time 

complexity. A new fusion mechanism for multimodal medical images focused on sparse representation and judgment is 

presented in this article.A map is planned to address both of these issues at the same time. To allow the effects reserve more 

energy and edge knowledge, three decision maps are designed: structure information map (SM), energy information map (EM), 

and structure and energy map (SEM). The Laplacian of a Gaussian (LOG) captures the local structure function in SM, and the 

mean square variance detects the energy and energy distribution feature in EM. To increase the pace of the algorithm, the 

decision map is applied to the standard sparse representation dependent procedure. By improving the contrast and reserving 

more structure and energy details from the source pictures, the proposed solution also enhances the accuracy of the fused data. 

The findings of 36 classes of CT/MR, MR-T1/MR-T2, and CT/PET photos show that the SR and SEM-based approach 

outperforms five state-of-the-art approaches. 

 

1. Introduction 

Thanks to the growing demands of clinic inquiry and disease diagnosis, medical imaging is gaining in 

popularity. Medical imaging is complicated by a variety of imaging processes.In a small domain, photographs of 

various modals include a variety of complementary details regarding the human body.For eg, computed 

tomography (CT) images provide better information on thick tissue, PET images provide better information on 

blood flow and tumor activity with low spatial resolution, and magnetic resonance (MR) images provide better 

information on soft tissue. Furthermore, MR-T1 images provide more information regarding anatomical shapes, 

while MR-T2 images provide a stronger distinction between regular and abnormal tissues. However, a single 

multiple modalities would not be able to meet the need for high-resolution imagery and simulation for disease 

diagnosis.Medical picture fusion is a valuable and efficient strategy for combining complementary details from 

multimodality images to increase diagnostic precision in this regard.Furthermore, fused images are better for 

assisting doctors in diagnosis and care preparation: fusing MR and CT images will provide images that describe 

soft tissue and bone while simultaneously representing anatomical and physiological aspects of the human body. 

To segment white matter lesions and direct neurosurgical resection of epileptogenic lesions, MR-T1 and MR-T2 

photos are fused. In oncology, hybrid PET/CT imaging is useful for viewing biological, biochemical, and tumor 

response characteristics. Furthermore, medical picture fusion not only aids in disease diagnosis but also lowers 

storage.Multistage decomposition approaches have grown in popularity as the most widely used image fusion 

process.Discrete wavelet transform (DWT), frame let transform contour let transform and nonsubsampled contour 

let transform (NSCT) have all been established in recent years. Regrettably,In the presence of noise, transform-

based approaches yield low fusion effects, and choosing the decomposition levels is challenging.Since sparse 

representation (SR) has proved to be an extremely useful method for processing high-dimensional signals more 

and more researchers are applying it to the field of picture fusion to improve fused outcomes.The regular SR, on 

the other hand, ignores the intrinsic structure and the time complexity. As a result, incorporating them into the SR 

model is a rational approach for improving SR but determining the connection between intrinsic structure 

knowledge and sparse coefficients is difficult. Reference suggested a dictionary learning approach that combined 

geometrical structure with group sparse coding, but it did not discuss the time complexity of the sparse 

representation algorithms. Picture fusion approaches focused on joint sparse representation (JSR) and need a 

significantly higher number of iterations to achieve image vector sparse representation for a larger qualified 

vocabulary. Some researchers suggested new methods combining multistage transform and SR to fuse the source 

images' structure details into the fused images, but these methods are far more complicated and time consuming. 

As a result, the main challenge became how to achieve picture fusion dependent on SR with local structure 

knowledge in less time. By extracting the local structure function of the picture blocks, the decision map will assist 

us in achieving this aim. Unfortunately, the majority of judgment map-based approaches are only suitable for 

multifocal picture fusion. The decision map is used in infrared and visible picture fusion in references 
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demonstrating that it can be used for other types of image fusion. In particular, almost all sparse coefficients fusion 

rules for SR methods are dependent on different blocks feature values, implying that they are all decision map 

methods. We incorporate the local structure and energy details of source images into the decision map to increase 

the pace of the algorithm and the accuracy of the fused effects in order to realize medical image fusion based on 

SR with decision map.This paper's main contribution is as follows:(1) To incorporate the source images' local 

structure and energy details into the SR algorithm for medical image fusion, we generated three decision maps to 

remove the source images' local energy and structure features.(2) It is beneficial to use the decision to reduce the 

amount of picture blocks to coarse representation in order to obtain faster performance. The accuracy of the 

findings would also increase if the maps are used to keep more structure and energy details in fused pictures. 

2. The proposed method's framework 

Figure 1 show the architecture of the suggested solution, which is focused on SR and function extraction.To 

begin, we divide all source images into two groups, A and B, based on their scale.𝑚×𝑛 into patches 𝑦𝑖, 1and 𝑦𝑖,𝑗2 

through a sliding window withthe size of×𝑤(𝑖 ≤ 𝑚−𝑤, 𝑗 ≤ 𝑛−𝑤). All patches are arrangedinto vectors 

(𝑖−1)∗(𝑛−𝑤)+𝑗1 and 𝑉(𝑖−1)∗(𝑛−𝑤)+𝑗2 from left to rightand from top to bottom.Second, we divide these vectors 

into vector pairs based on the initial patches' corresponding locations, and construct the decision map for each pair 

separately.Finally, when the map is labeled as 1 or 2, we use the decision map to decide whether one vector in 

each category is the product. When the map is labeled 0, it implies that these classes are known as the sparse 

representation system's input.Finally, we use the SRmethod to fuse the remaining vector pairs.Finally, based on 

the judgment diagram, the machine may produce fused data. The patches' overlaps are averaged.SR. 2.1. A signal 

can be expressed in SR algorithms as a sparse mixture of the fewest possible atoms from an over complete 

dictionary.Let 𝑉𝑅𝑚denote a signal vector from the source images and let 𝑚×𝑘(𝑘>𝑚) denote an over complete 

dictionary whose column vectors are its atoms. The signal vector can be represented as𝑉 = 𝐷𝜃, where𝑘is a sparse 

coefficient vector. The sparse o efficient vector is acquired by solving the following question: 

 

 
Where is the parameter for error tolerance? A superposition of the smallest number of atoms in the dictionary 

can be used to describe a picture vector. (1) Can be solved bysince it is an NP-hard challenge, use OMP, BP, or 

other algorithms. It is critical to locate a suitable dictionary for SR. There are two major methods for creating a 

dictionary. The Gabor dictionary], the discrete cosine transform (DCT) and the Haar dictionary are examples of 

set dictionaries. Another choice is to use K-SVDto train a dictionary from a large number of training image patches, 

which normally outperforms fixed dictionary methods in image processing. 

 

The EnergyMap and the StructureMap.  

Let us regard 𝑦𝑖, 1 and 𝑦𝑖, 2 as mean values of 𝑦𝑖, 𝑗1 and 𝑦𝑖, 𝑗2, respectively.We use ‖𝑦𝑖,𝑗 1 ‖2 as the sign of 

energy and the mean square deviation(1/64)‖𝑦𝑖,𝑗1 − 𝑦𝑖,𝑗1 ‖2 as the sign of energy distribution for 𝑦𝑖,𝑗1 ,which are 

similar to 𝑦𝑖,𝑗2 . We design the first decision mapEM ∈ 𝑅𝑀×𝑁(where𝑀 = 𝑚− 𝑤and 𝑁 = 𝑛 − 𝑤) whichcalled the 

energy map by 

 

 
 

 
 

Figure 1: The framework of the image fusion method based on sparse representation and feature 

extraction. 
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As a result, ourmap provides details about the space and energy distribution of the vector pairs. This chart, 

however, lacks sufficient image structure detail. To detect the structure details of the source pictures, the Laplacian 

of a Gaussian (LOG) was used We smooth the picture for noise reduction by convolving it with a digital mask that 

corresponds to the Gaussian function. (3)– (5) expresses the Gaussian function, and (3)–(5) expresses the local 

normalized structure details (6). There is more. 

 

 
Where𝑟2 = 𝑥2 +𝑦2 and 𝜎is the mean square deviation. Given an image matrix (𝑥, 𝑦), the LOG of the image 

function is the second-order partial derivatives along 𝑥and 𝑦directions. There is an example of the LOG edge 

detection of CT and MR images as shown in Figure 2. 𝑒𝑖, 1 and 𝑒𝑖,𝑗 2 represent the local normalized structure 

information of 𝑦𝑖,𝑗 1 and 𝑦𝑖,𝑗 2 , respectively. Therefore, we design the second map SM 𝑀×𝑁named the structure 

map by 

 
 

The Structure and Energy Map (2.3). We create the third map SEM RMN, which we call the system and 

combine the electricity, energy delivery, and structure detail energy map generated by 

 
When 𝑉ℎ 1 = 𝐷𝜃ℎ 1 and 𝑉ℎ 2 = 𝐷𝜃ℎ 2, we can get the fusion vectors by (9) according to the decision map: 
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Where𝑀×𝑁can be EM, SM, SEM, or other decision maps.In comparison to the traditional SR-based approach, 

the proposed method has at least three merits. For starters, it should ensure that the merged findings retain the 

source's content.As far as practicable, exclude the influence of algorithm noise from the photographs. Second, 

since we just sparse-represent a portion of the vector pairs, we will get the results faster. Finally, our algorithm 

enhances contrast by combining energy, energy flow, and structure characteristics of the pictures. The proposed 

findings provide the strongest contrast details, which is the most relevant information for locating the location of 

the irregular tissue, according to the abstract. 

3. Experiments 

Experiments are carried out. The photos are all the same size, measuring 256 x 256 pixels. In this article, we 

use K-SV to train the dictionary. Duplicating the images in the manner seen in Figure 3. The blunderthe tolerance 

has been adjusted to 0.01.The K-cumulative SVD's iterations have been raised to 30. The first dictionary is the 

DCT dictionary, which has a scale of 64 256 characters. For convenience, we approximate the sparse coefficients 

with OMP. The sliding window's movement phase is set to one pixel. To assess the accuracy of the abovementioned  

processes, we use three types of medical image pairs: CT/MR images, MR-T1/MRT2 images, and CT/PET 

images. Figure 4 depicts the DCT dictionary and the educated dictionary. LOG's window size is set to 5 and the 

number of columns is set to 2.In the tests, five state-of-the-art methods are tested for reference, namely NSCT-

based methods JSR-based methods and NSCT-based and SR-based methods to test the fusion efficiency in this 

article, five objective evaluation calculation parameters are used. Local quality index (Q0) weighted fusion quality 

index (QW) edge-dependent fusion quality index (QE) QAB/F all calculate the transmission of edge and visual 

knowledge from source images to fused images, while shared information (MI) computes the information 

transformed from source images to fused images. The interval is shared by Q0, QW, QE, and QAB/F. The higher 

the value for these parameters, the better the fusion results. 

 

 

Figure 2: (a) The source images, (b) the structure information of LOG, and (c) the local structure 

information normalization. 

 

Figure 3: The source images for fusion and training dictionary, including 12 pairs of CT/MR images, 12 

pairs of MR-T1/MR-T2 images, and 12 pairs of T/PET images. 
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Figure 4: The DCT dictionary and the trained dictionary. 

 

Experiments were run on a PC with an Intel i7-3770 CPU running at 3.40GHz and 4GB of RAM, running 

MATLAB R2010a. 

 

Combination of CT and MR images.  

The CT and MR images are fused in the first experiment using the eight image fusion methods mentioned 

above. As seen in Figure 3, we used 12 classes of CT and MR images to measure the accuracy of these approaches. 

Figure 5 depicts two sets of outcomes. The results of NSCT are clearly fuzzy in certain areas, especially in Figures 

5(m) and 5(n), while the results of SR + NSCT SR + SM, and SR + SEM will reserve better source picture boundary 

knowledge than the results of the other methods. Since both of the strategies use the sliding window technique, 

NSCT and NSCT use a window with a size of 3 and the others use a window with a size of 8, these findings have 

no block consequences. And the NSCT NSCT JSR and SR + NSCT findings are clearer than all source pictures, 

resulting in some dim detail being obscured by light information. 

We can't say the tissue details between the skull and the cortex, as seen in Figures 5(m), 5(n), 5(o), and 5(q). 

To some point, the suggested approach should alleviate these issues while maintaining the benefits of SR-based 

approaches.In comparison, the effects of SR + SEM will provide improved image boundary and energy 

information, allowing us to obtain better anatomical information from CT images while still obtaining soft tissue 

information from MR images.Furthermore, in Figures 5(r), 5(s), and 5(t), the calcified meningioma in Figure 5(f) 

can be easily differentiated from the context (t). In terms of  

 

Figure 5: The CT and MR image fused results of different fusion methods. 

 

Table 1 shows the combined CT and MR picture ratings, as well as the average scores of predictive 

measurement criteria, with the “bold” values indicating the maximum values. If we can tell, themethod suggested 

in any case, SR + SEM outperforms other approaches. The proposedmethods' combined findings are all superior 

to traditional approaches.3.2. Image Fusion of MR-T1 and MR-T2. As seen in Figure 3, we used 12 classes of MR-

T1 and MR-T2 photos to measure the accuracy of these methods in the second experiment.Figure 6 shows two sets 

of experiments to demonstrate the proposed fusion process. The effects of NSCT [1], NSCT [6], and SR + NSCT 

[18] are gloomy and vivid in general, showing grey distortion. Many bad edges are generated by NSCT [1], NSCT 

[6], JSR [12], and SR + NSCT [18], and the fused effects are too smooth. In comparison, the findings of SR + 
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NSCT [15] and proposedmethods show improved boundary and energy details with less objects, allowing us to 

extract more information on adipose tissue from MR-T1 images and vascular and tumor information from MR-T2 

images. The suggested methods' findings provide more detail from the source images than the other methods. The 

proposed methods retain better local edge and texture detail, all of which are critical for diagnosis. Figure 6(l) 

shows the subacute premature hematoma, and Figures 6(r), 6(s), and 6(t) show the direction and contour of the 

intracranial hematoma (t). Table 2 lists the average scores of quantitative evaluationmetrics for 12 MR-T1 and 

MR-T2 fused results, with the “bold” points indicating the highest ratings. 

 

Figure 6: The MR-T1 and MR-T2 image fused results of different fusion methods. 

 

Table 1: The objective evaluation and running time for CT and MR image fused results of all methods. 

 

 

In all ratings, we can see that SR + SEM outperform other approaches. In addition, the suggested methods' 

effects are superior to those of other methods.Fusion of CT and PET images in 3.3. As seen in Figure 3, the third 

experiment used 12 CT and PET picture pairs to measure the efficiency of these processes.Figure 7 depicts two 

sets of findings. NSCT and NSCT provide the better performance in terms of energy detail, allowing the fused 

images to collect both more spatial information in CT images and functional information contents in PET images. 

Doctors, on the other hand, ought to see the role of bone and tumor in clinical applications to assess anatomy and 

help in diagnosis. In Figures 7(r), 7(s), and 7, the findings fused by SR + SEMcontain more accurate details and 

higher contrast without information distortion, allowing one to easily see the shape of the kidney (t). Figure 7(b) 

shows nasopharyngeal carcinoma, and we can easily locate it in Figure 7 SR+NSCT[15], SR + SM, and SR + SEM 

using the results fused by the proposed procedure, which are useful for viewing tumor behavior and helping 

physicians to better grasp the impact of cancer care. Table 3 lists the average scores of quantitative 

evaluationmetrics for 12CT and PET fused outcomes, with the "big" values indicating the maximum values. In 

any score, the SR + SEM outperform the other approaches. It demonstrates that this strategy is adaptable and 

secure.The Time Complexity Analysis (3.4). To achieve 3D medical image fusion and reconstruction, a large 

number of CT/PET and MR/PET image slices must first be fused [37, 38]. 

As a result, a faster and more powerful image fusion algorithm is needed.As seen in Figure 8, we keep track of 

the total time spent by various approaches for 36 separate medical picture pairs. Multiscale methods such as NSCT 

[1] and NSCT are clearly faster, while SR-based approaches (JSR SR+NSCT and SR +NSCT take much longer. 

In comparison, the time taken by SR + SM, SR + EM, and SR + SEM is around 1/50 of the time taken by the SR-

based solution. We may conclude from the aforementioned study and debate that SR + SEM outperforms all others 
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in the field of medical picture fusion. Our approaches are easier for doctors to localize irregular masses and tumors 

in patients because they provide more original detail from source pictures and more local structure information. 

4. Conclusion 

A new medical image fusion method based on SR and feature extraction is proposed in this article.When 

opposed to traditional SR-based fusion approaches, there are at least three significant advances. To begin, we 

propose three decision maps to boost the accuracy of SR-based image fusion methods in extracting the source 

images' structure and energy features. This technique will help keep as many of the initial data from the source 

photos as possible.Second, we incorporate the decisionmap into the SRbasedmethods to speed up the algorithm. 

The suggested solution requires just 1/50 of the time that the conventional SR process does to achieve picture 

fusion. Third, using source picture structure and energy details in the decision chart greatly improves the accuracy 

of the fused data. The findings of the tests show that the proposed fusion process will produce greater results in 

both subjective and quantitative ways than traditional fusion approaches. 

 

 
 

 
 

Figure 7: The CT and PET image fused results of different fusion methods. 

 

 
 

Figure 8: The time consuming of different fusion methods. 
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