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Abstract: Text generation is the technique of producing a textual explanation of an image. Both natural-language processing 
(NLP) and cognitive science (CS) techniques are used to create the captions of images. Subtitles and descriptions are both texts 
shown on a video that delivers extra or interpretive details for observers who are deaf and hard of hearing or require extra clues 
than just the sound. Many times, the shown text comprises an interpretation or conversion of the pronounced language in the 
video. Other usages of text-generation have been originated based on the requirements of various spectators. For instance, the 

caption for the deaf and people who have severe hearing impairments contain an explanation of other acoustic details that 

audiences with hearing problems might miss, such as the description of the music, proof that the narrator is now offscreen, etc. 
Caption-generation is a very inspiring Cognitive Internet of things (CIoT) and artificial intelligence (AI) task where the 
description of text must be originated from a given image. It requires the approach of computer vision to recognize image 
details or content and a language model from the NLP region to translate the image interpretation into the words in the right 
order. In this survey paper, we describe the comprehensive overview of prevalent deep-learning based text generation methods. 

Besides this, we describe the various datasets and the famous evaluation metrics used in the deep-learning based automatic text 
generation. 
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1. Introduction  

The word “Caption” is primarily used in the North-America. Caption generally refers to text descriptions that 

are in the analogous language as spoken in the video. And when we talk about translated videos, they are called 

subtitles, and they are used worldwide. Captions appear on the computer screen, TV, smart devices, and movie 

screen, and they describe the text version of the audio or video. This captioning technique is very beneficial for 

people who cannot hear or who have difficulty in hearing so that they can also enjoy watching the movie. For 

people experiencing severe deafness who are also not deaf, subtitles can even make the spoken sentences 

relatively easy to understand since the hearing, analogous to vision, is affected by desires, that is once we have 

thought what others speak, dialogues are perfectly obvious. Captions give valuable details such as who is talking 

or what is the background in the scene (see Fig.1), which is very crucial for understanding a new event/scenario. 

Captions are generated through the transcript of the program. The captioner divides the conversation into captions 

and ensures that the words come along in harmony with the audio. Computer programs convert the captioning-

detail and integrate it with the sound and video to generate novel electronic or digital documents. The captions 

must, preferably, display at the lower part of the screen. Image captioning is a complex problem in which artificial 

intelligence plays an important role. Through artificial intelligence, we can get the computer to do all the functions 

that we think. A costly and time-consuming method for machine learning (ML) and natural language (NL) 

scientists is annotating and marking machine learning data sets. Although, a modern deep learning (DL) technique 

is often used to translate, find, and restore picture & video captions, making the system created captions more 

accurate and reliable.   

 

Fig. 1. Text Generation through Cognitive IoT’s and Machine-Learning Approaches. 

Currently, image captioning is divided into 03 categories- 
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      Open captioning is usually shown explicitly in the video frame, and this can not be disabled. At first, open 

captioning was the only option available for television viewers; and only for a small number of programs.  

Closed captioning allows audiences to switch captions open or closed. The audiences of television had to 

compete requirement:-Some required the subtitles to access the information, and others needed them to 

understand the scene. 

Real-time captions are generated as activity occurs. A Captioner, i.e., frequently trained as a court-reporter or 

stenographer, employs a stenotype m/c with a phonetic keyboard and unique S/W. A machine immediately 

converts the phonetic symbols into english-subtitles. The small interruption is based on the captioner’s 

requirement to listen and code the word and computer processing time. The immediate captioning approach is 

used for the applications which do not have a script; real-time activities, together with congressional proceedings; 

live webinars; news-services; and nonbroadcast seminars, for example, global gatherings of technical societies. 

Though several real-time text generation is more than 98% correct, the viewer can see only rare mistakes. The 

captioner can misunderstand a phrase, listen to an unknown word, or have an S/W dictionary problem. 

 Despite the recent promising development in neural-image-captioning, automated image captioning seems 

complicated. 

In image captioning, an image is provided to an algorithm and tasked with creating a sensible caption. It is a 

challenging task for several reasons, not the least because it involves a notion of saliency or relevance. Recent 

deep learning approaches mostly include some “attention” mechanism (sometimes even more than one) to focus 

on relevant image features. 

Visual attention mechanisms are an essential part of the advanced computer vision system. In nearly all areas, 

it is also an integral component of most advanced achievements in almost all areas, such as detecting objects, 

image captioning, and many more. Many traditional visual attention systems employ image captioning & VQA 

from the top-down perspective, a task-oriented technique that assigns caption based on the selectively determined 

weight of image characteristics. While the bottom-up technique is constructed on the visual feedforward attention 

system that first defines the targeted image area and allots the features vector to those areas. 

Here we describe the basis upon which existing image captions are constructed. We have obtained remarkable 

progress in various critical problematic areas such as object/image classification, speech analysis, etc. However, 

image captioning has not yet achieved the milestone that other genres have achieved. But with the advent of DL 

in object recognition/detection, the identification of fine-grained features has led to an incredible improvement 

in image captioning precision. Previous approaches include shifting of most crucial explanation from the indexed 

database by identifying the semantically related images via image retrieval. 

Existing image captioning techniques may be classified into 03 groups- 

The 1st set of techniques:- Recognize objects & attributes and after that compiles the image definition from 

the phrases that include those objects. 

The 2nd set of techniques:- Embed the images and compatible captions in the equivalent vector space. For a 

particular inquiry, captions closest to the image in the embedding-space are obtained, and those captions are 

updated to produce the latest caption for the provided image. However, these techniques do not produce a new 

description of a provided test image as the descriptions from the almost identical images are used for the caption. 

The 3rd set of techniques:- Explicitly create the order of the phrases related to the image conditioned on the 

image and earlier produced words. So, they are able to generate new arrangements of words that might never 

have occurred in the training data. It becomes the standard procedure in most advanced algorithms for image 

captioning and is defined in a very efficient manner in section 2. Let’s deep dive: 

There are 03 critical issues while filling the semantic difference among the visual scenes & language in order 

to generate different, innovative, and human-like captions. 

The main obstacle derives from the accumulated nature of the NL & visual-scenes. While the training dataset 

comprises co-incidents of particular objects in their perspective, a captioning system must be generalized by 

composing-objects in other circumstances. 

The conventional captioning approach has some drawbacks, such as it suffers from understandability & 

genuineness since it produces the caption in serial order, i.e. Subsequently created word relies on the former word 

and the image characteristic. This can often contribute to syntactically consistent, but semantically inappropriate 

language arrangements, also an absence of variety in the created captions. The compositionality problem is 

addressed with a context-aware captioning model that allows the captioner to define phrases that are dependent 

on the part of the visual scenes. 

The 2nd problem is the discrimination in the dataset that impacts modern captioning schemes. The trained 

models overfit the typical objects that co-occur in a common environment (e.g. curtain and windows), 

contributing to a dilemma in which certain structures fail to generalize to scenarios in unknown environments 

where the same objects exist (e.g., curtain and playground). Although lowering the bias of the dataset is a complex 

and complicated work. 

The 3rd problem is in the assessment of the quality of produced captions. Automated metrics, however 

somewhat useful, is still inadequate because they do not consider the image into consideration. In several 

instances, their grading stays insufficient and confusing on certain occasions — particularly when scoring 

dissimilar and vivid captions.  
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Development in automated captioning of pictures and interpretation of scenes allows more accurate machine 

vision systems for personal trainers for individuals with visual impairments and better their everyday lives. The 

semantic gap in language bridging & vision points needs to incorporate the cognitive approach for better scene 

understanding. 

2.  Cognitive Internet-Of-Thing (CIOT) 

 CIoT is a new extended functionality of an IoT architecture that works via practical cognitive AI with 

computer models. CIoT learns, can give the sense, make decisions, and deliver to humans very smartly. The 

ability of CIoT is very similar to the cognitive ability of a human being. To take full advantage of the IoT, we 

must add the CIoT as an essential ingredient. The objective of the CIoT is to remove the boundary between the 

human being and the physical worlds that are sharing the object and information with us. The objective of the 

CIoT is to achieve performance enhancement and more intelligent or smart IoT with the help of supportive 

instruments and cognitive computing [1]. Some of the features of the CIoT are as - learning ability can be 

increased by giving CIoT a short time, or in other words, it is capable of self-learning via minimum training. 

CIoT is adaptive in nature. CIoT dynamically tackles the real data as a process and analysis. CIoT is constructed 

to be collaborative with peoples, m/c, and other mechanical devices. CIoT is particularly significant for its 

capability to cooperate with persons in a fully human way [1]. 

3. Image Based Visual Captioning Approaches  

The complete classification is described in Fig.2 for DL based image captioning approaches.  

3.1 Standard Image Caption Methods 

The authors described the novel methods to pre-learn great sensitive filters via convolutional layers known as 

FRAME and abbreviated as Filters, Random field, & Maximum Entropy [2]. The learning algorithm produces 

intense images, and via the CNN component, describes the learned model. The proposed CNN-FRAME 

generative model activates CNN nodes by learning from small No.’s of training samples in a generative custom. 

3.2 Deep Learning 

The authors surveyed an image captioning technique via deep learning [3]. In this comprehensive survey, the 

authors discussed image captioning classification, framework, and its advantage & disadvantages. This reviewed 

paper also concentrated on numerous datasets, evaluation metrics with their demonstrated outcomes. 

In this paper, the authors introduced an innovative automates algorithm for image captioning to produce the 

textual performance of lifelogging camera collection-based capture images [4]. The authors developed and 

discovered new methods based on DL to produce image streams via temporal consistency-constraints to build 

summaries. The experiment outcomes exhibit that the suggested method outperformed state-of-the art captioning 

methods on several measurable metrics.  

 

Fig. 2. Image Captioning Approaches 
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The 02-challenging task -hashtag prediction and post generation (Instagram dataset) handle via a new image 

captioning method known as Context Sequence Memory Network (CSMN) [5]. CSMN substantial benefits in 

modelling the information from both the older and future. CSMN can produce multiple types of contextual 

information, capture long-term information without failure, and better context understanding via CNN memory 

structure. The CSMN uses Amazon Mechanical Turk to illustrate the efficiency of the method, consistently 

outperforming all baseline methods. 

In an image captioning model, predicting the next-word based on a prior word and concealed status is difficult. 

This problem can be overcome by providing a novel CNN language model. CNN language model fit for statistical 

language modelling scheme[6]. Considerable studies are carried out on 02 datasets: Flickr30K and MS COCO, 

and the CNN language model demonstrate clear enhancements compared to other advanced models. CNN 

language model achieves superior performance than the vanilla recurrent neural network-based language models. 

Semantic Deep Learning  

The suggested technique is able to generate the image and video-based text-descriptions; hence the method is 

named image parsing to text description (I2T) [7]. The I2T follows 03 major phases- first, via image parsing 

engine, images and videos are divided into visual forms with natural language construction. Second, the image-

parsing outcomes are converted into the semantic description in the form of Web-ontology-language(OWL). 

Third, the text-generation engines provide facilities to convert encoded transmitted data into a displayable form 

for query-able text study. The I2T method's objective is to construct and-or-graph (AoG) for visual-knowledge 

demonstration via the semiautomatic method. The maritime and urban-scene video monitoring system is the best 

example of an automatic I2T system. 

The authors described the novel captioning model based on images & sentences. In this method, generated 

words follow the previous one and are aligned via experience [8]. The authors also proposed scene-specific 

context modelling that is able to retrieve higher-order semantic information. The authors designed a benchmark 

with available outcomes on several popular datasets. The authors concentrate on region-based attention or scene- 

appropriate contexts improvement systems. The experimental result shows that via mixing 02 modelling 

techniques, significant performance enhancement can be achieved. 

Convolutional-neural-networks (CNNs) & Recurrent-neural networks (RNNs) are combined and utilized for 

the Vision-to-Language (V2L) problems. The authors proposed a new CNN-RNN method that combines high-

rank semantic ideas and also improves the approaches performance through the visual-question-answering 

(VQA)[9]. The authors observed both speed and accuracy enhancements over the baseline method.  

The novel method, SPICE: Semantic-propositional-image- caption-evaluation (SPICE) is based on the 

hypothesis that semantic-propositional subject plays a significant role in human caption assessment [10]. The 

authors demonstrated that the SPICE model has the ability to define new ideas by empirically estimating its 

performance on BLEU, METEOR, ROUGE-L, and CIDEr and shows qualitative results.  SPICE achieves 0.88 

system-level correlation on MSCOCO,  0.43 for CIDEr and 0.53 for METEOR. SPICE is able to answer text-

generation queries. 

For describing huge no. of object categories, the novel object Captioner (NOC) was proposed by the authors 

[11]. NOC object Captioner is based on the deep visual semantic captioning scheme. There are many benefits 

associated with the NOC, such as semantic embedding and generalization. The NOC can extract and generate 

captions. Experimental validation shows that the NOC outperformed the other advanced methods. 

The integration of SPICE & CIDEr is known as SPIDEr [12]. SPIDEr is optimization via a policy gradient 

(PG). In the SPIDEr framework, the SPICE score confirms that the captions are semantical, whereas the CIDEr 

score ensures that the captions are syntactically fluent. The policy gradient (PG) approach is applied for 

enhancements via Monte Carlo rollouts. The authors tested the proposed method on COCO metrics and achieved 

better performance than the other method.  

The authors suggested a novel approach for detailed wording and matching in image captioning, known as 

Conditional Generative Adversarial Networks (CGAN) [13]. CGAN can learn to produce conditioned descriptors 

and an evaluator to assess these conditions. CGAN generates an image descriptor that is more semantic, natural, 

and diverse. Policy gradient is used for solving the nontrivial problems from reinforcement learning. Policy 

gradient can handle early feedback. The CGAN model outperforms the most advanced method on the benchmark 

dataset MS COCO & Flickr30k.  

Supervised/Unsupervised/Reinforcement Deep Learning 

Most advanced techniques of image captioning need supervised training data that contains caption with paired 

image data. Usually, these approaches are unable to use unsupervised information such as textual data without 

accompanying photos, which is a much more abundant commodity. The proposed novel way uses textual data by 

artificially filling the lost values. The evaluation of this learning method on a newly designed model detects the 

visual concept present in the image and feeds them to a reviewer-decoder framework with an attention-mechanism 

[14]. Different from the earlier techniques that encode the visual concept by utilizing the word embeddings, the 

proposed techniques use the regional image structures that acquire more inherent details. The key advantage of 

this architecture is that it incorporates important thought vectors that collect prominent image features and then 

employ a soft, attentive decoder to decode the thought vectors and produce image captions. The evaluation of the 

suggested model on both the dataset (MS COCO & Flickr30K) shows that when this model is integrated with 
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semi-supervised-learning approaches, it greatly increases the performance and helps the model produce a perfect 

caption. 

An unsupervised approach is used for image captioning training. And for this purpose, it needed a sentence 

dataset and visual concept detector [15]. The sentence dataset demonstrates the image captioning framework and 

produces the possible sentences for a further process, whereas the visual concept detector monitors the framework 

to identify the visual ideas in an image. Generated captions are semantical with the image and projected via 

common latent space. Detailed research and analytical studies on a large-scale image explanation dataset of 02-

million natural sentences demonstrate the suggested model's superiority in contrast to the most advanced 

techniques. 

Call self-critical-sequence-training (SCST) [16] approach worked on image optimization-based captioning 

systems using reinforcement learning. The proposed method is a form of a famous REINFORCE algorithm. By 

using SCST, the reward signal is assessed and avoiding normalization assessment. SCST optimized the CIDEr 

metric and enhanced the result from 104.9 to 114.7. 

 LSTM Deep Learning 

The authors described the modification of the long-short-term-memory (LSTM) framework known as guiding 

Long Short-Term Memory (gLSTM) [17]. sIn gLSTM semantic detail is obtained from the image, which is more 

strongly coupled to the image content. The extensive study demonstrates that the proposed approach achieves a 

better outcome than the previous methods. 

Deep convolutional-neural-network (CNN) and other 02 distinct LSTM net are combined via a novel model 

known as end-to-end trainable deep bi-directional LSTM for image-captioning [18]. This arrangement can learn 

via past and upcoming context data at high-level semantic space. The authors introduced 02 novel deep bi-

directional variant models for learning hierarchical visual-language embeddings and multicrop, multiscale & 

vertical mirrors to avoid overfitting in training deep-models. The proposed method is applied on standard 

benchmarks: Flickr8K, Flickr30K, and MSCOCO. Detailed assessments across several models and databases 

show that the bidirectional LSTM models on caption generation and other numerous tasks such as detection, 

attention, etc., perform much better than the other prevalent most advanced models. 

There is 02 generalization standard for short structured representations- first, standard generalization to novel 

image with the same scenes and second, generalization to novel groupings of known objects [19]. The 02 

generalization standard is applied to the MSCOCO dataset. The extensive experiments show that the 

generalization standard better than the LSTM. 

Visual encoder & language decoder comprehensibly collaborate in a recurrent custom via a new image-based 

captioning framework called Recurrent Image Captioner (RIC) [20]. Through CNN-based visual encoder to allow 

the spatially invariant transformation of visual-signals.In the attention filter phase situated among the encoder 

and decoder. To preprocess for producing great textual representations used bidirectional LSTM. Comprehensive 

studies on the most prevalent dataset like Flickr8k, Flickr30k & MS COCO exhibit the suggested method's 

greatness compared to the other most advanced techniques. 

Together, CNN and RNN make a new network for image-based captioning, known as Long Short-Term 

Memory with Copying Mechanism (LSTM-C) [21]. The LSTM-C smartly joints the word by word sentences. 

LSTM-C is also capable of producing via RNN decoder with a copying tool used to put proper places of output 

sentence. Extensive experiments and analyses on the MSCOCO and ImageNet datasets show that LSTM 

architecture works superior to the other methods across various assessment metrics. 

CNNs and RNNs are combined thru Long short-term memory with attributes (LSTM-A). To incorporat inter-

attribute correlations into Multiple-instance-learning (MIL) [22]. LSTM-A builds a framework via a fuzzy 

relationship between the image representation and attributes. The effectiveness of the LSTM-A is validated on 

MS COCO. 

 Attention-based Neural Encoder-Decoder Frameworks 

Given an image I with its matching description y which is characterized as a sequence of words 

{y_1,y_2,….,y_(t-1) }, using an RNN as the decoder, the neural-based encoder-decoder framework enhances the 

log-likelihood of the RNN joint probability of each time-step t which is achieved by utilizing the chain-rule: 

𝑝(𝑦|𝐼) = ∏ 𝑝(𝑦𝑡|𝑦1:𝑡−1,   𝐼, 𝜃)       (1)

𝑇

𝑙=1

 

Together with the outstanding efficiency of LSTMs and their good ability to catch dependencies in the long 

term, the RNN decoder may be presented as an LSTM, where the concealed state at each time-step t is described 

as: 

ℎ𝑡 = 𝐿𝑆𝑇𝑀(𝑥𝑡 , ℎ𝑡−1, 𝑚𝑡−1)      (2) 

Where x_t represent the input to the LSTM at timestep t,h_(t-1) is the earlier unseen state, and  m_(t-1) is the 

prior memory state at timestep t-1. 

Along with the recommendation of attention structure, in sequence modelling systems, the context vector 

plays a key role [23] and considerably enhances efficiency. The context-vector is sometimes considered as a focus 
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component, which governs the network when the forecast is produced. In image captioning systems, the context 

vector offers visual information like where to search in the picture at each stage to forecast a word. Instead of 

depending strictly on a single secret state. The decoder would join to specific areas in the image throughout the 

caption-generation practice through the context vector, which is calculated as a weighted-sum of each pixel in 

the spatial image acquired by the encoder CNN. 

 Dense Captioning Deep Learning 

The authors suggested a dense caption scheme to localize and designate salient regions in NL [24]. The authors 

also suggested a fully convolutional localization network (FCLN) framework that combines both localization and 

description task. FCLN works based on the concept of end-to-end optimization, well-organized forward pass, 

processing of an image with one round, and it does not require extra proposal regions. FCLN is combined with 

convolution network, dense localization layer, and RNN model that can produce the label-sequences. The 

suggested scheme is applied to a very famous dataset, i.e. visual genome that contains 94000 images and 4100000 

regions grounded captions. The experiment's outcomes validate that the suggested scheme significantly 

outperformed the current most advanced methods in both generation and retrieval-settings. 

The dense visual annotations are connected via huge overlapping target regions for finding the exact 

localization. The proposed method  works on 02 important problems of dense captioning [25]. By the usage of 

joint inference and context fusion, authors avoid the problem of dense captioning. The usefulness of the suggested 

method is verified on Visual Genome. The detailed result shows that the suggested technique is competitive with 

advanced methods with a relative gain of 73%.  

Dense captioning has some limitations, i.e. not able to generate a coherent story for an image. Authors 

overcome these limitations by decomposing both images and sections into their basic portions, detecting the 

semantic region, and presenting a hierarchical method that controls the compositional structure of images and 

language [26]. Extensive experiment outcomes show that the suggested technique is competitive with the most 

advanced approaches and presented how region-level information can be efficiently transferred to paragraph-

captioning. 

 Stylized Deep Learning 

MemCap is able to generate an image caption in a linguistic manner and explicitly encodes the information 

[27]. MemCap learns to memorize elements during training. MemCap is memory segments that contain a group 

of embedding vectors for encoding style-related phrases in the training corpus. For obtaining the style-related 

phrases, the authors described the sentence decomposing algorithm. In the sentence, the decomposing algorithm 

contains 02 parts: style-related part and content-related part. Extensive experiments on SentiCap and 

FlickrStyle10K dataset demonstrate that the suggested MemCap model significantly outperforms the compared 

methods for image captioning. 

 Compositional Architecture Deep Learning 

For large-scale visual learning, the authors proposed a new convolution-based framework. The proposed 

framework end-to-end trainable and check the outcome rate on standard recognition tasks, description and 

retrieval glitches, and video description challenges. In this proposed method, recurrent convolution frameworks 

are “doubly deep” accumulated in spatial&temporal “layers”. The proposed framework has beneficial when target 

notions are difficult and/or training data are inadequate. The experimental outcome shows that the proposed 

model has numerous advantages over the prevalent method as defined separately or optimized [28]. 

The authors solved the generative descriptive problem based on a no-paired image sentence benchmark via 

Deep-compositional-captioner (DCC) [29]. DCC framework is capable of combining sentences that define novel 

objects and their contacts with other objects. The authors demonstrated that the DCC framework is assessed on 

the MSCOCO dataset to obtain greater competitive success as compared to the state-of-the art outcomes and 

qualitative outcomes. 

 MultiModal Space Based Deep Learning 

The authors proposed a framework that produces NL descriptions. The proposed method is beneficial for 

inter-modal correspondences among language and visualdata. The proposed framework represents a CNN group 

over image-region, bidirectional RNN over the sentence, and multimodal embedding[30]. The authors discussed 

the multimodal recurrent neural network scheme for producing image regions via learning. The proposed method 

applied on standard datasets Flickr8K, Flickr30K, and MSCOCO and produces descriptions that expressively 

outperform retrieval-baselines on together full images and a novel dataset region-level annotations. 

The authors proposed an innovative image captioning architecture based on a multimodal recurrent neural 

network (m-RNN) [31]. m-RNN contains 02 sub-net: First, a deep-RNN for sentences and a deep convolutional 

network for image generation. Image captions produced via sampling and word produces via directly models 

probability distribution. The m-RNN is applied on 04 standard datasets, namely IAPR TC-12, Flickr-8K, Flickr-

30K, and MSCOCO. The experimental outcome validates the effectiveness of the suggested method. 

The authors described the method for producing the natural sentences in sequences for a series of images. The 

authors construct a multimodal scheme, i.e. coherence recurrent convolutional network (CRCN) [32]. CRCN 

comprehends convolutional neural networks, bi-directional recurrent neural networks, and an entity-based local 

coherence model. The proposed method is able to learn the blog in the form of text image. The suggested approach 



Turkish Journal of Computer and Mathematics Education                   Vol.12 No.9 (2021), 333-351 

339 

 

Research Article 

is experimentally described in numerous datasets and shows that the suggested technique outperformed the other 

prevalent methods. 

The authors suggested a recurrent highway network with language CNN for producing image caption [33]. 

The suggested scheme contains 03 sub-net. First, for image representation, deep convolutional neural network is 

used. Second, the convolutional neural network is used in language modelling. Third, for sequence prediction 

Multimodal Recurrent Highway Network is used. The proposed scheme is able to use the hierarchical & temporal 

construction of past words. The 02 dataset MSCOCO and Flickr30K are used for validation. Extensive experiment 

outcomes on 02 datasets MSCOCO and Flickr30K demonstrate the suggested scheme's advantage compared to 

the most advanced methods. 

 Attention Mechanism 

The authors proposed the methods that identify an image's info via automatic learning, which is known as the 

attention-based model [34]. The proposed model is trained via deterministic mode. The proposed method 

experimentally authenticates the practice of attention thru state-of-the-art performance on 03 standard datasets, 

namely Flickr8k, Flickr30k & MS COCO. 

The attention framework has been designed to reproduce simple human behaviour. Prior to image 

summarization, people prefer to pay attention to the particular areas of the picture and then describe the interaction 

between objects in those areas. A similar method is adopted in the attention framework. There are many methods 

that the researcher has used to repeat it that are generally recognized as hard or soft attention system [35]. Other 

researchers have explored top-down and bottom-up attention framework. He S et al. [36] at the latest announced 

that the improved solution is still a top-down attention scheme as the outcomes from the studies with humans and 

m/c exhibited identical outcomes. In the top system, the method begins as input from a given image and then 

transforms it into words. In addition, the latest multimodel dataset is generated from individual fixations and 

scene details for the largest number of new cases. 

 X-linear Attention Networks (X-LAN) 

A unique unified design for the attention module, known as X—linear-attention block, is completely 

capitalized on the bi-linear pooling to capture the 2nd order characteristic interface along with spatial and 

streamwise bilinear attention. In addition, particular incorporation of the X-Linear attention block into the image 

encoder and sentence decoder to obtain increased intra & inter model correlation boosts visual knowledge and 

carries out intricate multi-modal analysis for captioning images. Fig.3 shows how to combine such blocks with 

the encoder & decoder framework through (X-LAN) X-Linear-attention networks. 

X- Linear-Attention-Block  

Although the traditional focus module activates the relationships among various modalities perfectly, only the 

1st order interaction function is used, reflecting the restricted potential of dynamic multi-modal logic in image 

captioning. Influenced by bilinear pooling's new achievements in fine-grained visual identification [37, 38] or 

visual query response [39, 40], The entire capitalization on bi-linear pooling methods for creating a unified-

attention module (X-linear-attention block) for image captioning, as described in Fig. 4. The X-linear-attention 

block framework enhanced the intake capability of the output attended characteristic by using higher-order 

relation among the input single-modal or multi-modal. 

In general, assume the query Q∈R^(D_q ), a set of keys K={k_i }_(i=1)^N, and a set of values V={v_i 

}_(i=1)^N, where k_i∈R^(D_k ) and V_i∈R^(D_v ) notify the i-th value/ key group. First, the X-linear-attention 

block conducts low-rank bilinear pooling to obtain a bilinear combined query-key representation B_i^k∈R^(D_B 

) among the query Q and each key k_i ∶ 

𝐵𝑖
𝑘 = 𝜎 (𝑊𝑘𝑘𝑖) ⊙ 𝜎(𝑊𝑞

𝑘𝑄),    (2) 

Where W_k∈R^(D_B×D_k ),and W_q^k∈R^(D_B×D_q ) are embedding matrices, σ represents ReLu unit, 

and ⊙ denotes element-wise multiplication. As such, the learned bi-linear query-key representation B_i^k coveys 

the second-order characterization connections among query and key. 

Next, Centered on all bi-linear query-key representations {B_i^k }_(i=1)^N, 02 types of bilinear attention 

deliveries are achieved to combined both spatial & channel-wise information inside all attributes. Particularly, 

the spatial bilinear attention distribution is presented by displaying each bilinear query-key interpretation using 

02 embedding layers into the associated weights of attention, accompanied by a softmax layer, for normalization. 

 𝐵′
𝑖
𝑘

= 𝜎 (𝑊𝐵
𝑘  𝐵𝑖

𝑘), 𝑏𝑖
𝑠 = 𝑊𝑏𝐵′

𝑖
𝑘
, 𝛽𝑠 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑏𝑠),   (3) 

Where W_B^k∈R^(D_c×D_B )  and W_b∈R^(1×D_c ) describe the embedding matrices, 〖B^'〗_i^k represent 

the transformed bi-linear query-key representation, while b_i^s is the i-th element in b^s. Here every element 

β_i^s  in β^sindicates the normalized spatial attention weight for each key/value pair. In the meantime, the 

executed squeeze-excitation operation [41] overall altered bi-linear query-key representations  {〖B^'〗_i^k 

}_(i=1)^N or channelwise attention measurement.  

Specifically, all modified bilinear query-key interpretations through average pooling are combined by the 

squeeze activity, heading to a global channel descriptorB ̅: 

�̅� =
1

𝑁
∑ 𝐵′

𝑖
𝑘

𝑁

𝑖=1

           (4) 
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Thereafter the excitation action generates channel-wise interest distribution β^c through exploiting the self-

gating process over the global channel descriptor ( B ̅) with a sigmoid. 

𝑏𝑐 = 𝑊𝑒�̅�, 𝛽𝑐 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑏𝑐),     (5) 

Where W_e∈R^(D_B×D_c ), represents the embedding matrix. 

Lastly, the X-linear-attention block produces the attended value characteristic V ̂ by collecting the improved 

bilinear values with spatial & channel-wise bilinear attention: 

�̂� = 𝐹𝑋−𝐿𝑖𝑛𝑒𝑎𝑟(𝐾, 𝑉, 𝑄) = 𝛽𝑐 ⊙ ∑ 𝛽𝑖
𝑠

𝑁

𝑖=1

𝐵𝑖
𝑣 ,         (6) 

𝐵𝑖
𝑣 = 𝜎(𝑊𝑣𝑣𝑖) ⊙ (𝑊𝑞

𝑣𝑄), 

 

Where B_i^v represents the improved value of bi-linear pooling on query Q, and each value V_i, 

W_v∈R^(D_B×D_q ) denotes the embedding matrices. Therefore, relative to traditional attention frameworks 

that merely investigate the relationship between question and key in the 1st order, the X-linear-attention block 

generates the more representative attended characteristic. However, relationships with higher-order features are 

utilized through the bilinear-pooling. 

Extension with higher order interactions.  

For utilization of the higher-order characteristic interactions, the further iteration of the above procedure of b-

linear attention measurement and characteristic combination using a stack of our X-linear-attention blocks. 

Formally, for the m-th X-linear-attention block, first of all, the consideration is given to the prior output attended 

characteristic V ̂^((m-1)) as input query, combined with recent input Keys 

𝐾(𝑚−1) = {𝑘𝑖
(𝑚−1)

}
𝑖=1

𝑁

, 𝑎𝑛𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 𝑉(𝑚−1) = {𝑣𝑖
(𝑚−1)

}
𝑖=1

𝑁

:  

 

�̂�(𝑚) = 𝐹𝑋−𝐿𝑖𝑛𝑒𝑎𝑟(𝐾(𝑚−1), 𝑉(𝑚−1), �̂�(𝑚−1)),         (7) 

Where �̂�(𝑚)  represents the output of new attended characteristics. �̂�(0), 𝐾(0), 𝑎𝑛𝑑 𝑉(0)  represents 

𝑄, 𝐾 𝑎𝑛𝑑 𝑉, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦. Afterwards, all keys/values are subsequently changed based on the performance of the 

new attended characteristic �̂�(𝑚): 

𝑘𝑖
(𝑚)

= 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝜎(𝑊𝑚
𝑘[�̂�(𝑚), 𝑘𝑖

(𝑚−1)
]) + 𝑘𝑖

(𝑚−1)
), 

𝑣𝑖
(𝑚)

= 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝜎(𝑊𝑚
𝑣[�̂�(𝑚), 𝑉𝑖

(𝑚−1)
]) + 𝑉𝑖

(𝑚−1)
),         (8) 

Where 𝑊𝑚
𝑘 and 𝑊𝑚

𝑣 represents compositional matrices. Observe that each key/value is combined with the new 

attended characteristic, followed by a remaining association & layer normalization as in the [42]. The repetition of 

the procedure (Eq. (7) and Eq.(8)) M times through stacking M in X-linear-attention blocks, that reflect higher 

(2Mth) order characteristic interactions. 

First of all, Faster R-CNN is utilized to recognize the range of image sections. After, a stack of X-linear-attention 

blocks is supplied in an image encoder to encode the region-level characteristics with the higherorder intra-modal 

interaction in among, leading to a set of improved region-level and image-level features. Relies on the improved 

visual characteristics, the X-linear-attention block is even more adopted in sentence decoder to execute multi-

modal reasoning. This promotes the investigations of highorder inter-modal interactions among visual content & 

natural-sentence to increase sentence generation. 

3.2.9.2 Local and Global Attention Model 

Policy net and value net both are jointly produce decision-making architecture for image-based captioning. For 

predicting the next word (local guidance), policy net is used, whereas evaluating all possible additions of the recent 

state (global-guidance), value net is used. Both the net are trained via the actor-critic reinforcement-learning 

framework [43]. Experimentally, the authors demonstrated the advantages of the proposed approach over 

conventional image captioning methods and shown that the suggested framework outperforms most advanced 

methods across diverse evaluation metrics by using the Microsoft COCO dataset. 

3.2.9.3 Adaptive Attention Model 

The authors extract significant sequential word creation details via a novel adaptive-attention framework with 

visual-sentinel for image-based captioning [44]. The proposed frameworks decided whether to attend the image 

and where automatically. Broad studies are carried out on both the COCO image captioning 2015 challenge dataset 

and Flickr30K. The proposed frameworks and their efficiency enhancement for customized captioning of images 

over advanced captioning models. 

3.2.9.4 Semantic-Attention Model 

The top-up and bottom-up techniques joined via semantic-attention algorithm for image captioning with tight  

coupling of RNN [45]. The suggested approach for image captioning obtains advanced performance through 

prevalent standard benchmarks (Microsoft COCO and Flickr30K) across numerous evaluation metrics. 
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Caption generators emphasize the feature of an image that is generated previously via text-conditional attention 

model [46]. To acquire text-based images for the text-conditional attention model, the authors hire a gLSTM with 

CNN fine-tuning framework. The proposed models can learn jointly, i.e. embedding text/image, text-conditional 

attention language framework under the one umbrella. For this purpose, the authors used MSCOCO dataset. The 

extensive experiment outcome shows that the proposed techniques outperform than the prevalent advanced 

captioning techniques. 

3.2.9.5 Spatial and Channel wise Attention Model 

Gan et al. [47] suggested a new image captioning system known as SCA-CNN effectively employed on structural 

prediction tasks (Image-based VQA). This proposed system can generate a visual attention model spatially. SCA-

CNN integrates spatial and channel-wise attention, and it is used for sentence generation in a multilayer features 

map dynamically. The SCA-CNN attention mechanism and spatial transformer attention regions produce advanced 

outcomes on the Flickr8K, Flickr30K, and MSCOCO datasets. Extensive experiments and analysis demonstrate 

that the suggested technique works better than the other advanced methods across different evaluation metrics. 

  

Fig. 3. A simplified illustration of X-linear-attention block & ELU to catch infinity-order characteristic 

connections.  

 

Fig. 4. Overview of X-linear-attention networks (X-LAN) for image-captioning.  

3.2.9.6 Areas of Attention Model 
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Integrate the region of image, words caption, and showing the RNN language model via Areas of Attention 

framework [48]. Areas of attention enhanced image captioning thru confining the related areas during the 

experiment. Areas of Attention works on CNN activation grids, object-proposals, and spatial transformers nets 

implemented in a convolutional technique. Spatial transformers networks are tight together with Areas of 

Attention for great outcomes. Areas of Attention and spatial transformer attention combinable validate on 

MSCOCO Captioning benchmark and obtain the advanced performance in the standard metrics. 

 Top-Down attention Model 

Caption guided visual-saliency [49] presents region to word mapping for the encoder-decoder net. During 

caption training, the presented model can learn implicitly. For predicated captioning and arbitrary query 

sentences, the spatiotemporal heatmap is used. The presented model improves saliency and its design. Evaluation 

& person decisions show that the presented model considerably outperformed previous work and is able to 

designate many more classifications of objects. 

 Bottom-Up attention Model 

The Faster R-CNN is used with the ResNet-101 [50] CNN. To produce the required set of image characteristic, 

the  VQA is used.The final result of the model is taken, and then it executes the non-maximum suppression. Each 

object class employs an IoU threshold. After this, entire regions are selected, and class discovery likelihood 

increased the confidence threshold. For each chosen area i, v_i is known as the mean-pooled convolutionary 

characteristic in this area, and the size D of the image characteristic is 2048. In this way, the faster R-CNN work 

efficiently as the ‘Hard’ attention mechanism, since only a small amount of image bounding box characteristic is 

chosen from the wide variety of potential combination. 

 Visual Space Based Deep Learning 

For images and sentence-based descriptions, the authors discovered bidirectional mapping. The proposed 

method follows an RNN that can construct visual representation. The suggested technique is demonstrated on a 

dissimilar task: sentence generation and image/sentence retrieval. The outcomes of the suggested method are 

better than the other prevalent methods [51].  

The forward and backward time-bounded scenario uses the 1st estimated inference process for 1-Best (and 

M-Best) decoding, and the bi-directional neural sequence is represented by increased beam search (BS) [52]. BS 

is famous for the approximate inference process for decoding sequences from unidirectional neural sequence 

frameworks. Bidirectional beam search (BiBS) is suggested for allowing the use of bi-directional models. The 

authors used a Fill-in-the-Blank Captioning job which needs reasoning about both previous and upcoming 

sentence scheme to rebuild sensible-image based descriptions. The proposed BiBS technique can produce more 

appropriate sentences and obtain excellent success on the famous Visual Madlibs dataset with several standard 

metrics. 

The specific algorithm for the Bidirectional beam-search is presented below: 
𝐷𝑎𝑡𝑎: 𝐺𝑖𝑣𝑒𝑛 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑒𝑡 𝑜𝑓 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑌[1:𝐵],[1,𝑇] 

𝜃[1:𝐵],[1;𝑇] = �⃖�[1:𝐵],[1:𝑇] = 0 

𝑾𝒉𝒊𝒍𝒆 𝑛𝑜𝑡 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 𝑑𝑜 

// Update beams left-to-right 

     𝑓𝑜𝑟 𝑡 = 1, … , 𝑇 𝑑𝑜 

𝜃[1:𝐵],𝑡,, ℎ⃖ [1:𝐵],𝑡=𝑈𝑅𝑁𝑁             ⃗ (ℎ ⃗ [1:𝐵],𝑡−1, 𝑌[1:𝐵],𝑡−1) 

  𝑌[1:𝐵],𝑡 = 𝑡𝑜𝑝 − 𝐵 ∑ 𝜃𝑏,𝑖  (𝑦𝑏,𝑖) + ∑ �⃖�𝑏′𝑗 (𝑦𝑏′,𝑗)

𝑇

𝑗=𝑡

𝑡

𝑖=1

 

 end 

//Update beams right –to –left 

     𝑓𝑜𝑟 𝑡 = 1, … , 𝑇 𝑑𝑜 

�⃖�[1:𝐵],𝑡,, ℎ⃖ [1:𝐵],𝑡=𝑈𝑅𝑁𝑁 ⃖            (ℎ⃖ [1:𝐵],𝑡−1, 𝑌[1:𝐵],𝑡−1) 

 𝑌[1:𝐵],𝑡 = 𝑡𝑜𝑝 − 𝐵 ∑ �⃖�𝑏,𝑖  (𝑦𝑏,𝑖) + ∑ 𝜃𝑏′𝑗 (𝑦𝑏′,𝑗)

𝑇

𝑗=𝑡

𝑡

𝑖=1

 

  𝒆𝒏𝒅 

     Algorithm 1: Bidirectional Beam Search (BiBS). 

3.2.11 Other Deep Learning Methods 

The earliest approach using the coarse-to-fine method for image captioning is suggested by Wang, Y. et al. 

[53], which produces the skeleton-based sentence and phrases independently. Detailed study and research on the 

famous Microsoft COCO dataset demonstrate that the suggested technique performs better than the other 

advanced methods across distinct evaluation metrics, particularly on SPICE. SPICE has a higher-correlation than 

the traditional method.  

Beam Search 

The authors described the generative model with the deep recurrent framework that is able to process natural 

sentences for images [54]. The proposed model described Beam Search as the last phase to produce a sentence 

and enhance the chance of a specified interpretation sentence given in the training image. The chosen algorithm 

is based on the best first searching, which is worked iteratively. The algorithm selects k best sentences w.r.t. time 
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t as the candidate to produce sentences. Beam search avoids selecting the maximum probability word at each 

step, i.e. local maximum and alternatively chose the sequence of words with great overall probability score, i.e. 

global maximum. The specific algorithm for the beam search is shown below. The proposed method is applied 

to numerous datasets that prove the proposed method's accuracy and efficiency. The prior advanced BLUE-01 

score on the pascal dataset is 25, whereas the proposed method achieves 59, based on human performance around 

69. The proposed method shows the BLEU-1 score enhancements on Flickr30k, from 56 to 66, and on SBU, from 

19 to 28. Finally, on the recently updated COCO dataset, the proposed method yields a BLEU-4 of 27.7, which 

is the latest most advanced technique. 

Algorithm 2: K-Beam Search(K) 

𝐤 ← 𝐊; 
𝐊𝐁𝐞𝐚𝐦𝐒𝐜𝐨𝐫𝐞𝐬 ← 𝐥𝐢𝐬𝐭(𝟏); 
𝐛𝐞𝐬𝐭𝐊𝐂𝐚𝐩𝐭𝐢𝐨𝐧   𝐥𝐢𝐬𝐭(" <  𝐛𝐞𝐠𝐢𝐧 >  "); 
𝐛𝐞𝐬𝐭𝐊𝐂𝐚𝐩𝐭𝐢𝐨𝐧𝐒𝐞𝐪𝐮𝐞𝐧𝐜𝐞 ← [ ]; 
𝐛𝐞𝐬𝐭𝐊𝐒𝐜𝐨𝐫𝐞𝐬 ←  [ ]; 
while True do 

𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐞𝐝 𝐩𝐨𝐬𝐬𝐢𝐛𝐢𝐥𝐢𝐭𝐲 ← 𝐏𝐫𝐞𝐝(𝐢𝐦𝐚𝐠𝐞, 𝐩𝐫𝐞𝐯𝐖𝐨𝐫𝐝𝐬); 
𝐊𝐁𝐞𝐚𝐦𝐒𝐜𝐨𝐫𝐞𝐬 ←  𝐓𝐨𝐩𝐊(𝐊𝐁𝐞𝐚𝐦𝐒𝐜𝐨𝐫𝐞𝐬 + 𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐞𝐝 𝐩𝐨𝐬𝐬𝐢𝐛𝐢𝐥𝐢𝐭𝐲); 
𝐧𝐞𝐱𝐭𝐖𝐨𝐫𝐝𝐬 ← 𝐓𝐨𝐩𝐊(𝐫𝐞𝐯𝐞𝐫𝐬𝐞 𝐝𝐢𝐜(𝐊𝐁𝐞𝐚𝐦𝐒𝐜𝐨𝐫𝐞𝐬)); 
b𝐞𝐬𝐭𝐊𝐂𝐚𝐩𝐭𝐢𝐨𝐧. 𝐚𝐩𝐩𝐞𝐧𝐝(𝐧𝐞𝐱𝐭𝐖𝐨𝐫𝐝𝐬); 
𝐞𝐧𝐝𝐈𝐧𝐝𝐞𝐱   𝐥𝐢𝐬𝐭(𝐢𝐧𝐝𝐞𝐱(𝐧𝐞𝐱𝐭𝐖𝐨𝐫𝐝 = " <  𝐞𝐧𝐝 >  ")); 
𝐢𝐟 𝐥𝐞𝐧(𝐞𝐧𝐝𝐈𝐧𝐝𝐞𝐱)  >  𝟎 𝐭𝐡𝐞𝐧 
𝐛𝐞𝐬𝐭𝐊𝐂𝐚𝐩𝐭𝐢𝐨𝐧𝐒𝐞𝐪𝐮𝐞𝐧𝐜𝐞. 
𝐚𝐩𝐩𝐞𝐧𝐝(𝐛𝐞𝐬𝐭𝐊𝐂𝐚𝐩𝐭𝐢𝐨𝐧[𝐞𝐧𝐝𝐈𝐧𝐝𝐞𝐱]); 
𝐛𝐞𝐬𝐭𝐊𝐒𝐜𝐨𝐫𝐞𝐬. 
𝐚𝐩𝐩𝐞𝐧𝐝(𝐊𝐁𝐞𝐚𝐦𝐒𝐜𝐨𝐫𝐞𝐬[𝐞𝐧𝐝𝐈𝐧𝐝𝐞𝐱]); 
𝐤 ←   𝐤 −  𝟏; 
𝐞𝐧𝐝 
𝐢𝐟 𝐤 =  𝟎 𝐭𝐡𝐞𝐧 
𝐛𝐫𝐞𝐚𝐤; 
𝐞𝐧𝐝 
𝐞𝐧𝐝 
𝐛𝐞𝐬𝐭𝐈𝐧𝐝𝐞𝐱 ← 𝐦𝐚𝐱(𝐛𝐞𝐬𝐭𝐊𝐒𝐜𝐨𝐫𝐞𝐬); 
𝐫𝐞𝐭𝐮𝐫𝐧 𝐛𝐞𝐬𝐭𝐊𝐂𝐚𝐩𝐭𝐢𝐨𝐧𝐒𝐞𝐪𝐮𝐞𝐧𝐜𝐞[𝐛𝐞𝐬𝐭𝐈𝐧𝐝𝐞𝐱] 

3.2.12 Attribute-based Representation 

In several computer vision work, the attribute-based framework as a high-level demonstration has described 

the interest in several computer vision work like image recovery &image annotation and object identification. 

Farhadi et al. suggested a set of visual semantic for nonfamiliar objects recognition [55]. In [56], Vogel et al.used 

the visual attributes describing the scene for image area characterization and joined these native semantic with 

global image depiction. The 06 groups [57] of attributes are used to construct intermediate level characterization 

that is used for the classification of the image. An objectbank that allows the objects to be used as scene 

descriptions attribute [58, 59]. 

3.3 Novel Image Caption Generation Methods 

Im2text method generate automatically image description via a great captioned photo collection. The Im2text 

executes on a great collection of Flickr queries and applies a filter over one-million images for removing noise. 

The authors compare the suggested technique with the other prevalent technique and find that the proposed 

method is a very basic non-parametric method and generate operative/pleasant outcomes [60]. The authors 

suggested an approach capable of enhancing the performance of captioning on an image and suitable for the task 

produces new concept learning [61]. The proposed method is based on the transposed weight sharing task to 

prevent overfitting the novel concepts. The 03 datasets are developed via novel concepts. The authors achieved 

results that are on par with or improved than the current state-of-the-art. 

For creating images from NL descriptions, the authors suggested a generative framework known as 

alignDRAW [62]. The alignDRAW model, a grouping of recurrent variational-autoencoder and alignment-model 

over words. The proposed model trained on Microsoft COCO. The authors validate it on numerous baseline 

generative methods. The experimental outcome shows that the alignDRAW generates great quality samples than 

other prevalent methods and produces the picture with new unseen captioning. 

The author proposed the novel method for image-based captioning and described a noun translation scheme 

[63]. The proposed method acquire great outcome by translating from a dataset of nouns captions. The proposed 

method also represents the lower and upper bounds of word categories. The extensive experiment shows that a 

blind-noun translation model can produce better captions compared to the advanced captioning techniques. 

3.4 Retrieval Based Image Captioning 

The author suggested hypernymy prediction to test the capability of the scheme to learn partial-order from 

incomplete data [64]. So the authors used hypernym pairs that is a pair of an idea is a speciality or an instance of 

the second. The authors worked on two main task-hypernym predictions and caption-image retrieval.  The 

proposed methods outperform than all previous work. 
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3.5 Template Based Image Captioning 

Neural Baby Talk can generate natural language explicitly grounded in entities object detectors discover in 

the image [65]. Neural Baby Talk is a two-stage approach. A two-stage approach comprises a mixture of words 

from a vocabulary of text and its corresponding slots to image regions and fills those slots based on recognized 

categories. The Neural Baby Talk framework’s whole arrangement is end to end and tied together via sentence 

template creation and slot filling with object detectors. Neural Baby Talk evaluates on 02 standardized datasets, 

i.e., MSCOCO & Flickr30K. Valued comparisons to multiple baseline methods illustrate the feasibility of the 

Neural Baby Talk system. 

3.6 Cross Lingual and Multilingual Image Captioning 

 Multimodal pivots are used for the enhancement of statistical machine translation of image descriptions 

[66]. The main objective of multimodal pivots is to retrieve the image over a huge database image captioning in 

the objective language. The employment of image captioning in the comparable images for cross-lingual re-

ranking of translation outcomes. The authors demonstrated that the multimodal pivots into a target-side retrieval 

model enhanced the statistical machine translation (SMT) performance compared to baseline METEOR, BLEU, 

and TER on the suggested proportionate dataset obtained from the MSCOCO. 

4. Dataset Used in Image Captioning Methods       

4.1 nocaps (novel object captioning at scale)  

nocaps dataset contains 166,100 men created captions that describe 15,100 images from the open image 

validation and test sets. The corresponding training data has an open-image image-level label, a boundingbox for 

the object, and contains sets of image caption from COCO. However, there are several other classes apart from 

COCO in an open image, approximately four hundred classes of an object in the test image have indeed no or 

little significant training caption(hence,nocaps)[67]. 

4.2 MS COCO 

Currently, the MS COCO database [68] includes the 123,287 images with 05 distinct explanations. For 80 

object classes, images in this dataset are annotated, meaning that bounding boxes are available for all cases of 

each of these types for all images. The MS COCO dataset is utilized extensively to describe images, which is 

made possible by the standard estimation server currently accessible. MS COCO extensions and the inclusion of 

questions and answers are currently in the development process [69]. 

4.3 Flickr 8k 

The Flickr8K dataset [70] and it's enhanced version Flickr30K dataset [71] comprises images from Flickr, 

near about 8000 and 30000 images, correspondingly. The images in these 02 databases are chosen for unique 

objects and activities by user inquiries. These databases have 05 explanations for each image obtained from the 

AMT employs a technique equivalent to that of the Pascal1K dataset. 

4.4 Flickr 30k 

Flickr30K [72] is an automated image interpretation and grounded language comprehension dataset. It 

comprises 30K Flickr images and has 158K-captions generated by person annotators. It doesn't have a specified 

division of images for analysis and justification of instruction. For preparation, measurement, and evaluation, 

investigators may select their own choice of numbers. The dataset also includes typical object detectors, a colour 

classifier, and a tendency against more significant object collection. 

4.5 Visual Genome 

Visual genome dataset [73] can model the relationship and gathers object annotation, relation, and attributes 

inside each image to study these models. This dataset comprises around 108K pictures, where each picture has 

an average of  26-attributes, 35-objects, and twenty-one relationships among the objects. This dataset has the 

standardized attributes, objects; noun phrases, and relationship in area depiction and question-answer pairs to 

wordnet synsets. These annotations together constitute the densest and greatest dataset of pairs of image 

specifications, artifacts, properties, relationships, and query response pairs. 

4.6 SBU Captioned Photo Dataset 

Ordonez et al. [74] implemented the SBU1M Captions dataset that varies from the earlier datasets in that it is 

a web-scale dataset comprising about 01-million captioned photos. It is constructed from data accessible on Flickr 

with image details supplied by the user. The images are collected and processed from Flickr with the limitation 

that at least one verb & one noun is included in the prespecified control lists. The resultant dataset is supplied in 

the CSV format of URL. 

4.7 IAPR TC12 

Grubinger et al. [75] presented this dataset, and it contains about 20000 thousands of images with their 

descriptions. The images are obtained from various search engines like bing, google, and yahoo, and their 

description is also generated in multiple languages. Each and every image is related to the 01 to 05 description, 

while each description of the image denotes a diverse view of the image. The IAPR TC-12 dataset also contains 

the segmentation for the objects. 

4.8 Instagram Dataset 

This dataset [76, 77] contains images received from Instagram, a social media platform for photo sharing. 

This dataset contains approximately 10K photos, many of which come from famous people. However, this dataset 
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is used for hashtag prediction and post generation tasks. This dataset includes 1.1M posts from 6.3K members on 

a wide variety of subjects and a lengthy hashtag-list. 

4.9 Stock3M Dataset 

This dataset [53] is twenty-six times bigger than the famous MS COCO dataset and contains 3217654 

uploaded images. There is a broad diversity of content in the images of this dataset.  

4.10 MIT-Adobe FiveK Dataset 

This dataset [78] contains approximately five thousand images, and these images are about the person, 

environment, and human-made things. 

4.11 FlickrStyle10K Dataset 

This dataset [79] contains ten thousand flicker images along with decorated captions. The training data 

comprises seven thousand images. The authentication and test data contain approximately one thousand and two 

thousand images. 

4.12 PASCAL 1K 

A widely utilised dataset as a standard for assessing the description production mechanism's consistency is 

the Pascal1K sentence dataset[79]. This standard size dataset includes thousands of images. These images are 

obtained from the pascal 2008 object recognition dataset [80]. It also contains objects from different visual classes 

that include people, animals, and automobiles.  

4.13 STAIR 

The STAIR is a Japanese dataset [81] for image descriptions, and it is grounded on the MSCOCO dataset. It 

contains 164062 images and 820310 total Japanese descriptions. This dataset is the most significant available 

Japanese image description dataset.   

4.14 UIUC PASCAL   

UIUC PASCAL Sentences dataset [82] was one of the first datasets of image captions, comprising 1,000 

photographs related to five distinct explanations gathered by crowdsourcing. It has been used for initial image 

captioning approaches, but it is seldom used because of its restricted domain, restricted magnitude, and relatively 

basic captions. 

4.15 AIC 

The first largest dataset of Chinese description in the area of image caption development is the Chinese image 

description dataset, extracted from the AI Challenger [83]. This dataset contains 210000 pictures for preparation 

purposes and 30000 pictures for validation sets. Every single picture is followed by 05 Chinese explanations, 

identical to MSCOCO, highlighting essential details in the pictures, covers all the important types, views, acts, 

and supplementary material. 

4.16 VizWiz 

This dataset [84] contains 117115 training captions, 23431 training images, 7750 validation images, 38750 

validation caption,40000 test captions, and 8000 test images. 

4.17 Visual and Linguistic Treebank (VLT2K) 

The Visual and Linguistic Treebank (VLT2K; [85]) utilizes the images that are obtained from the pascal2010 

action-recognition dataset. It extends these images with a 02 to 03 sentence depiction per image. On the AMT, 

these explanations are obtained with detailed instructions for verbalizing the key activity seen in the image and 

the actor directly involved. At the same time, the most significant background items are also listed. For a 

subcategory of 341 images of the visual and verbal treebank, object annotation is obtainable (in the manner of 

polygons nearby all objects declared in the representations.) For this subcategory, individually generated visual 

dependency representations are also incorporated (03 VDRs for each image). 

4.18 Abstract Scenes dataset 

 Abstract Scenes dataset [86] includes the ten thousand clipart images and their description. This description 

is classified into 02 different groups. The number one group includes a description of the single sentence, while 

the number two group contains an alternative description per image. These 02 explanations consist of 03 simple 

sentences with a different element of the scene mentioned in each sentence. This dataset's key benefit is the 

freedom to discover the generation of image descriptions without the need for automated object detection while 

eliminating the related noise. The latest edition of this dataset has been generated as a portion of the visual 

question-answering (VQA) dataset [87]. It includes 50,000 separate pictures of the scene with more detailed 

human figures and 05 explanations of single sentences description. 

4.19 NYU dataset 

One article [88] uses the NYU [89] dataset comprising 1,449 interior scenes along with 3-D object 

segmentation scenes. With 05 explanations per image, this dataset has been extended by Lin et al. [88].  

4.20 BBC News dataset 

The BBC News dataset [90] was one of the initial set of images and co-occurring texts. Feng and Lapata [90] 

obtained 3,361 news stories from the british broadcasting-corporation news website, with the limitation that a 

picture and a description be included in the post. 

4.21 Deja-Image Captions dataset 

The Deja-Image Captions dataset [91] includes four million images and 180000 captions which is obtained 

from the Flicker. The image captions are normalised by lemmatization and stopping word elimination from 
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constructing a dataset of almost equivalent texts. For example, the phrase plane flies in the blue-sky and a plane 

flying into the blue-sky is normalized as the plane fly in the blue-sky. Image caption pairs are maintained if more 

than one individual repeats the captions in a normalized form. 

4.22 MSVD  

MSVD [92] gathers 1,970 video clips from youtube, with approximately forty available English explanations 

for each video. MSVD-dataset is split into training, validation, and testing set along with setting 1,200/100/670 

for videos. 

4.23 M-VAD 

This huge movie dataset M-VAD [93] includes forty-nine thousand movie extracts that are obtained basically 

from the dvd movies. Each of which can be followed by a single sentence from concise video service narrations 

(DSN) that are semi-automatically translated. This dataset contains 39000 videoclips for training purposes,5000 

video clips for validation and testing purposes. 

4.24 MPII-MD 

MPII-MD [94] is yet another series of large-scale movie snippets featuring 68,000 film clips from Hollywood 

films with accompanying sentences. MPII-MD is constructed in the same way as M-VAD [93], while its 

alignment among video clips and explanations is manually proofed. This dataset is generally categorized into 

training, validation, and test samples category. 

4.25 Visual Madlibs Dataset (VML) 

Visual Madlibs Dataset (VML) [95] is a subset of the MS COCO dataset, and it contains 10,783 images that 

seek to go beyond defining which objects are in the image. 

4.26 Toronto COCO-QA 

Thes dataset [96] is visual queries and response dataset, and in it, queries are created automatically from the 

image caption of the MS COCO dataset. This dataset contains 123,287 photos with 117,684 queries regarding 

objects, numbers, colours, or positions with a single word response. 

4.27 Microsoft Research Video Description Corpus (MS VDC) 

MS VDC dataset [97] includes a parallel description of 2089 small video snippets. The explanations are single-

sentence summaries of the video's actions or events. Paraphrase & multi-lingual substitutes are collected in this 

dataset so that the dataset can be useful for interpretation, paraphrasing, and video explanation. 

4.28 Short Videos Described with Sentences 

 Short videos [98] described with sentences include a sixty-one video clip, and each video clip is 35 

seconds long and has 03 diverse outdoor environments. This dataset has several concurrent events among a subset 

of 04 items in this dataset: a human, a backpack, a chair, and a trash-can. In this dataset, multiple sentences 

explain what is happening in the video, and every video is manually annotated. 

5. Evaluation Metrics 

5.1 BLEU (Bilingual-evaluation-understudy)  

BLEU [99] is a standard utilized to calculate the quality of text produced by a computer. A collection of 

reference texts is compared to individual text fragments, and scores are calculated for each of them.BLEU has 04 

variants, i.e., BLUE1, BLUE2, BLUE3, and BLUE4. The calculated scores are averaged when calculating the 

overall quality of the output text. Syntactic exactness, however, is not measured here. Based on the count of 

reference translations and the extent of the produced text, the BLEU metric's output can vary. An updated 

precision metric was later presented by Papineni et al.[99]. This measure employs n-grams. BLEU is famous 

since it is a leader in automated machine-translated text assessment and has a fair connection with human quality 

evaluations [100,101]. Some boundaries, such as BLEU scores, are excellent only if the text produced is small 

[100]. In certain cases, an improvement in the BLEU score does not demonstrate that the text's content is perfect. 

5.2 ROUGE 

ROUGE [102] is a collection of metrics used for determining the value of text summaries. It performs the 

comparison of word sequences, word pairs, and n-grams with a collection of human-generated comparison 

summaries. There are 04 numerous versions of ROUGE such as ROUGE-1, 2, ROUGE-W, and ROUGE-SU4. 

ROUGE-1 & ROUGE-W are used for sole document estimation, while RPUGE-2 & ROUGE-SU4 are best for 

small sum-ups. However, ROUGE has some issues while assessing multi-document-text summaries. 

5.3 METEOR 

Another metric used to measure the machine's interpreted language is METEOR (Metric-for-evaluation-of-

translation-with-explicit ORdering) [103]. The reference texts are compared to Standard word segments. Besides 

this, stems of an expression and alternative word of words are often conceived for matching. METEOR can create 

an improved association at the sentence or the segment-level. 

5.4 CIDEr 

 CIDEr(Consensus-based-image-description-evaluation) [104] is another metric for estimating the image 

explanation. There are only 05 captions per image in most of the datasets. With this limited number of sentences, 

previous measurement metrics function were not adequate to quantify the consensus among captions produced 

and human decision. However, using the word frequency-inverse text frequency (TF-IDF) [105], CIDEr meets 

human consensus. 

5.5 SPICE 
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       SPICE(Semantic-propositional-image-caption-evaluation) [106] is a modern metric for caption 

assessment based on semantic principles. It is constructed on a graph-based semantic depiction entitled a scene 

graph. This graph can obtain information from diverse attributes, objects, and their relationship from the image 

description. 

6. Discussion and Conclusion  

 In this research paper, we have described DL-based image-captioning approaches. We also provided the 

classification of image captioning methods, presented standard block diagrams of the major groups. Thus, we 

have analyzed and compared the different image captioning methods and provide a comprehensive review of 

these methods. We addressed several datasets and evaluation metrics. In this field, we described briefly possible 

opportunities for further research. Even though image captioning techniques focused on deep learning have made 

considerable growth in current years, a comprehensive image captioning approach that can create significantly 

better quality captions for almost all images is yet to be obtained. With the introduction of novel DL-network 

architectures, automated image-captioning will continue to be a popular field of research. In relation to human 

analysis, this research paper identified the new and most innovative image caption method and encouraged 

reproducibility and further studies. 
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