The Beckman-Quarles Theorem For Rational Spaces: Mapping Of Q^6 To Q^6 That Preserve Distance 1

By: Wafiq Hibi

Wafiq. hibi@gmail.com The college of sakhnin - math department

Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 16 April 2021

Abstract: Let \mathbb{R}^d and \mathbb{Q}^d denote the real and the rational d-dimensional space, respectively, equipped with the usual Euclidean metric. For a real number $\rho > 0$, a mapping $f: A \to X$, where X is either \mathbb{R}^d or \mathbb{Q}^d and $A \subseteq X$, is called ρ -distance preserving $||x - y|| = \rho$ implies $||f(x) - f(y)|| = \rho$, for all *x*, *y* in *A*.

Let $G(Q^d,a)$ denote the graph that has Q^d as its set of vertices, and where two vertices *x* and *y* are connected by edge if and only if ||x - y|| = a. Thus, $G(Q^d, 1)$ is the unit distance graph. Let $\omega(G)$ denote the clique number of the graph G and let $\omega(d)$ denote $\omega(G(Q^d, 1))$.

The Beckman-Quarles theorem [1] states that every unit- distance-preserving mapping from R^d into R^d is an isometry, provided $d \ge 2$.

The rational analogues of Beckman- Quarles theorem means that, for certain dimensions d, every unit-distance preserving mapping from Q^d into Q^d is an isometry.

A few papers [2, 3, 4, 5, 6, 8,9,10 and 11] were written about rational analogues of this theorem, i.e, treating, for some values of *d*, the property "Every unit- distance preserving mapping $f: Q^d \to Q^d$ is an isometry". The propos of this paper is to prove the following: Every unit- distance preserving mapping $f: Q^6 \to Q^6$ is an isometry; moreover, dim (aff(f(L[6]))) = 6.

Mapping of Q^6 to Q^6 that preserve distance 1

1.1 Introduction:

Let R^d and Q^d denote the real and the rational d-dimensional space, respectively. Let $\rho > 0$ be a real number, a mapping : $R^d \to Q^d$, is called ρ - distance preserving if $||x - y|| = \rho$ implies $||f(x) - f(y)|| = \rho$.

The Beckman-Quarles theorem [1] states that every unit- distance-preserving mapping from R^d into R^d is an isometry, provided $d \ge 2$.

A few papers [4, 5, 6, 8,9,10 and 11] were written about the rational analogues of this theorem, i.e, treating, for some values of *d*, the property "every unit- distance preserving mapping $f: Q^d \to Q^d$ is isometry".

We shall survey the results from the papers [2, 3, 4, 5, 6, 8,9,10 and 11] concerning the rational analogues of the Backman-Quarles theorem, and we will extend them to all the remaining dimensions, $d \ge 5$.

History of the rational analogues of the Backman-Quarles theorem:

We shall survey the results from papers [2, 3, 4, 5, 6, 8,9,10 and 11] concerning the rational analogues of the Backman-Quarles theorem.

1. A mapping of the rational space Q^d into itself, for d=2, 3 or 4, which preserves all unit-distance is not necessarily an isometry; this is true by W.Bens [2, 3] and H.Lenz [6].

2. W.Bens [2, 3] had shown the every mapping $f: Q^d \to Q^d$ that preserves the distances 1 and 2 is an isometry, provided $d \ge 5$.

3. Tyszka [8] proved that every unit- distance preserving mapping $f: Q^8 \to Q^8$ is an isometry; moreover, he showed that for every two points x and y in Q^8 there exists a finite set S_{xy} in Q^8 containing x and y such that every unit- distance preserving mapping $f: S_{xy} \to Q^8$ preserves the distance between x and y. This is a kind of compactness argument, that shows that for every two points x and y in Q^d there exists a finite set S_{xy} , that contains x and y ("a neighborhood of x and y") for which already every unit- distance preserving mapping from this neighborhood of x and y to Q^d must preserve the distance from x to y. This implies that every unit preserving mapping from Q^d to Q^d must preserve the distance between every two points of Q^d .

4. J.Zaks [8, 9] proved that the rational analogues hold in all the even dimensions *d* of the form d = 4k (k+1), for $k \ge 1$, and they hold for all the odd dimensions d of the form $d = 2n^2 \cdot 1 = m^2$. For integers *n*, $m \ge 2$, (in [9]), or $d = 2n^2 \cdot 1$, $n \ge 3$ (in [10]).

5. R.Connelly and J.Zaks [5] showed that the rational analogues hold for all even dimensions $d, d \ge 6$.

We wish to remark that during the preparation of this thesis, it was pointed out to us that an important argument, in the proof of the even dimensions d, $d \ge 6$, is missing. Here we propose a valid proof for all the cases of d, $d \ge 5$.

6. J.Zaks [11] had shown that every mapping $f: Q^d \to Q^d$ that preserves the distances 1 and $\sqrt{2}$ is an isometry, provided $d \ge 5$.

New results:

Denote by L[d] the set of $4 \cdot {\binom{d}{2}}$ Points in Q^d in which precisely two non-zero coordinates are equal to 1/2 or -1/2.

A "quadruple" in L[d] means here a set $L_{ij}[d]$, $i \neq j \in I = \{1, 2, ..., d\}$; contains four *j* points of L[d] in which the non-zero coordinates are in some fixed two coordinates *i* and *j*; i.e.

$$L_{ij} \begin{bmatrix} 1 & J \\ d \end{bmatrix} = (0, \dots, 0, \pm \frac{1}{2}, 0, \dots, 0, \pm \frac{1}{2}, 0, \dots, 0)$$

Hibi Prove the following results: Lemma:

If x and y are two points in Q^d , $d \ge 5$, so that:

$$\sqrt{2 + \frac{2}{m-1}} - 1 \le \|x - y\| \le \sqrt{2 + \frac{2}{m-1}} + 1$$

where $\omega(d) = m$, then there exists a finite set S(x,y), contains x and y such that $f(x) \neq f(y)$ holds for every unitdistance preserving mapping $f: S(x,y) \rightarrow Q^d$.

Theorem 1

Every unit- distance preserving mapping $f: Q^5 \to Q^5$ is an isometry; moreover, dim (aff(f(L[5]))) = 5. We will prove the following theorem:

Theorem 2:

Every unit- distance preserving mapping $f: Q^6 \to Q^6$ is an isometry; moreover, dim (aff(f(L[6]))) = 6.

Mapping of Q^6 to Q^6 that preserve distance 1

The purpose of this section is to prove the following Theorem: **Theorem 2:**

Every unit –distance preserving mapping $f: Q^6 \rightarrow Q^6$ is an isometry; moreover, dim (aff(f(L[6]))) = 6.

To prove Theorem 2, we prove first the following Theorem.

Theorem 2^{*}:

if *Z*, *W* are any two points in Q^6 , for which $||Z-W|| = \sqrt{2}$, then there exists a finite set M_6 , containing *Z* and *W*, such that for every unit –distance preserving mapping $f: M_6 \to Q^6$, the following equality holds: ||f(Z)-f(W)|| = ||Z-W||.

Proof of Theorem 2^{*}:

Consider the 6 points $\{A_1, ..., A_6\}$, defined as follows:

$$A_{1} = (\frac{1}{2}, 0, 0, 0, 0, \frac{1}{2})$$

$$A_{2} = (\frac{1}{2}, 0, 0, 0, 0, -\frac{1}{2})$$

$$A_{3} = (0, \frac{1}{2}, 0, 0, 0, -\frac{1}{2}, 0)$$

$$A_{4} = (0, \frac{1}{2}, 0, 0, -\frac{1}{2}, 0)$$

$$A_{5} = (0, 0, \frac{1}{2}, \frac{1}{2}, 0, 0)$$

$$A_{6} = (0, 0, \frac{1}{2}, -\frac{1}{2}, 0, 0)$$

The points $\{A_1, \dots, A_6\}$ form the vertices of a regular 5- simplex of edge length one in Q^6 . Let the 6 points B_1, B_2, \dots, B_6 of Q^6 be defined by $B_i = -A_i$, $1 \le i \le 6$, their mutual distances are one, so they form the vertices of a regular 5 – simplex of edge length one in Q^6 . Let $T_6 = \{A_1, \dots, A_6, B_1, \dots, B_6\}$.

Fix a $k, 1 \le k \le 6$, by Lemma 1 and based on $||Z - W|| = ||A_k - B_k||$ there exists a rational isometry $h: Q^6 \to Q^6$ for which $h(A_k) = Z: = A^*_k$ and $h(B_k) = W: = B^*_k$; denote $h(A_i) = A^*_i$ and $h(B_i) = B^*_i$ for all $1 \le i \le 6$. Let $T^*_6 = \{A^*_1, \dots, A^*_d, B^*_1, \dots, B^*_6\}$; it is clear that $Z, W \in T^*_6$.

Define the set M_6 by: $M_6 = S(A_1^*, B_1^*) \cup S(A_2^*, B_2^*) \cup ... \cup S(A_6^*, B_6^*)$, where the sets S are given by Lemma 4. Let $f, f: M_6 \to Q^6$ be any unit-distance preserving mapping.

Claim 3:

If x and y are two points in T_6^* , then $f(x) \neq f(y)$.

Proof of Claim 3:

Computing the mutual distances of the points in T_{6}^{*} show that: $||A_{i}^{*} - A_{j}^{*}|| = ||B_{i}^{*} - B_{j}^{*}|| = ||A_{i}^{*} - B_{j}^{*}|| = 1$, for all $1 \le i < j \le 6$, and $||A_{i}^{*} - B_{i}^{*}|| = \sqrt{2}$, for all $1 \le i \le 6$. All of the distances above are between $\sqrt{2 + \frac{2}{m-1}} - 1$ and $\sqrt{2 + \frac{2}{m-1}} + 1$. where $m = \omega(d) = 6$ for d = 6. Therefore if ||x - y|| = 1, then ||f(x) - f(y)|| = 1, hence $f(x) \ne f(y)$; if $||x - y|| = \sqrt{2}$ there is an $i, 1 \le i \le 6$, such that $x = A_{i}^{*}, y = B_{i}^{*}$ and $||A_{i}^{*} - B_{i}^{*}|| = \sqrt{2}$. By Lemma 4, applied to A_{i}^{*} and B_{i}^{*} , there exists a set $S(A_{i}^{*}, B_{i}^{*})$, that contains A_{i}^{*} and B_{i}^{*} , for which every unitdistance preserving mapping $g: S(A_{i}^{*}, B_{i}^{*}) \to Q^{d}$ satisfies $g(A_{i}^{*}) \ne g(B_{i}^{*})$.

In particular, this holds for the mapping $g = f/S(A_i^*, B_i^*)$, therefore $f(A_i^*) \neq f(B_i^*)$.

Claim 4:

The mapping f preserves all the distances $\sqrt{2}$, between A_i^* and B_i^* for all i = 1, 2, ..., 6. In particular $||f(Z) - f(w)|| = \sqrt{2}$.

Proof of Claim 4:

Consider the following (4) points:

$$\Delta_1 = \{ f(A_3^*), f(B_4^*), f(B_5^*), f(B_6^*) \}.$$

All of their mutual distances are one, since f preserves distance one, so they form the vertices of a regular 3simplex of edge length one in Q^6 . The intersection of the 4 unit spheres, centered at the vertices of this simplex, is a 2-sphere of radius $t = \sqrt{\frac{5}{8}}$, centered at the center O_1 of Δ_1 ; let $S^2_{(O_1,t)}$ denote this 2-sphere. Let Δ_2 be defined by: $\Delta_2 = \{f(A_4^*), f(B_3^*), f(B_5^*), f(B_6^*)\}.$

In the similar way we obtain the 2-spheres $S^2_{(O_2,t)}$, having her center at O_2 , which is also the center of Δ_2 . The four points $f(A_1^*), f(A_2^*), f(B_1^*)$ and $f(B_2^*)$ are in the intersection of the two 2-spheres $S^2_{(O_j,t)}, j = 1,2$. By claim 3, the two simplices Δ_1 , and Δ_2 are different, but they have vertices $f(B_5^*)$, and $f(B_6^*)$ in common. We will prove that $O_1 \neq O_2$: Assume that $O_1 = O_2 = O$. (See figure 6)

It follows that $||f(B_j^*) - 0|| = ||f(A_i^*) - 0|| = t$, i=3, 4, and j=3, 4, 5, 6. In particular, the point O the center of the simplex $\{f(B_3^*), f(B_4^*), f(B_5^*), f(B_6^*)\}$, so $O = \frac{1}{4} (f(B_3^*) + f(B_4^*), +f(B_5^*) + f(B_6^*))$, but point O is also the center of the simplex Δ_1 so $O = \frac{1}{4} (f(A_3^*) + f(A_4^*), +f(A_5^*) + f(A_6^*))$. It follows that $f(A_3^*) = f(B_3^*)$, a contradiction to Claim 3, thus $O_1 \neq O_2$. Therefore the 2- spheres $S^2_{(O_j,t)}$, j = 1,2, are different. They have the same radius $t = \sqrt{\frac{5}{8}}$ and they have a non-empty intersection. It follows that there two 2-spheres

intersect in a one-dimensional sphere, which is a circle.

Thus $f(A_1^*)$, $f(A_2^*)$, $f(B_1^*)$ and $f(B_2^*)$ form the vartex set of a quadrangle, of edge length one, that lies in a circle. (See figure 5).

It follows as the previous case that $f(A_1^*), f(A_2^*), f(B_1^*)$ and $f(B_2^*)$ form the vartex set of a square in a circle of diameter $\sqrt{2}$, implying:

 $\| f(A_1^*) - f(B_1^*) \| = \| f(A_2^*) - f(B_2^*) \| = \sqrt{2} \text{ since } f(A_i^*) \neq f(B_i^*) \text{ for } i = 1, 2.$

It follows by Lemma 1 that the mapping f preserves the distance $\sqrt{2}$ between A_i^* and B_i^* for all i = 1, 2, ..., 6. In particular $|| f(Z) - f(W) || = \sqrt{2}$.

This completes the proof of Theorem 2^* .

Proof of Theorem

Let f be a unit distance preserving mapping $f: Q^6 \to Q^6$. By Theorem 2^{*} the unit distance preserving mapping f preserves the distance $\sqrt{2}$.

Our result follows by using a Theorem of J.Zaks [8], which states that if a mapping

 $g: Q^d \to Q^d$ preserves the distance 1 and $\sqrt{2}$, then g is an isometry, provided $d \ge 5$.

The proof that $\dim(aff(L[6])) = 6$ is similar to the proof that $\dim(aff(L[5])) = 5$ that appeared in of Theorem 1, hence it is omitted.

This completes the proof of Theorem

References

- F.S Beckman and D.A Quarles: On isometries of Euclidean spaces, Proc. Amer. Math. Soc. 4, (1953), 810-815.
- 2. W.Benz, An elementary proof of the Beckman and Quarles, Elem.Math. 42 (1987), 810-815
- 3. W.Benz, Geometrische Transformationen, B.I.Hochltaschenbucher, Manheim 1992.
- 4. Karin B. Chilakamarri: Unit-distance graphs in rational n-spaces Discrete Math. 69 (1988), 213-218.
- R.Connelly and J.Zaks: The Beckman-Quarles theorem for rational d-spaces, d even and d≥6. Discrete Geometry, Marcel Dekker, Inc. New York (2003) 193-199, edited by Andras Bezdek.
- 6. H.Lenz: Der Satz von Beckman-Quarles in rationalen Raum, Arch. Math. 49 (1987), 106-113.
- 7. I.M.Niven, H.S.Zuckerman, H.L.Montgomery: An introduction to the theory of numbers, J. Wiley and Sons, N.Y., (1992).
- A.Tyszka: A discrete form of the Beckman-Quarles theorem for rational eight- space. Aequationes Math. 62 (2001), 85-93.
- 9. J.Zaks: A distcrete form of the Beckman-Quarles theorem for rational spaces. J. of Geom. 72 (2001), 199-205.
- 10. J.Zaks: The Beckman-Quarles theorem for rational spaces. Discrete Math. 265 (2003), 311-320.
- 11. J.Zaks: On mapping of Q^d to Q^d that preserve distances 1 and $\sqrt{2}$. and the Beckman-Quarles theorem. J of Geom. 82 (2005), 195-203.