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Abstract: Let R%and Q¢ denote the real and the rational d-dimensional space, respectively, equipped with the usual
Euclidean metric. For a real number p > 0, a mapping f: A — X, where X is either R%or Q% and A C X, is called p-
distance preserving || x — y || = p implies || f(x) — fF(»)| = p, forall xy in A.

Let G(Q¢a) denote the graph that has Q¢ as its set of vertices, and where two vertices x and y are connected by edge
ifand only if |x — y|| = a. Thus, G(Q%,1) is the unit distance graph. Let o(G) denote the clique number of the
graph G and let w(d) denote w(G(QY, 1)).

The Beckman-Quarles theorem [1] states that every unit- distance-preserving mapping from R? into R% is an
isometry, provided d > 2.

The rational analogues of Beckman- Quarles theorem means that, for certain dimensions d, every unit- distance
preserving mapping from Q¢ into Q¢ is an isometry.

A few papers [2, 3, 4, 5, 6, 8,9,10 and 11] were written about rational analogues of this theorem, i.e, treating, for
some values of d, the property "Every unit- distance preserving mapping f: Q¢ — Q¢ is an isometry".

The purpose of this section is to prove the following Lemma
Lemma: If x and y are two points in Q¢,d > 5, so that:

24— i< r—y] < |2r—— 41
+m—1_ = = yi= +m—1+

where w(d) = m, then there exists a finite set S(x,y), contains x and y such that f{x)#f(y) holds for every unit-
distance preserving mapping f: S¢x,y)— Q<.

1.1 Introduction:
Let R%and Q¢ denote the real and the rational d-dimensional space, respectively.
Let p > 0 be a real number, a mapping : R* — Q¢ , is called p- distance preserving if || X—y || =p

implies || f0) = FO) || = p.

The Beckman-Quarles theorem [1] states that every unit- distance-preserving mapping from R? into RY is an
isometry, providedd > 2.

A few papers [4, 5, 6, 8,9,10 and 11] were written about the rational analogues of this theorem, i.e, treating, for
some values of d, the property "every unit- distance preserving mapping f: Q¢ — Q¢ is isometry".

We shall survey the results from the papers [2, 3, 4, 5, 6, 8,9,10 and 11] concerning the rational analogues of the
Backman-Quarles theorem, and we will extend them to all the remaining dimensions ,d > 5 .

History of the rational analogues of the Backman-Quarles theorem:
We shall survey the results from papers [2, 3, 4, 5, 6, 8,9,10 and 11] concerning the rational analogues of the
Backman-Quarles theorem.

1. A mapping of the rational space Q¢ into itself, for d=2, 3 or 4, which preserves all unit- distance is not
necessarily an isometry; this is true by W.Bens [2, 3] and H.Lenz [6].
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2. W.Bens [2, 3] had shown the every mapping f: Q¢ — Q¢ that preserves the distances 1 and 2 is an isometry,
provided d >5.

3. Tyszka [8] proved that every unit- distance preserving mapping f: Q% — Q8 is an isometry; moreover, he
showed that for every two points x and y in Q® there exists a finite set Sy, in Q8 containing x and y such that every
unit- distance preserving mapping f: S,,, — Q® preserves the distance between x and y. This is a kind of
compactness argument, that shows that for every two points x and y in Q? there exists a finite set Sy, that contains x
and y ("a neighborhood of x and y") for which already every unit- distance preserving mapping from this
neighborhood of x and y to QY must preserve the distance from x to y. This implies that every unit preserving
mapping from QY to QY must preserve the distance between every two points of QU.

4.  J.Zaks[8, 9] proved that the rational analogues hold in all the even dimensions d of the form d = 4k (k+1), for
k>1, and they hold for all the odd dimensions d of the form d = 2n-1 = m?, For integers n, m>2, (in [9]), or d = 2n? -
1, n>3 (in [10]).

5. R.Connelly and J.Zaks [5] showed that the rational analogues hold for all even dimensions d, d >6.

We wish to remark that during the preparation of this thesis, it was pointed out to us that an important argument, in
the proof of the even dimensions d, d >6, is missing. Here we propose a valid proof for all the cases of d, d >5.

6.  J.Zaks [11] had shown that every mapping f: Q¢ — Q¢ that preserves the distances 1 and /2 is an isometry,
provided d >5.

New results:
Denote by L[d] the set of 4 - (Czl) Points in Q% in which precisely two non-zero coordinates are equal to 1/2 or -1/2.

A "quadruple” in L[d] means here a set Lij /d], i £j € | = {1, 2, ..., d}; contains four j points of L[d] in which the
non- zero coordinates are in some fixed two coordinates i and j; i.e.
i ]
Lij /d]= (0,...0, £ %, 0...0, £%, 0, ...0)

Our main results are the following:
Lemma: If x and y are two points in Q¢,d > 5, so that:

24— i< r—y] < |2r—t1
Foaog s lxmyls jero— T

where w(d) = m, then there exists a finite set S(x,y), contains x and y such that f{x)#f(y) holds for every unit-
distance preserving mapping f: S¢x,y)— Q<.

Auxiliary Lemmas:

We need the following Lemmas for our proofs of the Theorems 1 and 2.

Lemma 1: (due J.Zaks [10]).

IfVi, ..., Vn Wi, ..., i are points in Q%, n <msuch that ||v; — v; || = ||w, —ws,

for all 1 <i <j <n,1<r<s <m then there exists a congruence f: Q¢ — Q¢, such that
Jfw) =w;foralll <i<n

Lemma 2: (due to Chilakamarri [4]).

a. Forevend w(d) =d+1,if d+1 isacomplete square; otherwise w(d) = d.

b. Forodd d, d > 5, the value of w(d) is as follows: if d= 2n? -1, then w(d) = d+1; if d # 2n?-1 and the Diophantine
equation dx? — 2(d - 1)y?= z2 has a solution in which x # 0 then w(d) = d; otherwise w(d) = d — 1.

1908



Wafiq Hibi

Lemma 3:
If a, b, ¢ are three numbers that satisfy the triangle inequality and if a2, b?, ¢? are rational numbers then:
a. , and

b. The space Q%2> 8 centainga triangle ABC, having edge length: AB=c, BC=a, AC=b.
2 Q2.8 gonipiney

Proof of Lemma 3: 4c?
To prove (a), its suffices to prove that 4b%c? — (b2 — a? +¢?)2 > 0

4p%c? — (b?> —a? +¢?)? =

= [2bc + (b? — a? + c?)] - [2bc — (b? — a? + ¢?)]
=[(b+c)*—a’]-[a*> = (b—c)?]
=(@+b+c)(b+c—a)@a+b—-c)(a—b+c)>0.
The triangle inequality implies that the expression in the previous line on the left is positive; it appears also in
Heron’s formula.

To prove (b): Let a, b, ¢ be three numbers that satisfy the triangle inequality, and so that a,b? ,c?are rational
numbers.

The number c?/4 is positive and rational, hence there exist, according to Lagrange Four Squares theorem [8],
rational numbers a, 5,¥, 8 such that ¢?/4=a? + % +y? + 62

(b2—a?+c2)?

By part (a), the following holds: b% — o7
Theorem rational numbers: X, y, z, w, such that:

p2 — (bz—az+cz)2
4c2

> 0, therefore there exist by Lagrange

=x2+y*+z2+wi
Consider the following points:

A=(-a,—-B,-y,-6,0,..,0)

B=(a>77,4,0,..,0)

b?> —a? b? —a?* b? —a?* b? —a?
C=( a, 6,x,v¥,z,w,0,...,0)

c? c? c?

The points A,B and C satisfy:

l4-B| =4 +p2+62+y2=c

b2 — g2 2
||A—C||=J[ = +1] (> +p2+62+y2)+x2 +y2+2z2 +w?

= b,

~ (b2 — a2 + c2)? . (b2 — a2 + c2)?
N 4c2 4¢c2

and:

h2 — g2 2
lB-c| = [ =z —1] (@2 +PB?+624+y2)+x2+y2+2z2 +w?

+b? =

B \/(bZ —a?— C2)2 (bZ — a? + CZ)Z

N 4¢c? 4¢2

—4(b? — a?)c? + 4b?c?
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This completes the proof of Lemma 3.

Corollary 1:

If a, b, 1 satisfy the triangle inequality and if a2, b? are rational numbers, then the space Q> contains the vertices of a
triangle which has edge lengths a, b, 1.

Proof:
Consider the following points:

1
A= (— 0,0,0,0)
= (—— 0,0,0,0)
= ((b2 —a? ), aBy,0)
Where a, 8,7, § are the rational numbers that exist according to Lagrange theorem, for which:

From the proof of Lemma 2 th&;riangle ZABCB@ the edge length a, b, 1.
2 2
Corollary 2: =a’+p*+ 6% +y?

If t is a number such that /2+——1<t< /2+—+1 t2€eQ

Where m > 4 is a natural number, then the space Q¢,d > 5, contains a triangle ABC having edge length 1,t,
242
m-1
Proof:

According to Lemma 2, the numbers 1.t /2 + ﬁ satisfy the triangle inequality, and the result follows from
Corollary 1.

Lemma 4:
If x and y are two points in Q¢,d > 5, so that:

24—t i< x—y| < 24— 11
m-—1 =x=yir= m-—1
where w(d) = m, then there exists a finite set S(x,y), contains x and y such that f{x)#f(y) holds for every unit-
distance preserving mapping f: S¢x,y)— Q<.

Proof of Lemma 4:
Let x and y be points in Q¢,d > 5, for which,

[z+ﬁ—1g lx=y| < /2+ﬁ+1 where w(d) = m

The real numbers || x-y||, /2 + ﬁ and 1 satisfy the triangle inequality, hence by Corollary 2 there exist three
points A, B, C such that || 4-B|| =[x,

|A-Cl= |2+ ﬁ and || B-C|| =1. It follows by two rational reflections that there exists a rational point z for
. _ = L .
which [ly-z[|=1 and [|x-z||= |2 + —, (see Figure 1).
Let {vy, ..., V,;,—1 } be @ maximum clique in G(Q¢%,1), and let w, be the reflection of v, with respect to the rational

hyperplane passing through the points {vy, ..., v,,_, } it follows that || v, —w, || = |2 +——, (see Figure 2).
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Based on ||x-z|| =||vo — w, || @nd lemma 1, there exist a rational translation h for which h(v,)= x and h(w,)=z.
Denote g (h(v;))=V; for all 1<i<m-1, (see Figure 3).

Figure 1

h(vy)= x

Vi, o) Vi
h(v:)= Vs {n 1}

Figure 3
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Denote S(x, y) = {X, Y, Z,v4, ..., V;_1 }- Suppose that f(x)= f(y) holds for some unit- distance preserving mapping f:
S(x.y)— Q4.

The assumption f(x) = f(y) and ||y-z|| =1 imply that ||/5) - fi2) | =1=||/x) = fiz)||. hence the set

{0, f(@), f(W1), e, f(Wm—1)}, forms a clique in G(Q%,1) of size m+1,which is a contradiction. It follows that f(x)
# f{y) holds for every unit- distance preserving mapping f: S¢x,y)— Q¢.

This completes the proof of Lemma 4.
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