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Abstract: Let Rd and Qd denote the real and the rational d-dimensional space, respectively, equipped with the usual 

Euclidean metric. For a real number 𝜌 > 0, a mapping 𝑓: 𝐴 ⟶ 𝑋,  where X is either Rd or Qd and 𝐴 ⊆ 𝑋, is called 𝜌- 

distance preserving ║𝑥 − 𝑦║ = ρ implies ║𝑓(𝑥) − 𝑓(𝑦)║ = ρ , for all x,y in 𝐴.  

 

Let G(Qd,a) denote the graph that has Qd  as its set of vertices, and where two vertices x and y are connected by edge 

if and only if ║𝑥 − 𝑦║ = 𝑎 . Thus, G(Qd,1) is the unit distance graph. Let ω(G) denote the clique number of the 

graph G and let ω(d) denote ω(G(Qd, 1)). 

 

The Beckman-Quarles theorem [1] states that every unit- distance-preserving mapping from Rd into Rd is an 

isometry, provided d ≥ 2. 

 

The rational analogues of Beckman- Quarles theorem means that, for certain dimensions d, every unit- distance 

preserving mapping from Qd into Qd is an isometry. 

 

A few papers [2, 3, 4, 5, 6, 8,9,10 and 11] were written about rational analogues of this theorem, i.e, treating, for 

some values of 𝑑, the property "Every unit- distance preserving mapping 𝑓: 𝑄𝑑 ⟶ 𝑄𝑑  is an isometry". 

 

The purpose of this section is to prove the following Lemma 

Lemma: If x and y are two points in 𝑄𝑑 , 𝑑 ≥ 5, so that: 

√2 +
2

𝑚 − 1
− 1 ≤ ║𝑥 − 𝑦║ ≤ √2 +

2

𝑚 − 1
+ 1   

where 𝜔(𝑑) = 𝑚, then there exists a finite set S(x,y), contains x and y such that f(x)≠f(y) holds for every unit- 

distance preserving mapping  f: S(x,y)→ 𝑄𝑑. 

 

1.1 Introduction: 

Let Rd and Qd denote the real and the rational d-dimensional space, respectively. 

Let 𝜌 > 0 be a real number, a mapping : 𝑅𝑑 ⟶ 𝑄𝑑 , is called 𝜌- distance preserving if             ║𝑥 − 𝑦║ = ρ   

implies ║𝑓(𝑥) − 𝑓(𝑦)║ = ρ.  
 

The Beckman-Quarles theorem [1] states that every unit- distance-preserving mapping from Rd into Rd is an 

isometry, provided𝑑 ≥ 2.  

A few papers [4, 5, 6, 8,9,10 and 11] were written about the rational analogues of this theorem, i.e, treating, for 

some values of d, the property "every unit- distance preserving mapping 𝑓: 𝑄𝑑 ⟶ 𝑄𝑑   is isometry". 

 

We shall survey the results from the papers [2, 3, 4, 5, 6, 8,9,10 and 11] concerning the rational analogues of the 

Backman-Quarles theorem, and we will extend them to all the remaining dimensions , 𝑑 ≥ 5 . 

 

History of the rational analogues of the Backman-Quarles theorem: 

We shall survey the results from papers [2, 3, 4, 5, 6, 8,9,10 and 11] concerning the rational analogues of the 

Backman-Quarles theorem. 

 

1.      A mapping of the rational space Qd into itself, for d=2, 3 or 4, which preserves all unit- distance is not 

necessarily an isometry; this is true by W.Bens [2, 3] and H.Lenz [6]. 
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2.      W.Bens [2, 3] had shown the every mapping 𝑓: 𝑄𝑑 ⟶ 𝑄𝑑  that preserves the distances 1 and 2 is an isometry, 

provided 𝑑 ≥5. 

 

3.      Tyszka [8] proved that every unit- distance preserving mapping 𝑓: 𝑄8 ⟶ 𝑄8 is an isometry; moreover, he 

showed that for every two points x and y in Q8  there exists a finite set Sxy in Q8 containing x and y such that every 

unit- distance preserving mapping 𝑓: 𝑆𝑥𝑦 ⟶ 𝑄8  preserves the distance between x and y. This is a kind of 

compactness argument, that shows that for every two points x and y in Qd there exists a finite set Sxy, that contains x 

and y ("a neighborhood of x and y") for which already every unit- distance preserving mapping from this 
neighborhood of x and y to Qd must preserve the distance from x to y. This implies that every unit preserving 

mapping from Qd to Qd must preserve the distance between every two points of Qd. 

 

4.       J.Zaks [8, 9] proved that the rational analogues hold in all the even dimensions 𝑑 of the form d = 4k (k+1), for 

k≥1, and they hold for all the odd dimensions d of the form d = 2n2-1 = m2. For integers n, m≥2, (in [9]), or d = 2n2 -

1, n≥3 (in [10]). 

 

5.      R.Connelly and J.Zaks [5] showed that the rational analogues hold for all even dimensions 𝑑, 𝑑 ≥6. 

 

   We wish to remark that during the preparation of this thesis, it was pointed out to us that an important argument, in 

the proof of the even dimensions 𝑑, 𝑑 ≥6, is missing. Here we propose a valid proof for all the cases of 𝑑, 𝑑 ≥5.  

 

6.      J.Zaks [11] had shown that every mapping 𝑓: 𝑄𝑑 ⟶ 𝑄𝑑  that preserves the distances 1 and √2 is an isometry, 

provided 𝑑 ≥5. 

 

 

 

 

New results: 

Denote by L[d] the set of 4 ∙ (𝑑
2

) Points in Qd in which precisely two non-zero coordinates are equal to 1/2 or -1/2. 

  A "quadruple" in L[d] means here a set Lij [d], i ≠ j 𝜖 I = {1, 2, …, d}; contains four j points of L[d] in which the 

non- zero coordinates are in some fixed two coordinates i and j; i.e.  

                                                                     i                 j 

Lij [d]= (0,…0, ± ½, 0…0, ±½, 0, …0) 

 

Our main results are the following:  

Lemma: If x and y are two points in 𝑄𝑑 , 𝑑 ≥ 5, so that: 

√2 +
2

𝑚 − 1
− 1 ≤ ║𝑥 − 𝑦║ ≤ √2 +

2

𝑚 − 1
+ 1   

where 𝜔(𝑑) = 𝑚, then there exists a finite set S(x,y), contains x and y such that f(x)≠f(y) holds for every unit- 

distance preserving mapping  f: S(x,y)→ 𝑄𝑑. 

 

Auxiliary Lemmas: 
 

   We need the following Lemmas for our proofs of the Theorems 1 and 2. 

 

Lemma 1: (due J.Zaks [10]). 

If v1 , … , vn  , w1, … , wm are points in Qd, n ≤ m such that ║𝑣𝑖 − 𝑣𝑗║ = ║𝑤𝑟 − 𝑤𝑠 , 

 for all 1 ≤ i ≤ j ≤ n,1 ≤ r ≤ s ≤ m then there exists a congruence 𝑓: 𝑄𝑑 ⟶ 𝑄𝑑 , such that 

 f(𝑣𝑖) = 𝑤𝑖  for all 1 ≤ i ≤ n. 
 

Lemma 2: (due to Chilakamarri [4]). 

a.   For even d, ω(d) = d+1, if d+1 is a complete square; otherwise ω(d) = d. 

b.   For odd d, d ≥ 5, the value of ω(d) is as follows: if d= 2n2 -1, then ω(d) = d+1; if d ≠ 2n2-1 and the Diophantine 

equation dx2 – 2(d - 1)y2= z2 has a solution in which x ≠ 0 then ω(d) = d; otherwise ω(d) = d – 1. 
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𝑏2 −
(𝑏2 − 𝑎2 + 𝑐2)2

4𝑐2

> 0

 

Lemma 3:          

If a, b, c are three numbers that satisfy the triangle inequality and if a2, b2, c2 are rational numbers then:     

a.                                                           , and 
 

 b.     The space 𝑄𝑑 , 𝑑 ≥ 8 contains a triangle ABC, having edge length: AB=c, BC=a, AC=b. 

 

Proof of Lemma 3:          

To prove (a), its suffices to prove that  4𝑏2𝑐2 − (𝑏2 − 𝑎2 + 𝑐2)2 > 0 

 

4𝑏2𝑐2 − (𝑏2 − 𝑎2 + 𝑐2)2 = 
 

= [2𝑏𝑐 + (𝑏2 − 𝑎2 + 𝑐2)] ∙ [2𝑏𝑐 − (𝑏2 − 𝑎2 + 𝑐2)] 
= [(𝑏 + 𝑐)2 − 𝑎2] ∙ [𝑎2 − (𝑏 − 𝑐)2] 

= (a + b + c)(b + c − a)(a + b − c)(a − b + c) > 0. 
The triangle inequality implies that the expression in the previous line on the left is positive; it appears also in 

Heron’s formula. 

  

To prove (b): Let a, b, c be three numbers that satisfy the triangle inequality, and so that a2 ,b2 ,c2 are rational 

numbers. 

The number c2 /4 is positive and rational, hence there exist, according to Lagrange Four Squares theorem [8], 

rational numbers 𝛼, 𝛽, 𝛾, 𝛿  such that  c2 /4= 𝛼2 +  𝛽2 + 𝛾2 + 𝛿2.  
 

By part (a), the following holds: 𝑏2 −
(𝑏2−𝑎2+𝑐2)2

4𝑐2 > 0, therefore there exist by Lagrange  

Theorem rational numbers: x, y, z, w, such that:      

𝑏2 −
(𝑏2−𝑎2+𝑐2)

2

4𝑐2 = 𝑥2 + 𝑦2 + 𝑧2 + 𝑤2. 

Consider the following points: 

𝐴 = (−𝛼, −𝛽, −𝛾, −𝛿, 0, … ,0) 

𝐵 = (𝛼, 𝛽, 𝛾, 𝛿, 0, … ,0) 

𝐶 = (
𝑏2  − 𝑎2

𝑐2
𝛼,

𝑏2  − 𝑎2

𝑐2
𝛽,

𝑏2  − 𝑎2

𝑐2
𝛾,

𝑏2  − 𝑎2

𝑐2
𝛿, 𝑥, 𝑦, 𝑧, 𝑤, 0, … ,0)   

 

The points A,B and C satisfy:  

 

║𝐴 − 𝐵║ = √4(𝛼2 + 𝛽2 + 𝛿2 + 𝛾2 = 𝑐 

 

║𝐴 − 𝐶║ = √[
𝑏2  − 𝑎2

𝑐2
+ 1]

2

(𝛼2 + 𝛽2 + 𝛿2 + 𝛾2 ) + 𝑥2 + 𝑦2 + 𝑧2 + 𝑤2 

 

 = √
(𝑏2 − 𝑎2 + 𝑐2)2

4𝑐2
+ 𝑏2 −   

(𝑏2 − 𝑎2 + 𝑐2)2

4𝑐2
   = 𝑏,                      

 

and: 

║𝐵 − 𝐶║ = √[
𝑏2  − 𝑎2

𝑐2
− 1]

2

(𝛼2 + 𝛽2 + 𝛿2 + 𝛾2 ) + 𝑥2 + 𝑦2 + 𝑧2 + 𝑤2 

= √
(𝑏2 − 𝑎2 − 𝑐2)2

4𝑐2
−  

(𝑏2 − 𝑎2 + 𝑐2)2

4𝑐2
+ 𝑏2  =   

= √
−4(𝑏2 − 𝑎2)𝑐2 + 4𝑏2𝑐2

4𝑐2
  = 𝑎   
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𝑏2 −
(𝑏2 − 𝑎2 + 1)2

4
= 𝛼2 + 𝛽2 + 𝛿2 + 𝛾2  

 

 

This completes the proof of Lemma 3. 

 

Corollary 1: 

If a, b, 1 satisfy the triangle inequality and if 𝑎2, 𝑏2 are rational numbers, then the space 𝑄5 contains the vertices of a 

triangle which has edge lengths a, b, 1. 

 

Proof: 

Consider the following points: 
 

𝐴 = (
1

2
 ,0,0,0,0) 

𝐵 = (−
1

2
 ,0,0,0,0) 

                 𝐶 = ((𝑏2 − 𝑎2  )
1

2
 , 𝛼, 𝛽, 𝛾, 𝛿) 

 

Where 𝛼, 𝛽, 𝛾, 𝛿 are the rational numbers that exist according to Lagrange theorem, for which:  

 

 From the proof of Lemma 2 the triangle, ABC has the edge length a, b, 1. 
 

Corollary 2: 

If t is a number such that √2 +
2

𝑚−1
− 1 ≤ 𝑡 ≤ √2 +

2

𝑚−1
+ 1  , 𝑡2 ∈ 𝑄 

Where 𝑚 ≥ 4 is a natural number, then the space 𝑄𝑑 , 𝑑 ≥ 5, contains a triangle ABC having edge length 1,t, 

√2 +
2

𝑚−1
   . 

 

Proof:  

According to Lemma 2, the numbers 1,t, √2 +
2

𝑚−1
 satisfy the triangle inequality, and the result follows from 

Corollary 1. 

 

Lemma 4: 

If x and y are two points in 𝑄𝑑 , 𝑑 ≥ 5, so that: 

√2 +
2

𝑚 − 1
− 1 ≤ ║𝑥 − 𝑦║ ≤ √2 +

2

𝑚 − 1
+ 1   

where 𝜔(𝑑) = 𝑚, then there exists a finite set S(x,y), contains x and y such that f(x)≠f(y) holds for every unit- 

distance preserving mapping  f: S(x,y)→ 𝑄𝑑. 

 

Proof of Lemma 4:   

Let x and y be points in 𝑄𝑑 , 𝑑 ≥ 5, for which, 

 √2 +
2

𝑚−1
− 1 ≤ ║𝑥 − 𝑦║ ≤ √2 +

2

𝑚−1
+ 1   where 𝜔(𝑑) = 𝑚. 

The real numbers ║x-y║, √2 +
2

𝑚−1
 and 1 satisfy the triangle inequality, hence by Corollary 2 there exist three 

points A, B, C such that ║A-B║=║x-y║, 

║A-C║= √2 +
2

𝑚−1
  and ║B-C║=1. It follows by two rational reflections that there exists a rational point z for 

which ║y-z║=1 and ║x-z║=√2 +
2

𝑚−1
 , (see Figure 1). 

Let {𝑣0, … , 𝑣𝑚−1} be a maximum clique in G(𝑄𝑑 ,1), and let 𝑤0  be the reflection of 𝑣0 with respect to the rational 

hyperplane passing through the points {𝑣1, … , 𝑣𝑚−1} it follows that ║𝑣0 − 𝑤0 ║ =  √2 +
2

𝑚−1
  , (see Figure 2). 
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Figure 1 

 

                                                             Figure 2 

 

 

 

 

 
 

 

 

 

 

 

 

Based on ║x-z║=║𝑣0 − 𝑤0║ and lemma 1, there exist a rational translation h for which h(𝑣0)= x and h(𝑤0)=z. 

Denote g (h(𝑣𝑖))= 𝑉𝑖  for all 1≤ i≤m-1, (see Figure 3). 
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Figure 3 

 

𝑥 

𝑦 

𝑣0 

𝑣1 

𝑤0 

{𝑣1, … , 𝑣𝑚−1} 

h(𝑣0)= x 

h(𝑣1)= V1 

𝑦 

h(𝑤0)= z 

{𝑉1, … , 𝑉𝑚−1} 
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Denote S(x, y) = {x, y, z,𝑣1, … , 𝑣𝑚−1}. Suppose that f(x)= f(y) holds for some unit- distance preserving mapping f: 

S(x,y)→ 𝑄𝑑 . 

The assumption f(x) = f(y) and ║y-z║=1 imply that ║f(y) - f(z)║=1=║f(x) = f(z)║, hence the set 

{𝑓(𝑥), 𝑓(𝑧), 𝑓(𝑣1), … , 𝑓(𝑣𝑚−1)}, forms a clique in G(𝑄𝑑 ,1) of size m+1,which is a contradiction. It follows that f(x) 

≠ f(y) holds for every unit- distance preserving mapping f: S(x,y)→ 𝑄𝑑 . 

This completes the proof of Lemma 4. 
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