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Abstract: Today, there are different types of self-controlled robots. Some of them had critical effects 

on our lives like industrial and medical robots. Others are for military usages such as drones and the 

pets robots just for entertainment. The crucial differences between this kind of robot and the controlled 

ones are their ability to move on their own and make decisions based on their observations of the world 

around them. Mobile robots must have a data source used as an input dataset and processed to change 

their behavior; for instance, moving, stopping, rotating, or doing any required action based on the 

information gathered from the surrounding environment. Different types of sensors were used to feed 

robots controllers with data. Such data source could be ultrasonic sensor, laser sensor, torque sensor, or 

vision sensor. Robots integrated with cameras were becoming an essential field of study. They recently 

attracted significant attention from researchers it has been commonly used in many sectors of 

healthcare, manufacturing, and many other services. The robot needs a controller with a powerful 

mechanism of realization to deal with such incoming data. The world of mobile robot controllers is 

discussed in this paper, and the latest trends were reviewed. This review aims to provide a general 

understanding of robot controllers and navigation methods developed over the last few years. 

 

Key words: Mobile Robots, Robots Control, Navigation Systems, Computer Vision, and Machine 

Learning. 

___________________________________________________________________________ 

 

1. Introduction: 

Currently, mobile robotics is one of the fastest fields growing in the scientific research 

topic. Thanks to their skills, robots replace humans in many sectors. Including different 

applications, especially in extreme environments such as petrochemical applications, planetary 

exploration, mines detection, and many medical implementations [1]. Autonomous robots can 

move, determine an action, and do a task without any intervention from a human. Instead, it 

depends on its build-in controller, or we can call it its brain [2], [3]. It’s worth mentioning that 

the mobile robot consists of several portions having different technologies. These sections 

allow the robot to perform the required task. The main sub-systems are sensors, motion system, 

navigation, and localization system. These sub-systems need a control system or cognition unit 

that will enlighten the robot’s life. Besides, coordinate other components operation to 

accomplish the required mission coherently [3]. The general process in the mobile robot is 

explained in (Figure 1). 

The robot control unit is considered the most critical concept among all other sub-systems; 

nevertheless, the navigation task is the main impact of mobile robots [4], [5]. At most, there 

are two fundamental types of navigation local and global. Local navigation deals with 

surrounding space with a short distance range to implement the desired task, including collision 

prevention, obstacle avoidance, or path tracking. Global navigation points to the robot’s 
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locomotion in a broad rage environment by employing a pre-specified map, or a whole location 

map to help it move in that area [5]. 

Figure 1 – Block diagram to represent mobile robot processes 

 

Here the local navigation type will be considered; these kinds of mobile robots are linked 

with sensors that give information about the extrinsic environment, which assist the automaton 

in creating a map of that location and localizing itself. Prevalent mobile robots employ different 

sensors, including (laser, ultrasonic, or infrared sensors). To discover the surrounding and 

collect data [2], [6]. The controller via some algorithms will do the required computational 

process for the incoming data which takes a form of a reflected light beam or reflected sound 

signal initially transmitted from a robot’s sensor. The signal will feed the data in an 

imperceptible form, and the robot will sense or understand its environment. Such sensors may 

receive inaccurate data reverberate from the objects in some situations due to obstruction of 

the incoming signal [7].  

 Consequently, a camera (or vision sensor) is a better substitution for the sensors 

mentioned above in a mobile automaton. The incoming data is a visualized information as an 

image format, which will be processed and analyzed by controller algorithms to convert it into 

useful data used in performing requested tasks [8]. A vision-sensing-based movable robot is 

typical for an indoor environment. Robots with attached cameras can perform their jobs more 

accurately than robots with other sensor-based; whoever, they can be found outdoor as well 

[9], [10]. (Figure 2) represent a basic vision system for a mobile robot. 

 

 
Figure 2 – Basic vision system in a mobile robot 
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The rest of this paper will be as follows: in section 2, the challenges related to mobile 

robot design will be explained, while theoretical bases are presented in section three. A 

literature review about the mobile robot controller’s methods is in the follower section. 

Eventually, a brief conclusion is given in section 5. 

 

2. Mobile Robot Challenges 

Several challenges arise while dealing with mobile robots. These challenges include 

kinematic, sensing, controlling, and navigating issues. Covering a wide range of engineering 

fields includes mechanic, electric, and computer engineering [11].  

Generally, challenges can be divided into four classed as the issues related to: 

 

2.1 Robot Locomotion 

The first challenge related to the robotic field is the robot’s movement. Usually, the 

camera-based robot moves in known and controlled areas like stores or factories. Nevertheless, 

in some cases, it needs to move in extreme places with inhospitable environments. The robot’s 

motion system is an essential portion of designing a robot [11], [12]. It depends mainly on the 

area where the robot will operate; if it works in the air (drone), on the ground surface, or 

underwater [13]? Other critical technical and mechanical issues are related to the robot’s 

motion. For instance: stability, efficiency, controllability, maneuverability, and smooth 

turning. These troubles are mostly related to mechanical engineering, which can be solved by 

understanding the kinetic theories’ and dynamic mechanisms [14]. 

 

2.2 Robot Perception 

Self-controlled mobile robots must collect information about its operating area. This 

knowledge can be formed from the sensors’ data. The sensors’ presence helps the robots carry 

out some tasks, including localization, mapping, and object recognition [15]. Sensors are 

classified broadly according to two main features. The first classification is done according to 

Proprioceptive and Exteroceptive characteristics. Other variety determined according to 

Passive and Active features [16].  

Proprioceptive sensors measure some parameters inside the robot such as battery energy 

level, steering angle, and load on the motor, and its speed. In comparison, Exteroceptive sensors 

refer to the type that collects data about the surrounding area like sound level, distance to an 

obstacle, or light intensity [13], [14]. 

On the other hand, Passive sensors represent the ones that measure the energy entering it 

from its environments; Such as light-sensing Complementary Oxide Semiconductor (CMOS) 

and Charge Coupled Device (CCD), sound sensing (microphone), and temperature measuring 

(thermometer). On the other hand, the Active sensor will transmit a signal into its environment 

and calculate the reflected echo. The last type may be affected by noise or interference; 

however, it outperforms other types in working areas [17]. 

During the robot design stage, it’s critical to use the appropriate sensor that suits robot tasks 

and the operating environment; because the measurements collected by those sensors will be 

presented to the robot controller, which will determine the next step movement [12]. 

 

2.3 Robot Control System 

It is the brain of the robot and its planner to the tasks that the robot should accomplish. 

The cognition system coordinates between other mechanical and electrical parts. Also, controls 

how it interacts with its environment. The incoming data from input sensors is fed to the 

cognition system, organizing, analyzing, and processing this information [17], [18]. The 

controller mainly contains models and algorithms that decide how the robot will interact to its 
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environment like selecting the proper path or track objects. Also, it may include other 

algorithms that build a map for the surrounding area. Lastly, artificial intelligence or motion 

planning methods were used to specify how the robot will develop its perspective and make 

the required decision [19], [20]. After deciding what to do, the controller will send a command 

to the actuators to move the mechanical parts to accomplish a specific job. It is critical to 

implement the correct control system, which contains the necessary algorithms and models to 

perform the required tasks [18]. 

 

2.4 Robot Navigation  

A vital challenge in building a mobile robot is the ability to navigate. Navigation refers to 

the mobile robot’s capability to move safely from the initial point to the destination point 

without colliding with obstacles; also, without considering if the environment is known 

(training place) or not (test place) [21]. Generally, obstacle avoidance algorithms and motion 

planning models are required since the robot will not move in a straight line, while there are 

obstacles from the original point to the destination point [3], [22].  

There are three main types of navigation forms. These categories depend on how the robot 

will calculate the path to the endpoint. The classes are: 

• Creating a map of the whole environment, including the available trajectories. 

• Determining a complete obstacles-free path. 

• The robot moves over the track without colliding with any obstacles. 

With knowing this, to build a navigation skill in a robot, it’s essential to feed the robot with 

sufficient data about its location to navigate [21]. That is to say, that the cornerstone in 

navigation procedure is the Localization process. Before the robot starts to navigate, it should 

calculate its location in the test environment; robot positioning or localization refers to its place 

in the workplace and its location according to the destination [23], [24]. Sensitive cooperation 

among locomotion, sensing, and localization all under the cognition system’s control should 

be performed to create a suitable robot navigation system [25]. Ultimately, to overcome the 

navigation challenge, a good knowledge of artificial intelligence, information theories, and 

path planning algorithms are required. 

 

3. Theory of Robot Controlling  

This paper will cover the ideas of controlling a robot with a vision sensor attached. Three 

related concepts should be defined to understand this kind of robot. These concepts are: visual 

processing, required feature extraction, and controlling via artificial intelligence. Due to the 

interference, or the noise that may affect other types of sensors, vision sensor (camera) rises as 

an excellent replacement to such sensors [17]. Whoever sensed signal will be visual-based as 

an image that needs to be analyzed then processed to produce the desired information [20], 

[22]. In the following sub-sections, these points will be covered. (Figure 3) show the main steps 

that vision-based robots follow 

 

Figure 3 General processes of vision-based robot systems 
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3.1 Computer Vision (CV) 

We can define computer vision in two ways. It can be defined as a science field that works 

on extracting information from a digital image [26]. It can also be defined as the process of 

getting an image and building an algorithm that tries to interpret its contents and deploy it in 

any other applications [8], [27]. Computer vision sector is not a new field it was considered a 

sub-discipline of Artificial Intelligence (AI) topics since 1970. Its task was a simple recognition 

by specifying some objects. This sector developed over the years, and it is considered an 

essential subject in scientific and industrial fields. However, it still has notable limitations 

despite its growth over near to 50 years [2]. 

Nowadays, video clips and photos are omnipresent, taking a big part of our interest every 

day. Far from personal usage, cameras can be used in critical cases related to medical, 

scientific, and military issues that are difficult to or may not be resolved without computer 

vision [28]. That is to say, the Computer Vision (CV) term goes beyond just taking (importing) 

images and capturing videos, but it also covers the idea of understanding what this image is. 

Computer Vision covers a wide range field for the topics related to machine vision, path 

tracing, and image processing. Precisely, objects detection, classification, recognition, and 

features extraction [26], [29]. 

 

3.2 Visual Based Feature Extraction 

Feature extraction is a crucial phase in vision-based mobile robot control [30]. As humans, 

we can explain the meaning of a picture, depending on what we see and understand via 

recognizing a particular part of that photo [26]. Is it possible for a computer algorithm or 

program to identify semantic features from a picture? Due to the development in this field, the 

answer is yes. However, extracting features that reflect an image’s primary content is still 

challenging in the image processing field [30], [31]. The main features that the human eye and 

computer vision can recognize are colors, shapes, and spatial characteristics. Most of the 

recognition and detection feature systems were build based on these three aspects [32]. 

Nonetheless, other methods were proposed that used a combination of these concepts as a 

hybrid system, or segmenting the image and use the dominant colors in each segment to detect 

features [31], [33]. 

 

3.3 Visual-Based Motion Controller 

The motion controller is a critical mechanism for leading robots in an environment with 

movable obstacles. The main aim of robots’ controller is determining a path for the robot, 

which will be used to travel from the initial point to the finishing point successfully; meanwhile, 

avoiding colliding with any obstacle [34], [35]. If the environment contains dynamic obstacles 

such as humans or other robots, the robot must predict their trajectory to avoid them [19], [36]. 

Based on the viewing range and mapping size, path planning will be classified into local 

planning and global planning. The first term means that the robot is only aware of the obstacle 

situation around it, while the other term refers to the knowledge about general test area [34], 

[36], [37]. The planning procedure is illustrated in (Figure 4). Several controlling methods are 

available that will be discussed extensively in the next section (section 4). 
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Figure 4 Planning procedure 

 

4. Related Work for Controlling Methods 

After walking through the essential concepts of mobile robots, explaining the challenges 

and theories behind designing vision-based mobile robots; now, it is the time to present the 

most common and efficient controlling methods. Here, several recent kinds of research dealing 

with the mobile robot controlling system will be given and discussed. After that, each model, 

algorithm’s power, and weak points will be summarized in a table (1). 

Harandi et al. [38] proposed a method called Transition Certainty based Feature Selection 

(TCFS) a feature selection method based on state transition probability to control a mobile 

wheeled robot. The proposed model is originally a part of Supervised Deep Learning (SDL) 

method. As the input sensor is a Kinect camera, the incoming data in a depth image form with 

high dimensions; the proposed model tries to extract the required features via deep learning to 

reduce the input data dimensions. The model will employ clustering procedure with a genetic 

algorithm. As it is a certainty based model, TCFS will maximize the motion certainty from the 

present state to the next state. The experimental results show that the TCFS model overcomes 

the standard SDL method regarding some selected tasks. 

Aparanji et al. [39] utilized a multi-layers Auto Resonance Network (ARN) to build a new 

network structure to control a robot’s movement. The configuration of this network was unlike 

the traditional Convolutional Neural Networks (CNN) and other architectures deployed in 

Deep Learning techniques. The presented network joints characteristics from Self Organizing 

Maps and ARN to improve the performance. The nodes in lower layers will try to map the 

incoming data to the output via ARN network architectures. On the other hand, the upper layers 

will resolve the locomotion issue by distinguishing, then optimizing the usable trajectories. 

This structure will allow the proposed network to scan the environment in order to determine 

several routes around obstacles, including the dynamic ones. After simulating the presented 

system in R simulation, the results demonstrate that the complexity of kinematic expressions 

can be entirely avoided and the overall robot’s performance was improved. 

Al-Jarrah et al. [40] combine the fuzzy image processing and Genetic Algorithm (GA) for 

building a new model to control a mobile robot; their algorithm consists of two stages. In the 

first stage, the captured image was equalized to get more benefits from its details. After that, 

the system works on edge detection via a fuzzy system, that had been improved by the bacterial 
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algorithm for the goal of computational time reduction. Each pixel in the image will be 

categorized as edge or not. The output of stage one will be utilized to build a two-dimensional 

map for the test environment. The second phase is responsible for calculating the robot’s best 

path to move from the starting point to the end; this is done by passing the constructed map to 

GA and A* search algorithms to cooperate in achieving this task. Additionally, the proposed 

model presents a time-based path, which means that the robot can predict the velocity 

depending on the selected route. The introduced model has experimented with a real navigating 

robot, and the testing results show increasing in edge detection efficiency while reducing the 

time required for computations. 

Jafar et al. [41] introduced a new model to control a vision-based robot. They exploited the 

idea of visual feedback to determined localization and navigation of the robot. The robot could 

specify its location by utilizing environment characteristics, where the features will be 

extracted from the captured image and then presented to Neural Network (NN). The 

implemented path planning algorithm allows the robot to determine its location and orientation 

using one camera, which will reduce the cost of designing such robots. For controlling and 

computation purposes, four layers of NN were implemented to perform these tasks. The input 

layer number stands for the numbers of the shapes and colors features extracted from the image. 

Finally, NN’s backpropagation rules were applied to modify the network’s biases and weights 

to minimize the squared mean error. The robot will move one step at a time, and it will take 

one image at each point to determine its position and orientation toward the destination. That 

is an advantage of this approach, where the robot doesn’t have to know the whole trajectory; 

instead, it will move from one node to another until reaching the destination. 

Mnih et al. [42] presented a new model to improve the NN-based controller via utilizing 

asynchronous gradient descent for deep reinforcement learning. The proposed framework uses 

four reinforcement algorithms that work asynchronously to train the NN controller in different 

domains. The four algorithms were, one-step Q-learning, one-step Sarsa, n-step Q-learning, 

and advantage actor-critic. These algorithms work in parallel to train and update the NN that 

shared to all algorithms. The presented framework was applied to four different experiments, 

and the results of all tests indicate the stability effect of the framework. The four algorithms 

cooperate in training the NN controller. The system was stable in any situation; nevertheless, 

the findings show that the training process was faster.  

Imen et al. [43] build a two-stages controller for the track-control task in a mobile robot. 

The initial controller is a fuzzy logic controller, and it takes four inputs: 

•Vc: the current velocity. 

•C: path curvature. 

•dR: the distance from the current location to the destination location. 

•d: the difference between the previous heading angle and the robots’ current orientation. 

These data will be processed in the first controller to output one variable representing the 

trajectory curvature. This variable will be presented to the second controller, an Adaptive 

Neuro-Fuzzy Interface System (ANFIS) to resolve the trajectory tracking issue. The proposed 

system utilized the gradient descent algorithm to modify the parameters. Testing the presented 

(ANFIS) based system shows an improvement in tracking job, high precision, and better noise 

resistance than the fuzzy-only system. 

Fathinezhad et al. [44] provided a new strategy to merge reinforcement learning and 

supervised learning. The proposed model named Supervised Fuzzy Sarsa Learning (SFSL) 

aims to exploit the power points of reinforcement learning and supervised learning. The zero-

order Takagi-Sugeno fuzzy was applied as the central controller, which was utilized as obstacle 

avoidance. In the first step, the robot was trained by a human to collect training data from the 

training place. In the next step, each candidate’s value was initialized via training data. Lastly, 

the SFSL model was used to perform final fine-tuning toward the destination. Results indicate 
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that the computation complexity and cost were reduced. Also, an improvement in analyzing 

time was noticed. 

Liu et al. [45] used a Convolutional Neural Network (CNN) to build an end-to-end 

paradigm as an obstacle avoidance controller in a mobile robot. The presented model contains 

5 CNN layers followed by three fully connected layers. The single-camera captured images, 

and then features were extracted via deploying deep learning. The signal flows through the 

CNN and reaches the fully connected layer, that adjusted to three nodes representing steering 

control commands: turn right, turn left, and go straight. Authors claimed that their model has 

high accuracy in a testing environment. 

Bakken et al. [46] worked on almost the same idea as [45] in building a model, but they 

design their robot to works in the agriculture section (crop row-following). In the test results, 

they also referred to the accuracy of the presented model. 

Gaya et al. [47] investigated Deep Learning (DL) to build an obstacle avoidance model to 

control Autonomous Underwater Vehicles (AUVs). The AUV captured images using a single 

monocular camera and utilized a deep neural network to build a transmission map. The 

transmission map can specify the Region of Interest (RoI) for the taken video frames to 

determine the next state direction, leading to avoiding obstacles. The results depicted that the 

approach can efficiently determine the RoI and direct the robot to escape through free areas 

and avoid obstacles. 

Li et al. [48] merge both Primal-Dual Neural Network (PDNN) and Model Predictive 

Control (MPC) techniques to present a new steering model that works on dynamic and 

kinematics field. The proposed paradigm’s focus was the optimization, where it iteratively 

calculated as a quadratic programming (QP) then it was resolve via PDNN. The developed 

scheme firstly controls the robot’s velocity as a part of the kinematic part. After that, in the 

dynamic aspect, the torques were changed to handle the steering task. Their test results indicate 

that the presented model was better in steering control compared to CNN only. 

Sharma et al. [49] proposed DyHS algorithm, a hybrid scheme that combines the Lyapunov 

theory and Harmony Search (HS) to build a fuzzy tracking system to control mobile robot 

navigation. The controller consists of two sections, one for X-axis and the other for Y-axis 

direction motion. DyHS exploit the stability of Lyapunov theory and control ability in HS to 

achieve the required automation system. The presented model was tested in real-life and 

simulation experiments as well, and the result demonstrates that DyHS shows better 

performance than particle swarm optimization and genetic algorithm. 

Harandi et al. [50] worked on combining three algorithms, Reinforcement learning (RL), 

Supervised Learning (SL), and state-representation learning to produce a new paradigm; this 

model extracts features more efficiently and control a mobile robot. The proposed model was 

based on a weighted sum of the extracted characteristics. The controller has two levels in 

calculating the weights in NN, where SL was used for hard-tuning while RL was utilized for 

fine-tuning. The experimental outcomes show that the model was effective and powerful in a 

path tracking task. 

Franco et al. [51] present a new trajectory tracking scheme that builds on two mechanisms. 

The first technique uses the Extended Kalman Filter (EKF) algorithm to train a discrete-time 

Recurrent High-Order Neural Network (RHONN). The second one uses the inverse optimal 

model to prevent solving the Hamilton Jacobi Bellman (HJB) equation. These two techniques 

were cooperated to determine the best path and use it. After testing the controller, the high 

efficiency of the tracking task was evident. 

Tai et al. [52] merge Convolutional Neural Network (CNN) and fully connected layers as 

a decision making in a complex form to perform steering control for a mobile indoor robot. 

The system accepts a raw image as input then decide the orientation according to that. The 

captured depth image will be presented to CNN for feature extraction and selecting the effective 
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ones; this information will be passed to the fully connected network that utilizes a regression 

method to determine the results. Steering command out from regression process will take five 

values each defines a specific direction control: ‘0’ for ‘turn to the full right’, ‘1’ for ‘turning 

half-right’, ‘2’, for ‘move directly’, ‘3’ for ‘turn half-left’, and ‘4’ for ‘turn to the full left’. The 

results indicated high obstacle avoidance performance, and the authors claimed that the 

proposed model is similar to that human make decisions. 

Giusti et al. [53] used a Deep Neural Network (DNN) as s supervised classifier to create a 

mobile robot model to recognize and follow forest trails. The network firstly was trained with 

(17,119) frames to adopt network structure and help it in the classification task. The system 

getting input data from one camera, the incoming image was resized to 101x101 pixels; as an 

RGB format, the image will have a dimension of (3x101x101) and will be passed to the input 

layer of the network. The input image will finally be classified to one of the three available 

classes: turning left, go straight, and turn right. The training phase’s advantage makes the 

proposed scheme’s output layer put each image into one of the classes based on the probability. 

According to the selected category, the robot moves to that direction. Testing results show that 

this system over-perform other models. 

Lei and Ming [54] introduced a new paradigm for mobile robot controlling based on Deep 

Q-Network (DQN). The proposed model utilizes a supervised approach for the feature 

extraction and reinforcement method to process and predict the output. The convolutional 

neural network architecture was formalized in the Q-value prediction of Q-network model. The 

robot will navigate in a corridor by taking RGB-D images and passes it to the CNN for feature 

extraction. The data go to the Q-learning network to determine the output (as a reinforcement 

process) and the next movement to avoid obstacles. Findings of testing the robot in a different 

corridor (testing areas) show the robustness of the proposed scheme and its efficiency.  

English et al. [55] provide a new scheme to control an autonomous agricultural vehicle that 

detects crops rows in a field. The vision-based robot captures images and utilizes the 3D-

structure, texture, and colors parameters to do the guiding task. The input information was 

processed via the Support Vector Machine (SVM) algorithm to perform a regression in 

calculating the output. The proposed model used SVM with Radial Basis Function (RBF) 

kernels, γ= 0.5, v = 0.1, and c= 12.5 to perform an efficient regression process. The proposed 

system learns online and utilizes the gained knowledge to recognize the offset space between 

crops rows. The results demonstrate that the robot can apply to a wide range of fields and do 

online steering efficiently. 

Jia et al. [56] Utilized both Convolutional Neural Networks (CNN) and Deep Belief 

Network (DBN) to create a Deep Neural Network (DNN) model for the prepuce of obstacle 

detection and avoidance. While CNN is used to generalize some blocks’ local information 

(candidate ones), the DBN will generalize the complete image’s global data. However, the 

selected blocks’ position was determined. Merging the available information from blocks 

location, local, and global information. The model will recognize the segments with obstacles; 

nevertheless, the proposed model also calculates the obstacles' depth. The model was trained 

with a large dataset to classify and identify obstacles from other blocks. The results indicate 

the ability of the scheme to detect obstacles and infer its depths. 

Salavati and Mohammadi [57] propose almost the same model as [56]. The difference is 

that they used the unsupervised model (UnspVGG16) to extract the global features. At the same 

time, GoogleNet was utilized as a CNN supervised model to extract the local features. The 

other difference that they utilized the neighbouring blocks as well in the classification task. 

Their results show an improvement in accuracy compared to other models. 

Zhu et al. [58] presented two models based on reinforcement learning. Besides, tried to 

solve the lack of generalization capability and multi-training issues related to that learning 

method.  The two collaborated to give best results to perform visual-based navigation. To 
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diagnosed the first problem, the authors introduced an actor-critic scheme, that provides better 

generalization for the features. The second issue was addressed by proposing AI2-THOR 

framework, which offers high-quality 3-Dimensional scenes and efficiently provides many 

training data. Experiment outcomes indicate that the proposed models converge faster than 

regular reinforcement learning model. Furthermore, it gives a better generalization, and it can 

be applied to continuous and discrete domains.  

Telles et al. [59] worked on building a navigation controller for an autonomous underwater 

robot. Combining the linear iterative clustering algorithm with the nearest neighbor 

classification model. The proposed model will capture an image and define the Region of 

Interest (RoI), then try to divide it into super-pixels. The model will then classify the super-

pixels and check if they represent water or an obstacle object in the water. It is done according 

to position, shape, texture, and colors characteristics. The super-pixel will consider as an 

obstacle when an irregularity appears compared to the neighbors ones. The controller will 

determine the new direction toward the obstacle-free path and escape to it. The proposed model 

was tested in simulation and real-life robot, and both results show the effectiveness of the 

model. 

Kaufmann Et al. [60] introduced a new scheme to control an autonomous drone for 

obstacles avoidance and trail tracking tasks. The proposed model merges path planning 

algorithms and CNN. The network will get the captured images and maps it in the shape of a 

waypoint to determine the next direction and the current speed. That is done via the planner 

algorithm, which instructs the corresponding motor to respond. Then the robot will reach the 

desired destination through the planned trajectory. The proposed model was tested in real life 

and simulation as well. The results demonstrate the efficiency of the scheme compared to the 

professional human pilot and state-of-the-are navigation models. 

Sales et al. [61] combined Artificial Neural Networks (ANN) and Finite State Machines 

(FSM) to build an approach for mobile robot control. The robot takes images and feeds it to 

the ANN that segment it, analyze it, and classify the region in the image and consider the RoI 

to move toward it. Then, the ANN’s output will be passed to the FSM to determine the robot’s 

current state, and calculate the appropriate behavior that the robot should do based on the 

information from the previous stage (ANN stage). The results indicate convenient results and 

show that the proposed algorithm is a promising method used in self-driving cars. 

Ronecke and Zhu et al. [62] present a new paradigm to efficiently navigate a self-driving 

vehicle in the road without colliding with other obstacles. The proposed model was based on 

reinforcement learning in collaboration between a deep Q-Network learning and the control 

theory. Images were captured, and the Q-Network was trained to make an action to avoid 

obstacles and plan the path. The proposed model was tested on two different roads, and the 

results show that the model can be used to drive a car efficiently and safely. 

Manderson et al. [63] proposed a model to control an underwater vehicle based on 

Convolutional Neural Network (CNN). Consisting of five layers that finally determine the yaw 

and pitch angles. The captured image processed by the controller as a classification task to 

detect obstacles and avoid them. 

Shkurti et al. [64] introduced a scheme near the one proposed in [63]. However, it can be 

deployed to serval robots to collaborate to perform the navigation task. And it works on long-

distance obstacle avoidance, not a short distance. 

Chuixin and Hanxiang et al. [65] build an Automatic Guided Vehicle (AGV) with a vision-

based machine learning controller. The proposed model utilizes deep learning in Convolutional 

Neural Network (CNN) form. The network consists of 11 layers, seven of them were 

convolution layers, while the remaining four were fully connected layers. The captured image 

was resized to (129*225) before entering the network; after that, it will feed to the CNN and 

go through the first five layers with a 5*5 core size. Here the system will rescale and extract 
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features. Features number will be 24,36,48,64, and 64 respectively in each layer. The two 

remaining convolution layers with 3*3 core size will extract features without resizing. The 

signal then goes through the four fully connected layers with 1146, 100, and 50 neurons in the 

first three layers; then the last one represents the output steering control direction. Test results 

indicated the proposed system’s effectiveness and how it can be deployed in many industrial 

fields. 

Table 1 – Review summary 

Ref. Robot Type Technique used Contribution Pros Cons 

38 

Wheeled 

Mobile 

Robot 

(WMR) 

Combined Deep 

Learning with 

Genetic 

Algorithm 

Proposed (TCFS) a feature 

selection based on state 

transition probability to 

control a mobile wheeled 

robot. 

Reduce input 

dimensional 

while saving 

the 

performance 

Depend on 

state 

probability 

39 
Simulated 

Robot 

Joints 

characteristics 

from Self 

Organizing Maps 

and ARN 

Lower layers nodes will map 

the incoming data to the 

output via ARN, and the 

upper layers will resolve the 

locomotion issue by then 

optimizing the usable 

trajectories. 

Avoid non-

linear inverse 

expression 

when 

controlling 

joint angles 

and torque 

Difficult to 

apply in real-

world robot 

40 

Wheeled 

Mobile 

Robot 

(WMR) 

Merged fuzzy 

processing and 

Genetic 

Algorithm (GA) 

Image processed and edges 

were detected via fuzzy 

system improved by bacterial 

algorithm, then the path 

calculated via GA and A*. 

Reduce 

computation 

time 

Depend on 

edge 

detection and 

neglect other 

feature 

41 

Zen360 

Wheeled 

Robot 

Four layers of 

backpropagation 

Neural Network 

(NN) 

exploited the idea of visual 

feedback to determined 

localization and navigation of 

the robot. 

Simple 

calculations 

Not sensitive 

to fast change 

42 

Simulated 

via Atari 

domain 

NN and utilizing 

asynchronous 

gradient descent 

for deep 

reinforcement 

learning 

The presented framework 

uses four reinforcement 

algorithms that work 

asynchronously to train the 

NN controller in different 

domains. 

Multi-

algorithms 

provide more 

system 

stability 

Extensive 

computations 

43 

Wheeled 

Mobile 

Robot 

(WMR) 

Adaptive Neuro-

Fuzzy Interface 

System (ANFIS) 

Their controller has two-

stage, first one to determine 

path curvature, and the other 

one to track the calculated 

path, with a gradient descent 

algorithm. 

Robust control 

method 

Time delay 

due to two 

cascaded 

controllers 

44 
E-puck 

mobile robot 

Combined 

Reinforcement 

learning, 

Supervised 

Learning, and 

Fuzzy 

The zero-order Takagi-

Sugeno fuzzy was applied as 

the central controller, which 

was utilized as obstacle 

avoidance. 

Decreased 

learning time 

and No. of 

failure 

Difficulty 

deal with 

dynamic 

obstacles 

45 
iRobot 

Roomba  

Convolutional 

Neural Network 

(CNN) 

The proposed model contains 

5 CNN layers followed by 

three fully connected layers 

Relatively 

high 

performance. 

Need more 

marks on the 
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that directly gives three 

outputs (orders) to turn right, 

turn left, and go straight 

environment 

to work well. 

46 
Agriculture 

mobile robot 

Convolutional 

Neural Network 

(CNN) 

Almost the same to [45] but 

adapted to follow crop rows. 

Can be 

adapted to any 

environment 

with minimal 

setup 

Not smooth in 

turning and 

changing 

directions. 

47 

Autonomous 

Underwater 

Vehicles 

(AUV) 

Deep Neural 

Network (DNN) 

Utilized a deep neural 

network to build a 

transmission map from a 

captured image. The map can 

specify the Region of Interest 

(RoI) for the taken video 

frame to determine the next 

state direction. 

Build a 

transmission 

map as a 

relative depth 

map 

Need clear 

images that 

not always 

available 

48 

Wheeled 

Mobile 

Robot 

(WMR) 

Merged primal-

dual neural 

network (PDNN) 

and Model 

predictive control 

(NMPC) 

techniques 

The proposed paradigm 

focuses on optimization, 

where iteratively calculated 

as a quadratic programming 

(QP), it was resolved via 

PDNN. The developed 

scheme controls the robot’s 

velocity and direction. 

It controls 

velocity and 

orientation to 

avoid 

obstacles 

Extensive 

computations 

issue 

49 

Wheeled 

Mobile 

Robot 

(WMR) 

Joints Lyapunov 

theory and 

harmony search 

(HS) 

Introduced (DyHS) controller 

consists of two sections, one 

for X-axis and the other for 

Y-axis direction motion. It 

exploits the stability of 

Lyapunov theory and control 

ability in HS. 

Determines 

both local and 

global search 

to present a 

high level of 

stable 

automation 

Time delay in 

decision 

making 

50 

Simulation 

via 

WEBOTS 

and 

MATLAB 

Combines 

Reinforcement 

learning, 

Supervised 

Learning, and 

state-

representation 

learning 

The presented model based 

on a weighted sum of the 

extracted features. The 

controller has two levels in 

calculating the weights in 

NN, where SL was used for 

hard-tuning while RL was 

utilized for fine-tuning. 

Stable against 

uncertainty 

and scalability 

for broad 

range areas 

Relatively 

high No. of 

failures 

during a 

training 

phase 

51 
Simulated 

Robot 

Cooperation 

between extended 

Kalman filter 

(EKF) and 

discrete-time 

recurrent high-

order neural 

network 

(RHONN) 

The scheme builds on two 

mechanisms; the first 

technique uses (EKF) 

algorithm to train an 

(RHONN). Secondly, to 

prevent solving the Hamilton 

Jacobi Bellman (HJB) 

equation, the inverse optimal 

model was used. 

The model can 

determine the 

required 

velocity 

Can’t 

perform as 

end-to-end 

path planning 

52 TurtleBot 

Convolutional 

Neural Network 

(CNN) 

The image is presented to 

CNN for feature extraction; 

then it will be passed to the 

fully connected network that 

used a regression method to 

Fast in making 

control 

decision 

It uses 

‘Discrete 

classification’ 

which is not 

enough to be 
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determine steering 

commands. Theses 

commands take five values; 

each defines a specific 

direction. 

precise in a 

continuous 

state 

53 
Quadrotor 

drone 

Deep Neural 

Network (DNN) 

DNN as s supervised 

classifier was used to process 

the input image and be 

classified into one of the three 

classes representing the 

controlling director: Turning 

Left, Go Straight and Turn 

Right. 

Work on 

whole input 

image at once 

Lose some 

frames when 

processing 

54 
Simulation 

via Gazebo 

Deep Q-Network 

(DQN) 

The robot will navigate in the 

environment by taking an 

RGB-D image and pass it to 

the CNN for feature 

extraction; then the data go to 

the Q-learning network which 

will determine the output (as 

reinforcement process) 

High stability 

Need 

extensive 

training 

55 

Wheeled 

Mobile 

Vehicle 

Merge Support 

Vector Machine 

(SVM) algorithm 

and Radial Basis 

Function (RBF) 

The provided controller 

utilizes the 3D-structure, 

texture, and colors 

parameters, and it used SVM 

with Radial Basis Function 

(RBF) kernels to perform the 

guiding task. 

Quickly learns 

and need 

minimal input 

to do so. 

sometimes 

loses its 

localization 

56 

Wheeled 

Mobile 

Vehicle 

Use both 

Convolutional 

Neural Networks 

(CNN) and Deep 

Belief Network 

(CBN) 

CNN used to generalize 

candidate blocks’ local 

information while the DBN 

generalize the complete 

image’s global data. Merging 

the available data, the model 

will recognize the blocks with 

obstacles; also, it calculates 

its depth. 

Not only 

recognize 

obstacles but 

determine 

their depth as 

well 

Short (point 

to point) 

trajectory 

tracking 

57 
Simulated 

Robot 

Joint 

Unsupervised 

model 

(UnspVGG16) 

with CNN 

The model used 

(UnspVGG16) to extract 

global features, and 

GoogleNet was utilized as a 

CNN supervised model to 

extract local features. The 

scheme used the neighboring 

blocks as well in the 

classification task. 

Unsupervised 

learning to 

extract global 

features and 

supervised to 

extract local 

ones. 

Too many 

computations 

58 
SCITOS 

mobile robot 

Reinforcement 

learning 

The authors introduced an 

actor-critic scheme that 

provides better generalization 

for the features. They have 

proposed AI2-THOR 

framework as well, which 

offers high-quality 3-D 

Rapidly 

converge, can 

be generalized 

easily.  

Need huge 

data for 

training 
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scenes and efficiently 

provides many training data. 

59 

Autonomous 

Underwater 

Vehicles 

(AUV) 

Combining linear 

iterative clustering 

algorithm with the 

‘nearest neighbor’ 

classification 

model 

The proposed model defines 

Region of Interest (RoI) then 

tries to divide it into super-

pixels. The model will then 

classify the super-pixels and 

check if they represent water 

or an obstacle; according to 

position, shape, texture, and 

colors.  

 

rapidly 

recognize 

obstacles even 

in low 

visibility 

conditions 

Confused 

when dealing 

with big 

obstacles 

60 
Autonomous 

drone 

Merge path 

planning 

algorithms and 

Convolutional 

neural network 

(CNN) 

CNN get the image and maps 

it in the shape of a waypoint 

to determine the next 

direction and the current 

speed. That is done via the 

planner algorithm. 

The model 

shows high 

precision and 

robustness 

Collide with 

relatively 

high dynamic 

obstacles 

61 

Surveyor 

SRV-1Q 

mobile robot 

Used both 

artificial neural 

networks (ANN) 

and finite state 

machines (FSM) 

The paradigm feeds images to 

ANN that segment it, analyze 

it and classify the regions in it 

that consider the RoI. The 

FSM determine the robot’s 

current state and calculate the 

appropriate behavior that the 

robot should do. 

The very 

convenient 

navigation 

system 

imprecision 

issue appears 

62 
Simulated 

robot 

Reinforcement 

learning 

The proposed model is in the 

form of collaboration 

between a deep Q-Network 

learning and the control 

theory. 

Build a 

complete 

trajectory to 

follow 

low 

sensitivity to 

fast dynamic 

changes 

63 

Autonomous 

Underwater 

Vehicles 

(AUV) 

Convolutional 

Neural Network 

(CNN) 

The model collects near 

obstacles and quickly 

controls the robot to 

navigates close to the coral 

reefs. 

Can be used in 

missions need 

the robot near 

to subject. 

Suffer from 

drifting away 

issue 

64 

Autonomous 

Underwater 

Vehicles 

(AUV) 

Deep Learning  
Solve ‘drifting away’ 

problem-related to such 

robots. 

Shows 

improvements 

via ‘recurrent 

extensions’ 

Losing 

tracking 

problem 

65 

Wheeled 

Mobile 

Robot 

(WMR) 

Convolutional 

Neural Network 

(CNN) 

The proposed (AGV) model 

consists of 11 layers, seven of 

them was convolution layer to 

extract features, while the 

remaining four was fully 

connected layers to make a 

decision. 

Improved the 

AGV in a way 

that may be 

applied in self-

driving cars 

Extensive 

computations 

need a high-

performance 

processor. 

 

Finally, it is worth mentioning that in this paper, we concentrated on the control techniques 

of Machine Learning (ML). However, there are other methods to build robot controllers. For 

instance, using Hamming distance and intersection over union using the Robot Operating 

System (ROS) [66]. Or depend on some image processing filter like Kernelized Correlation 
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Filter (KCF) tracker [67]. Or attaching an FPGA control system to the robot to perform the 

image processing and guiding tasks [68]. While [69] utilized Python to build a model using the 

‘Raspberry Pi 3 model b+’; or even some techniques related to stability like gain scheduling 

technique [70]. It’s worth to mention that this technique (Machine Learning technique) can be 

used for different applications that may be merged with some robots to perform important tasks 

[71-75]. 

 

5. Conclusion 

All things considered, autonomous mobile robots get significant attention from academics and 

industrial sectors in the last decades. They can be found in medical, scientific, and 

manufacturing fields. Subsequently, finding a robust control system is essential to such robots 

to prevent damages. This paper presents a scientific and global overview of vision-based robot 

controller techniques. The focus here was on machine learning, including NN and fuzzy 

algorithms. The article introduces the controller from different points of view, including path 

planning, navigation, trajectory tracking, and obstacle avoidance. We strongly believe that 

designing a vision-based robot utilizes a 3D camera and artificial intelligent NN control system 

to overcome the most confused and failure in autonomous mobile robots. 
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