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Abstract: This paper investigates the anti–synchronization problem between two different fractional-order 

chaotic and hyperchaotic systems using the modified adaptive sliding mode control technique in the presence of 

uncertain system parameters. To construct the proposed scheme, a simple sliding surface is first designed. Then, 

the modified adaptive sliding-mode controller is derived to guarantee the occurrence of sliding motion. Based 

on the Lyapunov stability theory, the adaptive controllers with corresponding parameter update laws are 

designed such that the different chaotic and hyperchaotic systems can be anti–synchronized asymptotically. 

Finally, numerical simulations are presented to demonstrate the efficiency of the proposed anti–synchronization 

scheme. 
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1. Introduction 

Fractional-order chaotic systems have recently received considerable attention for their 

interdisciplinary nature , being manifest in diverse areas of research including dielectric polarization, 

electrode-electrolyte polarization, electromagnetic waves, viscoelastic systems, quantitative finance, 

bioengineering, diffusion waves, and nuclear magnetic resonance. Major recent topics of interest for 

nonlinear-science applications include the synchronization and anti-synchronization of fractional-

order chaotic systems in a broad variety of situations and the use of such systems for various 

purposes. These topics require a knowledge of basic mathematical properties of fractional-order 

chaotic systems combined with specific practical considerations of various applications (Yang, 2012, 

Al-sawalha, 2016, Hajipour and  Aminabadi, 2016, Al-sawalha, 2017). 

Several important and fundamental results have been reported with regard to synchronization and 

anti-synchronization. Various powerful methods of chaos synchronization and anti-synchronization 

for fractional-order dynamical systems have also been proposed. These include, e.g., feedback 

(Deepika, Sandeep & Shiv,2018), active control(Tsung,  Tun & Valentina 2011), Q-S 

synchronization (Ardashir, Sehraneh,  Okyay and  Sohrab 2019), adaptive synchronization (Ardashir 

& Sehraneh, 2017, Ardashir & Sehraneh, 2018), and projective synchronization (Sakthivel, 

Sakthivel, Nithya, Selvaraj and Kwon, 2018). In addition to chaos synchronization, the anti-

synchronization of fractional-order chaotic systems is a fascinating concept that has recently 

attracted considerable interest among nonlinear scientists. Chaos anti-synchronization involves two 

fractional-order chaotic systems, namely the master and slave systems. Anti-synchronization 

controllers are designed to give the state vectors of synchronized systems the same amplitude but 

opposite signs to those of the driving system. Therefore, the sum of two signals is expected to 

converge to zero when anti-synchronization appears in either the synchronized or driving system . 

For fractional-order chaos anti-synchronization, unknown model uncertainties have an adverse effect 

on anti-synchronization behavior, leading to a decrease in the performance of real systems. Scientific 

investigations into anti-synchronization in fractional-order chaotic systems with different kinds of 

uncertainties have addressed this challenge by several approaches to system control (Selvaraj,  Kwon 

& Sakthivel,  2019, Agrawal, & Das 2013, Pourmahmood, Khanmohammadi & Alizadeh 2011).   

One effective method for dealing with uncertainties is sliding-mode control, which has the 

advantages of a fast dynamic response and a low sensitivity to external disturbances and model 

uncertainties. Many important results have been reported in the literature (Yahyazadeh, Noei & 

Ghaderi, 2011, Chen, Park, Cao & Qiu,2017, Li, 2012, Pourmahmood & Heydari, 2012). The design 

for adaptive sliding-mode controller combines an adaptive controller and a sliding-mode controller. 

During the design process, the determination of some of the controller parameters is somewhat 

arduous . The main purpose of the present work is to introduce a new modification of the adaptive 
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sliding mode for the purpose of achieving anti-synchronization in different fractional- and integer-

order chaotic systems in the presence of fully unknown parameters, in both the master and slave 

chaotic systems . A simple sliding surface, suitable for this purpose, which includes anti-

synchronization errors, is constructed. Appropriate update laws are derived to determine the 

unknown parameters. The stability and robustness of the proposed modified adaptive sliding mode is 

proved using Lyapunov stability theory. Finally, two simulation examples are provided to 

demonstrate the effectiveness of the proposed anti-synchronization scheme. 

2. Properties of fractional derivative 

Fractional calculus is a generalization of integration and differentiation to a non-integer-order integro-

differential operator  aDt
α defined by  

 

  aDt
α =

{
 
 

 
 
dα

dtα
            α > 0,                                                                                                               (1)

1                   α = 0,

∫
t

a
(dτ)−α  α < 0,

  

 In this work, we adopts the Riemann-Liouvile definition ( Podlubny, 1999, Agrawal, & Das 2013), which is 

defined by  

  aDt
αx(t) =

dn

dtn
Jt
n−αx(t),             α > 0,                                                                                         (2)  

 where n = ⌈α⌉, i.e., n is the first integer which is not less than α. Jφ is the fractional Riemann-Liouville integral 

integral operator which is described as follows:  

 Jt
ϑφ(t) =

1

Γ(ϑ)
∫
t

0

φ(υ)

(t−υ)1−ϑ
  dυ,                                                                                                          (3)  

 with 0 < 𝜗 ≤ 1, Γ(. ) is the gamma function. For s, n ≥ 0, there exist integers α and β such that 0 ≤ α − 1 ≤
s < α, and 0 ≤ β − 1 ≤ n < β. Then,  

  aDt
s( aDt

nx(t)) =a Dt
s+nx(t) − ∑nj=1 [ aDt

n−j
x(t)]

t=a

(t−a)−s−j

Γ(1−s−j)
.                                                (4) 

For s > 𝑛 ≥ 0, α and β are integers such that 0 ≤ α − 1 ≤ s < α, and  0 ≤ β − 1 ≤ n < β. Then, 

               ADt
s( aDt

−nx(t)) =a Dt
s−nx(t).                                                                                                        (5)                                                                                                        

                                                                                              

3. Anti-synchronization of fractional order chaos using the modified adaptive sliding-mode control 

method 

 Given the fractional order drive system of the form  

 Dt
p
xd = f(xd) + F(xd)φ,                                                                                                               (6)                                                                                           

 where xd = (xd1, xd2, … , xdn) ∈ R
n, f: Rn → Rn is a continuous vector function, F: Rn → Rn×d is a matrix 

function, and φ ∈ Rd is the unknown parameter vectors. Let the corresponding response system be  

 Dt
p
yr = g(yr) + G(yr)ψ + u,                                                                                                      (7)                                                                                       

 where yr = (yr1, yr2, … , yrn) ∈ R
n, g: Rn → Rn is a continuous function, G: Rn → Rn×k is a matrix function, 

ψ ∈ Rk is the unknown parameter vectors, and u ∈ Rn is the control input. The controlled resulting anti-

synchronisation error system can be expressed by the following dynamical system  

 Dt
p
e(t) = g(yr) + G(yr)ψ + f(xd) + F(xd)φ + u,                                                                (8)  

 Our goal is to introduce an modified adaptive sliding-mode procedure to design the controller u to make the 

controlled uncertain response system anti-synchronous with master system asymptotically, such that  

 lim
t→∞

‖e‖ = lim
t→∞

‖yr(t, y0) + xd(t, x0)‖ = 0,                                                                              (9)  
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 In accordance with the design procedure used for an modified adaptive sliding-mode control, if the nonlinear 

control function u is selected in (7) as follows:  

  

         u = −f(xd) + F(xd)φ − g(yr) + G(yr)ψ + Dt
p−1

[−F(xd)(φ̂ − φ) − G(yr)(ψ̂ − ψ)                       (10)                  

                   −(Dt
p−1

e(t))
(t)−(p−1)−1

Γ(−(p−1))
−w(t)K], 

              where φ̂, ψ̂ are estimate values of the unknown parameters and k = [k1, k2, … , kn]
T is a constant gain vector.  

           Now, substituting u into the anti-synchronization error system (8) yields a form that is comfortable for the 

oncoming stability analysis:  

 Dt
p
e(t) = Dt

p−1
[−F(xd)(φ̂ − φ) − G(yr)(ψ̂ − ψ) − (Dt

p−1
e(t))

(t)−(p−1)−1

Γ(−(p−1))
− w(t)K].              (11)             

  

Here w(t) ∈ R is a control input and can be determined as  

w(t)  {
w+(t)     s(e) ≥ 0                                                                                                                                   (12)

w−(t)     s(e) < 0       

  

where s = s(e) is a switching surface which introduces the desired sliding dynamics. The sliding surface 

function is designed as  

s(e) = ce,                                                                                                                                                               (13)  

where c = [c1, c2, … , cn] is a constant vector. A necessary two conditions for the state trajectory to fulfilled on 

the sliding surface:  

s(e) = 0    together  with    ṡ(e) = 0.                                                                                                          (14)  

The second condition is a necessary condition to constrain the state trajectory to stay on the switching surface 

s(e) = 0. In accordance to the to sliding-mode design strategy, we design the the sliding mode as follows  

 w(t) = [
s

|s|+γ
],                                                                                                                                                 (15)  

where γ > 0. The update laws parameters are defined as  

 α̇̂ = [F(xd)]
Tλ,                                                                                                                                             (16)  

 β̇̂ = [G(yr)]
Tλ,                                                                                                                                                    

where λ = scT.  

Theorem. 1.  Considering the error dynamic systems (11) with control laws (10) that obeys update laws 

parameters in (16). Then the error dynamic systems trajectories will converge to the sliding surface s(t) = 0.  

Proof. Consider the following Lyapunov candidate function:  

 V =
1

2
[s2 + φ̃Tφ̃ + ψ̃Tψ̃],                                                                                                                            (17)  

where φ̃ = φ̂ − φ and ψ̃ = ψ̂ − ψ. The time derivative of (17) is  

 V̇ = [sėTcT + φ̃Tφ̇̃ + ψ̃Tψ̇̃] .                                                                                                                       (18)  

 Using (4) in (18), yields V̇ as:  

 V̇ = s[Dt
q−1

(Dt
q
e) + (Dt

q−1
e(t))

(t)−(q−1)−1

Γ(−(q−1))
]TcT + φ̃Tφ̇̃ + ψ̃Tψ̇̃.                                                          (19)  

 From (11) and (18), we obtain  
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 V̇ = s[Dt
q−1

(Dt
q−1

[−F(xd)φ̃ − G(yr)ψ̃ − (Dt
q−1

e(t))
(t)−(q−1)−1

Γ(−(q−1))
                                                          (20)  

 −
s

|s|+γ
k]) + (Dt

q−1
e(t))

(t)−(q−1)−1

Γ(−(q−1))
]TcT + φ̃Tφ̇̃ + ψ̃Tψ̇̃,                                                                  

 since ∀q ∈ [0,1], (1 − q) > 0 and (q − 1) < 0. Now, using (5) and (16), (20) reduces to  

 V̇ = s[(−F(xd)φ̃ − G(yr)ψ̃ − (Dt
q−1

e(t))
(t)−(q−1)−1

Γ(−(q−1))
−

s

|s|+γ
k)                                                          (21)  

 +(Dt
q−1

e(t))
(t)−(q−1)−1

Γ(−(q−1))
]TcT + φ̃Tφ̇̃ + ψ̃Tψ̇̃,                                                                                 

 V̇ = s[−F(xd)φ̃ − G(yr)ψ̃ −
s

|s|+γ
k]TcT + φ̃TF(xd)

Tλ + ψ̃TG(yr)
Tλ.                                           (22)   

 Then, (22) yields  

 V̇ = −ck [
s2

|s|+γ
] < 0.                                                                                                                                   (23)  

 Since s2 > 0 and |s| > 0 both hold true, then, when e ≠ 0 and ck > 0, the inequality V̇ < 0 holds. According 

to the Lyapunov stability theory (Liapunov, 1966) 𝑉 is positive-definite, and V̇ is negative-definite. Thus, the 

trajectories of the fractional error dynamical system (8) asymptotically converge to s(t) = 0. Therefore, the 

state variables of the of the drive system (6) and the states variables of the response (7) system can be anti-

synchronized asymptotically and globally with the control law (10) and the adaptive parameter update laws (16). 

Here, the proof is completed.   

4.  Modified adaptive sliding mode anti–synchronization of two fractional order chaotic systems  

To observe anti-synchronization behavior between two different fractional order chaotic systems by adaptive 

sliding-mode control, the drive system is assumed to be a fractional-order Lorenz system (Zhou, & Zhu,2011), 

and a fractional-order Chen system (Lu & Chen, 2006),  is considered as the response system. The drive system 

is described as 

 Dt
q1x1 = a1(y1 − x1),                                                                                                                           (24)  

 Dt
q2y1 = b1x1 − x1z1 − y1,                                                                                                                          

 Dt
q3z1 = x1y1 − c1z1,                                                                                                                                   

  and the response system as  

 Dt
q1x2 = a2(y2 − x2) + u1,                                                                                                                (25)  

 Dt
q2y2 = (b2 − a2)x2 − x2z2 + b2y2 + u2,                                                                                                

 Dt
q3z2 = x2y2 − c2z2 + u3,                                                                                                                            

where the variables (u1, u2, u3)
T are controllers to be designed. Let e1 = x2 + x1, e2 = y2 + y1, e3 = z2 + z1. 

Then, we get the following error dynamic system between the drive (24) and response (24) systems  

Dt
q1e1(t) = a2(y2 − x2) + a1(y1 − x1) + u1,                                                                                                 (26)  

 Dt
q2e2(t) = (b2 − a2)x2 − x2z2 + b2y2 + b1x1 − x1z1 − y1 + u2                                                                 

 Dt
q3e3(t) = x2y2 − c2z2 + x1y1 − c1z1 + u3.                                                                                                       

The goal of the modified adaptive sliding-mode control is to find an effective controller function (u1, u2, u3)
T 

capable anti-synchronizing the states of the response and drive systems with a parameter estimation update law. 

An appropriate sliding surface can be chosen as  

 s(e) = e1 + e2 − e3,                                                                                                                                      (27)  

 w(t) =
s

|s|+0.01
,                                                                                                                                                        



A .Othman Almatroud1, Y. Jawarneh1, Israr Ahmad2, M. Mossa Al-sawalha1, M. S. M. Noorani3 

1116 

 It is assumed that the constant vectors are c = (1,1, −1), k = (5,10,0)T and γ = 0.01. The adaptive sliding-

mode controller of the error dynamic system (26) can be calculated as follows  

u1 = −a2(y2 − x2) − a1(y1 − x1) + Dt
q1−1[−â2(y2 − x2) − â1(y1 − x1) − (Dt

q1−1e1(t))              (28)  

                          
(t)−(q1−1)−1

 Γ(−(q1 − 1))
−

5s

|s| + 0.01
], 

u2 = −(b2 − a2)x2 + x2z2 − b2y2 − b1x1 + x1z1 + y1 + Dt
q2−1[−(b̂2 − â2)x2 − b̂2y2             

−b̂1x1 − (Dt
q2−1e2(t))

(t)−(q2−1)−1

Γ(−(q2 − 1))
−

10s

|s| + 0.01
],                                                        

u3 = −x2y2 + c2z2 − x1y1 + c1z1 + Dt
q3−1 [ĉ2z2 + ĉ1z1 − (Dt

q3−1e3(t))
(t)−(q3−1)−1

Γ(−(q3 − 1))
].         

The adaptive laws for estimating the parameters â1, b̂1, ĉ1, â2, b̂2, and ĉ2 are chosen as follows:  

 ȧ̃1 = s(y1 − x1)                                                                                                                                            (29)  

 ḃ̃1 = sx1                                                                                                                                                                    

 ċ̃1 = sz1                                                                                                                                                                    

 ȧ̃2 = s(y2 − x2) − s x2                                                                                                                                                                                                     

 ḃ̃2 = s(x2 + y2)                                                                                                                                                    

 ċ̃2 = sz2                                                                                                                                                                 

Theorem 2.  The state variables of the of the drive system (24) and the states variables of the response (25) 

system can be anti-synchronized asymptotically and globally for all initial conditions using the control law (28) 

and the adaptive parameter update laws (29).  

Proof. Substituting (28) into (26), this yields  

Dt
q1e1(t) = Dt

q1−1 [−ã2(y2 − x2) − ã1(y1 − x1) − (Dt
q1−1e1(t))

(t)−(q1−1)−1

Γ(−(q1−1))
−

5s

|s|+0.01
],                    (30)  

Dt
q2e2(t) = Dt

q2−1[−(b̃2 − ã2)x2 − b̃2y2 − b̃1x1 − (Dt
q2−1e2(t))

(t)−(q2−1)−1

Γ(−(q2 − 1))
−

10s

|s| + 0.01
], 

Dt
q3e3(t) = Dt

q3−1 [c̃2z2 + c̃1z1 − (Dt
q3−1e3(t))

(t)−(q3−1)−1

Γ(−(q3 − 1))
],                                                       

 where ã1 = â1 − a1, b̃1 = b̂1 − b1, c̃1 = ĉ1 − c1, ã2 = â2 − a2, b̃2 = b̂2 − b2, and c̃2 = ĉ2 − c2. Selecting a 

Lyapunov function candidate in the form of  

V =
1

2
(s2 + ã1

2 + b̃1
2 + c̃1

2 + ã2
2 + b̃2

2 + c̃2
2).                                                                                          (31) 

 Taking the derivative of (31) with respect to time using (4), one has  

V̇ = (sṡ + ã1ȧ̃1 + b̃1ḃ̃1 + c̃1 ċ̃1 + ã2ȧ̃2 + b̃2ḃ̃2 + c̃2ċ̃2)                                                                  (32)  

= s[Dt
1−q1(Dt

q1e1(t)) + (Dt
q1−1e1(t))

(t)−(q1−1)−1

Γ(−(q1 − 1))
] + s[Dt

1−q2(Dt
q2e2(t)) + (Dt

q2−1e2(t)) 

     
(t)−(q2−1)−1

Γ(−(q2 − 1))
] − s[Dt

1−q3(Dt
q3e3(t)) + (Dt

q3−1e3(t))
(t)−(q3−1)−1

Γ(−(q3 − 1))
] + ã1ȧ̃1 + b̃1ḃ̃1 + c̃1 ċ̃1 

 +ã2ȧ̃2 + b̃2ḃ̃2 + c̃2ċ̃2.                                                                                                                                       



On The Anti-Synchronization Of Fractional-Order Chaotic And Hyperchaotic Systems Via Modified 

Adaptive Sliding-Mode Control 

1117 

= s[Dt
1−q1(Dt

q1−1[−ã2(y2 − x2) − ã1(y1 − x1) − (Dt
p1−1e1(t))

(t)−(q1−1)−1

Γ(−(q1 − 1))
−

5s

|s| + 0.01
]) 

       +(Dt
q1−1e1(t))

(t)−(q1−1)−1

Γ(−(q1 − 1))
] + s[Dt

1−q2(Dt
q2−1[−(b̃2 − ã2)x2 − b̃2y2 − b̃1x1 − (Dt

q2−1e2(t)) 

     
(t)−(q2−1)−1

Γ(−(q2 − 1))
]) + (Dt

q2−1e2(t))
(t)−(q2−1)−1

Γ(−(q2 − 1))
−

10s

|s| + 0.01
] − s[Dt

1−q3(Dt
1−q3[c̃2z2 + c̃1z1 

      −(Dt
q3−1e3(t))

(t)−(q3−1)−1

Γ(−(q3 − 1))
]) + (Dt

q3−1e3(t))
(t)−(q3−1)−1

Γ(−(q3 − 1))
] + ã1ȧ̃1 + b̃1ḃ̃1 + c̃1ċ̃1 + ã2ȧ̃2 

 +b̃2ḃ̃2 + c̃2ċ̃2.                                                                                                                                                               

Since ∀q ∈ [0,1], we have (1 − q) > 0 and (q − 1) < 0. Now, using (5) and introducing update laws (29) in 

(32) one obtains  

V̇ = s(−ã2(y2 − x2) − ã1(y1 − x1) −
5s

|s|+0.01
) + s(−(b̃2 − ã2)x2 − b̃2y2 − b̃1x1                       (33)  

−
10s

|s| + 0.01
) − s(c̃2z2 + c̃1z1) + ã1(s(y1 − x1)) + b̃1(sx1) + c̃1(sz1)                        

+ã2(s(y2 − x2) − sx2) + b̃2(s(x2 + y2)) + c̃2(sz2).                                                        

Then, (33) reduces to  

V̇ = −
15s2

|s|+0.01
 .                                                                                                                                            (34)  

  

Since s2 > 0 and |s| > 0 both hold true, then, when e ≠ 0 and ck > 0, the inequality V̇ < 0 holds. According to 

the Lyapunov stability theory [25] V is positive-definite, and V̇ is negative-definite. Thus, the trajectories of the 

fractional error dynamical system (26) asymptotically converge to s(t) = 0. Therefore, the state variables of the 

of the drive system (24) and the states variables of the response (25) system can be anti-synchronized 

asymptotically and globally with the control law (28) and the adaptive parameter update laws (29). Here, the 

proof is completed.  

4.1 Numerical simulations 

Numerical simulations are presented to verify the effectiveness of the proposed adaptive sliding mode anti-

synchronization between the fractional-order Lorenz and Chen systems using Adams–Bashforth–Moulton 

method. The parameters are chosen to be a1 = 10, b1 = 28, c1 = 8/3, a2 = 35, b2 = 28, and c2 = 3. The 

initial conditions of the drive system (24) and response system (25) are set to x1(0) = 6, y1(0) = 3, z1(0) =
7, x2(0) = 2, y2(0) = 7, and z2(0) = 4. Moreover, the initial values of the unknown parameters are chosen as 

ã1(0) = 10, b̃1(0) = 10, c̃1(0) = 10, ã2(0) = 10, b̃2(0) = 10, and c̃2(0) = 10. The simulation results are 

shown in Figs. (1)–(2). Figs. (1) (a)–(c) depicts the time response of the drive (24) and response (25) systems, 

while Fig. (2) (a) depicts the time response of the error states e1, e2, and e3 under the control law (28) and the 

adaptive parameter update laws (29). Figs. (2) (b)–(c) depicts the temporal response of the unknown parameters 

ã1, b̃1, c̃1, ã2, b̃2, and c̃2 of the drive (24) and response (25) systems. 
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Figure 1: Anti-synchronization of the drive (24) and the response systems (25). The plotted signals are  (a) 
1x  

and 
2x , (b)  

1y and 
2y , and (c) 

1z  and 
2z . 

 

Figure 2: (a) Anti-synchronization error signals 
1e , 

2e , and 
3e between the drive (24) and response 

systems (25) under the controller (28). (b) Parameter estimates of the drive system (24). (c) 

Parameter estimates of the response system (25). 

5. Modified adaptive sliding mode anti–synchronization of two fractional order hyperchaotic systems 

 This section investigates the anti-synchronisation behaviour between two different fractional-order 

hyperchaotic systems using the modified adaptive sliding-mode control method. The drive system is assumed to 

be a fractional-order hyperchaotic Lorenz system (Li, Wang &  Yang, 2014), while a fractional-order 

hyperchaotic Lü system (Li, Wang & Yang,2014),  is taken as the response. The definitions of both systems 

have unknown parameters:  

Dt
q1x1 = a1(y1 − x1) + w1,                                                                                                                                (35)  

 Dt
q2y1 = b1x1 − x1z1 − y1,                                                                                                                                        
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 Dt
q3z1 = x1y1 − c1z1,                                                                                                                                                  

 Dt
q4w1 = −y1z1 + d1w1,                                                                                                                                            

 and  

Dt
q1x2 = a2(y2 − x2) + w2 + u1,                                                                                                                     (36)  

Dt
q2y2 = b2y2 − x2z2 + u2,                                                                                                                                        

 Dt
q3z2 = x2y2 − c2z2 + u3,                                                                                                                                        

Dt
q4w2 = x2z2 + d2w2 + u4,                                                                                                                                      

where the variables (u1, u2, u3, u4)
T are controllers to be designed. Let e1 = x2 + x1, e2 = y2 + y1, e3 = z2 + z1 

and e4 = w2 + w1. Then, we get the following error dynamic system between the drive (35) and response (36) 

systems  

Dt
q1e1(t) = a2(y2 − x2) + a1(y1 − x1) + e4 + u1,  

 Dt
q2e2(t) = b2y2 − x2z2 + b1x1 − x1z1 − y1 + u2, 

 Dt
q3e3(t) = x2y2 − c2z2 + x1y1 − c1z1 + u3,  

 Dt
q4e4(t) = x1z1 + d2w2 − y1z1 + d1w1 + u4. 

 The goal of the modified adaptive sliding-mode control is to find an effective controller function 

(u1, u2, u3, u4)
T capable anti-synchronizing the states of the response and drive systems with a parameter 

estimation update law. An appropriate sliding surface can be chosen as  

 s(e) = e1 + e2 + 3e3 − 3e4,                                                                                                                       (38)  

 w(t) =
s

|s|+0.01
,                                                                                                                                                     

It is assumed that the constant vectors are c = (1,1,3, −3), k = (0,10,0,0)T, and γ = 0.01. The adaptive sliding-

mode controller of the error dynamic system (37) can be calculated as follows  

 u1 = −a2(y2 − x2) − a1(y1 − x1) − e4 + Dt
q1−1[−â2(y2 − x2) − â1(y1 − x1)                             (39) 

 −(Dt
q1−1e1(t))

(t)−(q1−1)−1

Γ(−(q1−1))
], 

 u2 = −b2y2 + x2z2 − b1x1 + x1z1 − y1 + Dt
q2−1[−b̂2y2 − b̂1x1 − (Dt

q2−1e2(t)) 

 
(t)−(q2−1)−1

Γ(−(q2−1))
−

10s

|s|+0.01
], 

 u3 = −x2y2 + c2z2 − x1y1 + c1z1 + Dt
p3−1[ĉ2z2 + ĉ1z1 − (Dt

q3−1e3(t))
(t)−(q3−1)−1

Γ(−(q3−1))
],, 

 u4 = −x1z1 − d2w2 + y1z1 − d1w1 + Dt
q4−1[−d̂2w2 − d̂1w1 − (Dt

q4−1e4(t))
(t)−(q4−1)−1

Γ(−(q4−1))
]. 

 The adaptive laws for estimating the parameters â1, b̂1, ĉ1, d̂1, â2, b̂2, ĉ2 and d̂2 are chosen as follows:  

ȧ̃1 = s(y1 − x1)                                                                                                                       (40)  

ḃ̃1 = sx1, 

ċ̃1 = −3sz1, 

ḋ̃1 = −3sw1, 

ȧ̃2 = s(y2 − x2), 

ḃ̃2 = sy2, 
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ċ̃2 = −3sz2, 

ḋ̂2 = −3sw2,                                                           

Theorem 3.  The state variables of the of the drive system (35) and the states variables of the response (36) 

system can be anti-synchronized asymptotically and globally for all initial conditions using the control law (39) 

and the adaptive parameter update laws (40).  

 Proof. Substituting (39) into (37), this yields  

  Dt
q1e1(t) = Dt

q1−1 [−â2(y2 − x2) − â1(y1 − x1) − (Dt
q1−1e1(t))

(t)−(q1−1)−1

Γ(−(q1−1))
],                                      (41) 

 Dt
q2e2(t) = Dt

q2−1[−b̃2y2 − b̃1x1 − (Dt
q2−1e2(t))

(t)−(q2−1)−1

Γ(−(q2−1))
−

10s

|s|+0.01
], 

 Dt
q3e3(t) = Dt

q3−1 [c̃2z2 + c̃1z1 − (Dt
q3−1e3(t))

(t)−(q3−1)−1

Γ(−(q3−1))
],    

                    Dt
q4e4(t) = Dt

q4−1[−d̃2w2 − d̃1w1 − (Dt
q4−1e4(t))

(t)−(q4−1)−1

Γ(−(q4−1))
],   

where ã1 = â1 − a1, b̃1 = b̂1 − b1, c̃1 = ĉ1 − c1, d̃1 = d̂1 − d1, ã2 = â2 − a2, b̃2 = b̂2 − b2, c̃2 = ĉ2 − c2, and 

d̃2 = d̂2 − d2. Selecting a Lyapunov function candidate in the form of  

 V =
1

2
(s2 + ã1

2 + b̃1
2 + c̃1

2 + d̃1
2 + ã2

2 + b̃2
2 + c̃2

2 + d̃2
2).                                                                             (42)  

 Taking the derivative of (42) with respect to time using (4), one has  

 V̇ = (sṡ + ã1ȧ̃1 + b̃1ḃ̃1 + c̃1 ċ̃1 + d̃1ḋ̃1 + ã2ȧ̃2 + b̃2ḃ̃2 + c̃2ċ̃2 + d̃2ḋ̃2 )                                      (43)  

 = s[Dt
1−q1(Dt

q1e1(t)) + (Dt
q1−1e1(t))

(t)−(q1−1)−1

Γ(−(q1−1))
] + s[Dt

1−q2(Dt
q2e2(t)) + (Dt

q2−1e2(t))       

       
(t)−(q2−1)−1

Γ(−(q2−1))
] + 3s[Dt

1−q3(Dt
q3e3(t)) + (Dt

q3−1e3(t))
(t)−(q3−1)−1

Γ(−(q3−1))
] − 3s[Dt

1−q4 (Dt
q4e4(t)) 

           +(Dt
p4−1e4(t))

(t)−(p4−1)−1

Γ(−(p4−1))
] + ã1ȧ̃1 + b̃1ḃ̃1 + c̃1ċ̃1 + d̃1ḋ̃1 + ã2ȧ̃2 + b̃2ḃ̃2 + c̃2ċ̃2 + d̃2ḋ̃2.          

 = s[Dt
1−q1 (Dt

q1−1 [−ã2(y2 − x2) − ã1(y1 − x1) − (Dt
q1−1e1(t))

(t)−(q1−1)−1

Γ(−(q1−1))
])                            

 +(Dt
q1−1e1(t))

(t)−(q1−1)−1

Γ(−(q1−1))
] + s[Dt

1−q2(Dt
q2−1[−b̃2y2 − b̃1x1 − (Dt

q2−1e2(t))                     

 
(t)−(q2−1)−1

Γ(−(q2−1))
]) + (Dt

q2−1e2(t))
(t)−(q2−1)−1

Γ(−(q2−1))
−

10s

|s|+0.01
] + 3s[Dt

1−q3(Dt
1−q3[c̃2z2 + c̃1z1          

 −(Dt
q3−1e3(t))

(t)−(q3−1)−1

Γ(−(q3−1))
]) + (Dt

q3−1e3(t))
(t)−(q3−1)−1

Γ(−(q3−1))
] − 3s[Dt

1−q4(Dt
1−q4[−d̃2w2 − d̃1w1    

 −(Dt
q4−1e4(t))

(t)−(q4−1)−1

Γ(−(q4−1))
]) + (Dt

q4−1e4(t))
(t)−(q4−1)−1

Γ(−(q4−1))
] + ã1ȧ̃1 + b̃1ḃ̃1 + c̃1ċ̃1 + d̃1ḋ̃1 + ã2ȧ̃2  

 +b̃2ḃ̃2 + c̃2ċ̃2 + d̃2ḋ̃2.                                                                                                                                 

Since ∀q ∈ [0,1], we have (1 − q) > 0 and (q − 1) < 0. Now, using (5) and introducing update laws (40) in 

(43) one obtains  

 V̇ = s(−ã2(y2 − x2) − ã1(y1 − x1)) + s (−b̃2y2 − b̃1x1 −
10s

|s|+0.01
) + 3s(c̃2z2 + c̃1z1)                (44)  

 −3s(−d̃2w2 − d̃1w1) + ã1(s(y1 − x1)) + b̃1(sx1) + c̃1(−3sz1) + d̃1(−3sw1)                       

 +ã2((y2 − x2)) + b̃2(sy2) + c̃2(−3sz2) + d̃2(−3sw2).                                                                                     

 Then, (33) reduces to  
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 V̇ = −
10s2

|s|+0.01
.                                                                                                                                      (45)             

Since s2 > 0 and |s| > 0 both hold true, then, when e ≠ 0 and ck > 0, the inequality V̇ < 0 holds. According to 

the Lyapunov stability theory [25] V is positive-definite, and V̇ is negative-definite. Thus, the trajectories of the 

fractional error dynamical system (26) asymptotically converge to s(t) = 0. Therefore, the state variables of the 

of the drive system (35) and the states variables of the response (36) system can be anti-synchronized 

asymptotically and globally with the control law (39) and the adaptive parameter update laws (40). Here, the 

proof is completed.  

5.1 Numerical simulations 

Numerical simulations are presented to verify the effectiveness of the proposed adaptive sliding mode anti-

synchronization between the fractional-order hyperchaotic Lorenz system and the fractional-order hyperchaotic 

Lü systemusing Adams–Bashforth–Moulton method. The parameters are chosen to be a1 = 10, b1 = 28, c1 =
8/3, d1 = −1, a2 = 36, b2 = 20, c2 = 3, and d2 = 1.3. The initial conditions of the drive system (35) and 

response system (36) are set to x1(0) = 6, y1(0) = 3, z1(0) = 7,w1(0) = 2, x2(0) = 2, y2(0) = 7, z2(0) = 4 

and w2(0) = 4. Moreover, the initial values of the unknown parameters are chosen as ã1(0) = 1, b̃1(0) = 1, 

c̃1(0) = 1, d̃1(0) = 1 ã2(0) = 10, and b̃2(0) = 10, c̃2(0) = 10, d̃2(0) = 1. The simulation results are shown 

in Figs (3)–(4). Figs. (3) (a)–(d) depicts the time response of the drive (35) and response (36) systems, while 

Fig. (4) (a) depicts the time response of the error states e1, e2, e3, and e4 under the control law (39) and the 

adaptive parameter update laws (40). Figs. (4) (b)–(c) depicts the temporal response of the unknown parameters 

ã1, b̃1, c̃1, d̃1, ã2, b̃2, c̃2, and d̃2 of the drive (35) and response (36) systems. 

Figure 4: Anti-synchronization of the drive (35) and the response systems (36). The plotted signals are  (a) 
1x  

and 
2x , (b)  

1y and 
2y ,  (c) 

1z  and 
2z  and (d) 

1w  and 
2w . 
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Figure 5: (a) Anti-synchronization error signals 
1e ,

2 3,e e , and 
4e between the drive (35) and 

response systems (36) under the controller (39). (b) Parameter estimates of the drive system (35). (c) 

Parameter estimates of the response system (36). 

6. Conclusion 

We presented a new modification of the adaptive sliding-mode anti-synchronization scheme to study the 

adaptive anti-synchronization of different chaotic and hyperchaotic systems with unknown parameters. 

Lyapunov stability theory and the controller design establish the asymptotic stability of the anti-synchronization 

errors at the origin. Accordingly, suitable adaptive parameter update laws estimate the true values of uncertain 

parameters. Two numerical examples were used to provide illustrations and simulation results certified the 

performance of the proposed simple and generalized approach.  
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