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Abstract: Let R%and Q¢ denote the real and the rational d-dimensional space, respectively, equipped with the usual
Euclidean metric. For a real number p > 0, a mapping f: A — X, where X is either R9or Q4 and A < X, is called p-
distance preserving || x — y || = p implies || f(x) — fF(») | = p, forall xy in A.

Let G(Q¢a) denote the graph that has Q¢ as its set of vertices, and where two vertices x and y are connected by edge
if and only if || xX—y || = a . Thus, G(QY 1) is the unit distance graph. Let o(G) denote the clique number of the
graph G and let w(d) denote w(G(QY, 1)).

The Beckman-Quarles theorem [1] states that every unit- distance-preserving mapping from R? into R% is an
isometry, provided d > 2.

The rational analogues of Beckman- Quarles theorem means that, for certain dimensions d, every unit- distance
preserving mapping from Q¢ into Q¢ is an isometry.

A few papers [2, 3, 4, 5, 6, 8,9,10 and 11] were written about rational analogues of this theorem, i.e, treating, for
some values of d, the property "Every unit- distance preserving mapping f: Q¢ — Q¢ is an isometry".

The propos of this paper is to prove the following:

Every unit- distance preserving mapping f: Q¢ — Q°®is an isometry; moreover, dim (aff(f(L[6])))= 6.

Mapping of Q° to Q° that preserve distance 1
1.1 Introduction:
Let R%and Q¢ denote the real and the rational d-dimensional space, respectively.
Let p > 0 be a real number, a mapping : R — Q< , is called p- distance preserving if lx=y] =¢

implies || f(0) = FO) || = p.

The Beckman-Quarles theorem [1] states that every unit- distance-preserving mapping from R? into RY is an
isometry, providedd > 2.

A few papers [4, 5, 6, 8,9,10 and 11] were written about the rational analogues of this theorem, i.e, treating, for
some values of d, the property "every unit- distance preserving mapping f: Q¢ — Q¢ is isometry".

We shall survey the results from the papers [2, 3, 4, 5, 6, 8,9,10 and 11] concerning the rational analogues of the
Backman-Quarles theorem, and we will extend them to all the remaining dimensions ,d > 5.

History of the rational analogues of the Backman-Quarles theorem:
We shall survey the results from papers [2, 3, 4, 5, 6, 8,9,10 and 11] concerning the rational analogues of the
Backman-Quarles theorem.

1. A mapping of the rational space Q¢ into itself, for d=2, 3 or 4, which preserves all unit- distance is not
necessarily an isometry; this is true by W.Bens [2, 3] and H.Lenz [6].

2. W.Bens [2, 3] had shown the every mapping f: Q¢ — Q¢ that preserves the distances 1 and 2 is an isometry,
provided d >5.
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3. Tyszka [8] proved that every unit- distance preserving mapping f: Q% — Q8 is an isometry; moreover, he
showed that for every two points x and y in Q® there exists a finite set Sy, in Q8 containing x and y such that every
unit- distance preserving mapping f: S, — Q8 preserves the distance between x and y. This is a kind of
compactness argument, that shows that for every two points x and y in Q there exists a finite set Sy, that contains x
and y ("a neighborhood of x and y") for which already every unit- distance preserving mapping from this
neighborhood of x and y to QY must preserve the distance from x to y. This implies that every unit preserving
mapping from QY to QY must preserve the distance between every two points of QY.

4.  J.Zaks[8, 9] proved that the rational analogues hold in all the even dimensions d of the form d = 4k (k+1), for
k>1, and they hold for all the odd dimensions d of the form d = 2n-1 = m2, For integers n, m>2, (in [9]), or d = 2n? -
1, n=3 (in [10]).

5. R.Connelly and J.Zaks [5] showed that the rational analogues hold for all even dimensions d, d >6.

We wish to remark that during the preparation of this thesis, it was pointed out to us that an important argument, in
the proof of the even dimensions d, d >6, is missing. Here we propose a valid proof for all the cases of d, d >5.

6.  J.Zaks [11] had shown that every mapping f: Q¢ — Q¢ that preserves the distances 1 and /2 is an isometry,
provided d >5.

New results:

Denote by L[d] the set of 4 - (621
A "quadruple” in L[d] means here a set Lij /d], i £j € | = {1, 2, ..., d}; contains four j points of L[d] in which the

non- zero coordinates are in some fixed two coordinates i and j; i.e.

i j
Lij [d]= (0,...0, = %, 0...0, £%, 0, ...0)

) Points in Q% in which precisely two non-zero coordinates are equal to 1/2 or -1/2.

Hibi Prove the following results:
Lemma:
If x and y are two points in Q¢,d > 5, so that:

24—t i< x—y| < 24— 11
m-—1 = x=yi= m-—1
where w(d) = m, then there exists a finite set S(x,y), contains x and y such that f{x)#f(y) holds for every unit-
distance preserving mapping f: S¢x,y)— Q<.

Theorem 1
Every unit- distance preserving mapping f: Q> — Q°%is an isometry; moreover, dim (aff(f(L[5])))= 5.
We will prove the following theorem:

Theorem 2:
Every unit- distance preserving mapping f: Q® — Q°¢is an isometry; moreover, dim (aff(f(L[6])))= 6.

Mapping of Q° to Q° that preserve distance 1

The purpose of this section is to prove the following Theorem:
Theorem 2:
Every unit —distance preserving mapping f: Q% — Q¢ is an isometry; moreover,
dim (aff(f(L[6]))) = 6.
To prove Theorem 2, we prove first the following Theorem.

Theorem 2":

if ZW are any two points in Q®, for which || Z-W||=+/2 , then there exists a finite set Me, containing Z and W, such
that for every unit —distance preserving mapping f: Mg — Q®, the following equality holds:

2w || = z-w.
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Proof of Theorem 2"
Consider the 6 points {Ay, ..., 4¢}, defined as follows:

A ! 0, 0, 0 O !
1~ (25 ) ) ) ) 2)
A ! 00 0, 0, O !
2 = (2 ) ] ] ] y 2)
A 0 ! 0, 0 ! 0
3 = ( ) 2 ) ) ] 2 ] )
A 0 ! 0, 0 ! 0
4 — ( ] 2 ) ] y 2 ) )
A;=(, O L 0, 0
5 — ( ) ) 12; 2; ) )
4=, 0, = -3, 0, 0)
The points {4,, ..., A¢} form the vertices of a regular 5- simplex of edge length one in Q°. Let the 6 points
By, B,, ..., B¢ of Q° be defined by B; = —4; , 1 < i < 6, their mutual distances are one, so they form the vertices of
aregular 5 — simplex of edge length one in Q°. Let Ty = {4, ..., Ag, By, ..., B }-
Fixak, 1<k <6, by Lemmalandbased on ||Z — W | = ||Ax — B ||there exists a rational isometry h: Q¢ - Q°

for which h(4,) = Z: = A*; and h(B),) = W:= B*, ; denote h(4;) = A*; and h(B;) = B*;forall 1 <i < 6.

Let Ty = {A*y, ..., A*q,B*1, ..., B*c} ; itisclear that Z, W € T*,.

Define the set Mg by: My = S(A*;,B*;) US(A*,,B*,) U ... U S(A%,, B*¢), where the sets S are given by Lemma 4.
Let f, f: My — Q° be any unit-distance preserving mapping.

Claim 3:
If x and y are two points in T*g, then f(x) # f(y).
Proof of Claim 3:
Computing the mutual distances of the points in T~ show that:
|47 =45 || = ||B*i=BY| = |4 = B*|| =1, forall1 < i<, <6, and
|4 =B | =v2 forall1<i<e.

All of the distances above are between /2 + ﬁ —1and /2 + ﬁ + 1.

wherem = w(d) = 6 for d = 6.
Therefore if |x — y || = 1, then || f(x) — F(») || = 1, hence f(x) = F(»);
if |x —y| =V2thereisani, 1 <i <6, such that x = A*;,y = B*; and
4% - B = V2.
By Lemma 4, applied to A*; and B*;, there exists a set S(4*;, B*;), that contains A*; and B*;, for which every unit-
distance preserving mapping g: S(4*;, B*;) — Q%satisfies g(4*;) # g(B*)).
In particular, this holds for the mapping g = f/S(4*;, B*;), thereforef (A*,) # f(B*)).

Claim 4:

The mapping f preserves all the distancesv/2, between A*; and B*; for all i = 1,2, ...,6. In particular || f(2) -

fm | =vz.
Proof of Claim 4:
Consider the following (4) points:

A= {f(43), f(B1), f (Bs), f (Be)}-
All of their mutual distances are one, since f preserves distance one, so they form the vertices of a regular 3-
simplex of edge length one in Q°. The intersection of the 4 unit spheres, centered at the vertices of this simplex, is a

2-sphere of radiust = \/E centered at the center 0; of A;; let 5(20 ) denote this 2-sphere.
8 1,

Let A, be defined by:
Ay={f (A, f(B3), f(Bs), f (Be)}-

In the similar way we obtain the 2-spheres S(ZOZ,t)v having her center at 0,, which is also the center of A,.
The four points f(A3), f(A3%), f(By) and f(B;) are in the intersection of the two 2-spheres S(Zoj‘t), j=1.2.
By claim 3, the two simplices A;, and A, are different, but they have vertices f(B:), and f(B¢) in common.
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We will prove that 0, # 0,:
Assume that 0, = 0, = 0. (See figure 6)

FB ) (B

f(B"3)
f(A%3) f(B"4)

f(A™4)

Figure 6

It follows that || £(B;) — 0| = || f(4}) — 0]|=t, i=3, 4, and j=3,4, 5, 6.

In particular, the point O the center of the simplex {f (B3), f (B;), f (B:), f(B¢)}, so

O :% (f(B3)+ f(By),+f(B2) + f(Bg)), but point O is also the center of the simplex A; so O = i (f(as) +
[, +f(A5) + f(49)).

It follows that £ (4%) = f(B3), a contradiction to Claim 3, thus 0, # 0,.

Therefore the 2- spheres S(Zoj,t), j = 1,2, are different.

They have the same radius t = \E and they have a non-empty intersection. It follows that there two 2-spheres

intersect in a one-dimensional sphere, which is a circle.

Thus f(A3), f(4%), f(Bf) and f(B3) form the vartex set of a quadrangle, of edge length one, that lies in a circle.
(See figure 5).

It follows as the previous case that f (A7), f(43%), f(B;) and f(B;) form the vartex set of a square in a circle of
diameter v/2, implying:
I FeaD — FBON = £z — B = VZsince f(A)) = f(B;) for i = 1,2.

It follows by Lemma 1 that the mapping f preserves the distance V2 between A; and B; for all i = 1,2, ...,6. In

particular || f(2) — FW) || = V2.

This completes the proof of Theorem 2",

Proof of Theorem
Let f be a unit distance preserving mapping f: Q¢ — Q°. By Theorem 2" the unit distance preserving mapping

fpreserves the distance /2.
Our result follows by using a Theorem of J.Zaks [8], which states that if a mapping

g: Q¢ — Q1 preserves the distance 1 and /2, then g is an isometry, provided d > 5.
The proof that dim(aff(L[6])) = 6 is similar to the proof that dim(aff(L[5])) = 5 that appeared in of Theorem 1, hence
it is omitted.

This completes the proof of Theorem
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