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Abstract: The effects of radiation on MHD Casson liquid motion and heat transport past a stretchable layer are discussed in 
this paper. An appropriate transformation considers transforming the model partial differential equations (PDEs) into a system 
of nonlinear total differential equations (NODE) by using the fourth order Runge-Kutta along shooting approach (R-S method). 

A comprehensive analysis of different flow terms on velocity profiles and temperature plots are deliberated and accessible 
diagramatically. 
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1. Introduction  

In recent days, research into non-Newtonian fluids (NF) has been greatly improved due to their use of larger 

materials in the field of science and engineering. Casson liquid is a NF attributes that is considered with boundary 

pressure. The blood of humans can be preserved as Casson owing to fibrinogen, synovial liquid, blood cells etc. 

Vajravelu [1] analyzed viscous motion past a nonlinearly stretchable sheet. Elbashbeshy et al. [2] examined 

internal heat generation along heat transportation past a stretchable surface. Emad et al. [3] explored mixed 

convection within a continuously inclined stretchable surface with generation of heat and absorption has a 

suction/blowing contribution on hydromagnetic heat transportation. Subhas et al. [4] investigated non-uniform 

heat source, viscous dissipation, and heat transportation in a boundary layer motion and visco-elastic past a 

stretchable sheet. Goud et al. [5] have been presented a stretching exponentially sheet with radiation contribution 

on MHD motion in the layers.  Nandeppanavar et al. [6] analysed viscoelastic liquid motion with heat transport 

owing to nonlinear stretchable layer with heat source internally.  Siti et al. [7] explored the contribution of thermal 

radiation on hydro-magnetic boundary layer motion past a stretchable surface. Yahaya et al. [8] elucidated the 

contribution of buoyancy with thermal radiation on MHD motion over a stretchable penetrable layer were 

investigated. Several researchers [9] to [17] have investigated the contribution of thermal radiation on MHD 

motion past a stretchable sheet under different flow conditions.. 

The current model's aim is to investigate MHD Casson fluid motion and heat transport through a stretchable 

sheet. The motion and heat transport analysis governing equations are simplified into NODE assets and 

numerically solved using the R-S method. 

2. Mathematical formulation 

Consider 2-D heat transport over a stretched surface with an incompressible, viscous, radiating and electrically 

conducting Casson liquid. The same and directly opposite forces are imposed towards the  to extend the surface 

while retaining the origin. In a motion orientation, the  is parallel to the stretchable surface  , while  is in 

perpendicular direction. The surface extends nonlinearly towards  with a distance of 'xn'. The surface is exposed 

to a variable magnetism  B(x) of intensity that is imposed transversely to the direction. 

The constitutive equation for an isotropic and incompressible Casson liquid motion is thought to be, 

2 , ,
2

2 ,
2

y

B ij c

ij

y

B ij c

p
e

p
e

  




  


 
+  

 
= 

 
+  

 

 

with   and  are the   deformation rate elements,  signifies multiplication of the portion of the deformation rate 

by itself. 

 

      The governing equations can be witten as follows under these assumptions: 
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where u and v denote the fluid's velocity components in the x and y directions, respectively. 
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The radiative heat flux  rq
 of an optically thick liquid can be simplified by the Rosseland  approximation as 
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with 
*  and 

*k  as the Stephan-Boltzman and coefficient of mean absorption respectively. The distinct 

temperature between the fluids inside the boundary layer area is presumed to be so small, that 'T4' can be written 

as a temperature T with linear function. We obtain by simplifying 'T4' in Taylor series regarding '
T ' while 

ignoring the higher terms. 
4 3 44 3T T T T  −

                                                                                                                   (6) 
Eq. (3) can be simplified using Eqs. (5) and (6)
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  The boundary constraints are       
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with λ as parameter of temperature   

3. Similarity analysis          

The coefficient of stream functions u and v are defined as            
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Utilizing the similarity variable η and the dimensionless temperature θ as 
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 After simplifications, the coefficients of stream function resulted to: 
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 Equations (2) and (3) can be written as 
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with the boundary constraints: 
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4. Results and discussion:  

A nonlinear equations of motion is defined by the set of NODE (12) and (13) as well as the boundary 

conditions (14). The solution to these equations is gotten numerically by simplifying the nonlinear equations of 

motion to system of total differential equations using the R-S method, which is very difficult to obtain 

analytically. 

The aim of this section is to examine the effect of various key parameters on velocity profiles   and temperature 

plots   for various key parameters such as velocity and temperature. M, R, Pr, Casson fluid  ,  power-law index is 

denoted by n, radiation parameter is  R, temperature term λ, heat sink/source dependent parameter ‘a’ and heat 

sink/source dependent parameter ‘b’. In this study, The following are the default values for the different 

parameters we looked at:  =10; M=1 ; Pr=0.71; n=3; R=5; λ =15; a=b=0.1;                                

  

Fig. 1  for distinct values of Pr 

The contribution of Pr on ' ' is discussed in Fig. 1. It is evident that a liquid with high Pr values. As a result, 

we discovered that a rapid rise in Pr induces a drop in temperature, and that the temperature of a motion field is 

decreasing monotonically function of Pr. The effects of 'n' on  have been plotted in Figure 2. The velocity 

decelerates as ‘n’ increases, and it is also noted that the effect of ‘n’ on the velocity is less important. The 

contribution of ‘n’ on  is displayed by Fig. 3. It has been found that as ‘n' increases, the temperature distribution 

increases.  are examine for the distinct values of R is depicted in Fig.4. It has been detected that a drastic elevation 

in R leads to a reduction in  . The effect of ' λ ' on ' ' is examined in Fig.5. 

It is detected that the increasing contribution of λ is to lessens the thickness of the thermal layer. 

The contribution of ‘a’ are show in Fig. 6.  increases as the value of ‘a' rises. As a consequence, the thickness 

of the thermal boundary layer increases. Fig. 7 illustrates the effects of ‘b’ on  . It can be shown that as the value 

of ‘b' increases, the temperature rises. The thickness of the thermally layer upsurge owing to this fact. The addition 

of b < 0, energy is absorbed by raising the values of b. hence, the thickness of the thermal layer   degenerates. 

Figure 8 connotes   for distinct values of '  '. It is obvious that as ‘ ' increases, the fluid velocity decreases. 
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 Fig. 2  for distinct values of ‘n’ 

 

 Fig. 3   for distinct values of ‘n’ 
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Fig. 4   for distinct values of R 

 

  

Fig. 5 ( )   for distinct values of λ 

 
Fig. 6 ( )  for distinct values of ‘a’ 

 

 
Fig. 7 ( )  for distinct values of ‘b’ 
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Fig. 8 ( )f  for distinct values of   

5 conclusions: 

The current research investigates the effect of radiation on Casson fluid MHD flow and heat transfer over a 

stretched surface. The following are the key outcomes of the current problem: 

It is found that increasing n,  results in a decrease in the velocity profile. An increase in n, a and b leads to 

increase in temperature distribution in the thermal boundary layer. A higher Pr, R and λ leads to a decrease in 

temperature distribution in the thermal boundary layer. 
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