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Abstract: All through the life-cycle of a standby system, it is verychallenging to keep a standby unit workable.It 

may be fatalif the standby found non-workablewhen needed.This paper evaluates the performance of a standby 

systemworking under two primary constraintsby underlining the condition of the spare unit in standby mode. The 

first constraint is the maximum redundancy time for the standby and the second is maximum operation time for 

the operating unit.The standby unit failson exceeding the maximum time threshold andthereafterthe decision 

about its repair/replacement is subjected tothe inspection. While after surpassing the maximum operating time 

limit preventive maintenance is carried outfor the operating unit.To study the long-run performance or life-cycle 

of the system various performance indices have been analyzed usingthe theory of discrete-state continuous-time 

semi-Markov regenerative processes.Exponential, Rayleigh and Weibull probability distributions are used to 

study the system performance numerically. 

Keyword:Semi-Markov, Cold-Standby System, Probabilistic Model, Steady State. 

 

 

1. Introduction 

In everyday life, we come across many systems equipped with redundant units to facilitate the smooth 

functioning andensuringhigheravailability and system reliability. For instance, the spare engine in a jet 

fighter,alternate power supply in an Intensive Care Units, redundant safety installation in an atomic power plant, 

parallel lines in a communication network, parallel service counter in a bankand many more.Though the 

provision of a spare componentguarantees reliability, availability and even safety in some cases but side by side 

put challenges to the budgetary resources. Despite all financial obligations, however, there are many safety 

installations where risk cannot be taken with reliability, in any case.Therefore, the provision of standby remains 

popular among safety and reliability professionals[ see [1], [2], [3], [4], [5]]. An essential thing about a standby 

system is that it can be restored if and only if the spare unit found perfectly operable. In all the above studies, it is 

commonly assumed that the standby unit always found operable when needed.Is it practically correct? There is 

no doubt that the active operating load on standby unit in a cold-standby system is not equal to that of an 

operating unit, but this factor alone cannot be assumed responsible for the current state of standby. Indeed, the 

state of standby depends firstly onthe local environment andsecondly on the ways of its handling[[6], [7]].So 

depending upon such factors the standby unit may or may not found operable. If not thenthere would be adverse 

consequences. Therefore, the study of standby systems with the possibility of standby failure becomesvery 

muchsignificant.Earlier, this issuehasbeen discussedhardly [[8], [9], [10] ].Furthermore,no preventive measures 

are takenbeforethe system failure. It is either repaired or replaced at itsfailure. In particular, the preventive 

maintenance plan can better improve the system performance [[11], [12], [13]]. Keeping this fact in view this 

paper analyzes a stochastic model of a cold standby system incorporating the idea of pre-failure preventive 

maintenance of the operative unit after crossing a pre-specified time limit, termed as maximum operation 

time.This paper presents the analysis of a two-unit cold standby system using the theory of discrete-state 

continuous-time Markov regenerative processes[[14], [15], [16]]. The system works under two constraints 

namely maximum redundancy time for the standby unit and maximum operation time for the operative unit. 

Upon crossing a pre-defined threshold time limit the standby fails and passes through inspection for deciding 

about its repair or replacement whereas the operative unit be given preventive maintenance aiming at enhancing 

system performance. The practical importance of theoretical results is shown in a particular case using Weibull 

distribution [[17],[18]].  

 

 

2. Acronyms and Notations 

EE /  : The set of regenerative/ Non-regenerative states 

UU /  : The set of up-states/ down states 

mailto:rkb_mstates@rediffmail.com


R.K. Bhardwaj , Komaldeep Kaur 

 

2882 
 

0N  
: The unit is operative and in normal mode 

sC   
: The unit is in cold-standby mode 

ba /  : Probability that repair / replacement feasible 

UIui FF /  
: Failed unit under inspection /under inspection continuously from previous  state      

URur FF /  
: Failed unit under repair / under  repair continuously from previous state 

URPurp FF /  
: Failed unit under replacement / under replacement continuously from  previous 

state 

WIwi FF /  
: Failed unit waiting for inspection / waiting for inspection continuously  from 

previous state 

WRwr FF /  
: Failed unit waiting for repair / waiting for  repair continuously from   previous 

state 

Mm PP /  : The unit is under preventive maintenance/ under preventive maintenance  

continuously from previous state 

Mm WPWP /  : The unit is waiting for preventive maintenance/ waiting for preventive    

maintenance continuously from previous state 

)(/)( tZtz  : pdf / cdf of failure time of operative unit 

)(/)( tSts  : pdf / cdf of failure time of cold-standby unit 

)(/)( tOto  : pdf/ cdf of maximum operation time 

)(/)( tHth  : pdf / cdf of inspection time of unit 

)(/)( tGtg  : pdf / cdf of repair time of unit 

)(/)( tFtf  : pdf / cdf of replacement time of unit 

)(/)( 11 tMtm

 

: pdf/ cdf of preventive maintenance of unit 

)(/)( tQtq ijij  : pdf/cdf of first passage time from regenerative state iS  to regenerative State jS  

or failed state jS  without visiting any other regenerative state in ( t,0  

)(/)( .. tQtq krijkrij

 

: pdf/cdf of first passage time from regenerative state iS  to regenerative state jS  

or failed state jS  visiting state 
k

S ,
r

S once in ( t,0  

)(
///

tW
PMRpRI

i

 

: Probability that the server is busy due to inspection/ repair/ replacement/ 

preventive maintenance in the state ES
i
  up to time ‘t’ without making any  

transition to any other state ES
i
 or returning to the same state via one or more states 

ES
i
  

)(ti  : Probability that the system up initially in state ES i is up at time t without 

visiting to any  regenerative state 

)(tM
i

 
Probability that the system up initially in state ES i is up at time t without 

visiting to any  regenerative state 

)(tW
i

 
: Probability that server busy in the state iS  up to time t without making any   

transition to any other regenerative state or returning to the same state via one or more 

non-regenerative states 

]/[][ cs  : Symbol for Laplace-Stietjes convolution/Laplace convolution 

/*~  : Symbol for Laplace- stietjes Transform (LST)/Laplace transform (LT) 

CDF :Cumulative distribution Function 

Pdf : Probability density function 

 

3. System Description And Assumptions 

1. The system consists of two identical units. There are two modes of the units- operable (Normal) or non-

operable (failed). 
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2. At time t=0, the system starts with one unit in active operation mode and another in cold standby.  

3. The standby unit instantly switches into operation at the failure of operating unit, putting the failed 

directly under repair.  

4. At the instant the unit in cold standby mode crosses a pre-specified maximum redundancy time failsjust 

taken for inspectionfor deciding about repair or replacement. 

5. The unit in operation taken under preventive maintenance just after crossing a pre-specified time limit, 

called maximum operation time.  

6. The random variables associated with the model follow arbitrary probability distributions.  

7. All the repairs and switching are perfect. 

 

4. Mathematical Description Of The Model  

In this study, a stochastically failing and renewable system is considered. Figure 1 shows the conceptual 

layout of the system design. Let ,16....,.........2,1,0; =iSi
denote the 

thi state of the system. At the time, 0=t  

the system starts operation in the state
0S . All the possible states are classified into two mutually exclusive and 

exhaustive categories; regenerative and non-regenerative states. It is observed that 
43210  and ,,, SSSSS are 

regenerative states. If ,........,, 210  be the time points at which system enters into 

states veregenerati ofset  ,ESi  and
nX  be the state visited at instant +n i.e. just after the transition at

n , then }states veregenerati ofset  ,;,{ EnX nn  represent Markov renewal stochastic process. The 

transition probability matrix of the associated embedded Markov chain is given by

)()(][ === QQPP ijij . Here )(tQij is the semi-Markov kernel over E such that

] |  ,[)( 11 iXtjXPtQ nnnnij =−== ++  , with non-zero elements ijP , as follows: 

,)()()(

0

01 


= dttStOtzp ,)()()(

0

02 


= dttOtZtsp ,)()()(

0

03 


= dttZtStop

,)()()(

0

10 


= dttZtOtgp ,)()()(

0

15 


= dttOtGtzp ,)()()(

0

16 


= dttGtZtop

,)()()(

0

21 


= dttZtOtahp ,)()()(

0

24 


= dttZtOtbhp ,)()()(

0

11,2 


= dttZtHtop

,)()()(

0

12,2 


= dttHtOtzp ,)()()(

0

130 


= dttZtOtmp ,)()()(

0

137 


= dttMtOtzp

,)()(

0

138 


= dtMtZtop ,)()()(

0

40 


= dttZtOtfp ,)()()(

0

49 


= dttZtFtop

,)()()(

0

10,4 


= dttFtOtzp ,)(

0

51 


= dttgp ,)(

0

63 


= dttgp ,)(

0

171 


= dttmp ,)(

0

183 


= dttmp

,)(

0

93 


= dttfp ,)(

0

1,10 


= dttfp ,)(

0

13,11 


= dttahp ,)(

0

14,11 


= dttbhp ,)(

0

15,12 


= dttbhp

,)(

0

16,12 


= dttahp ,)(

0

3,13 


= dttgp ,)(

0

3,14 


= dttfp ,)(

0

1,15 


= dttfp ,)(

0

1,16 


= dttgp

, 51155.11 ppp =
, 63166.13 ppp =

, 1,1515,1212,215,12.21 pppp =
, 1,1616,1212,216,12.21 pppp =

, 3,1313,1111,213,11.23 pppp =
, 3,1414,1111,214,11.23 pppp = ,71377.31 ppp =

, 83388.33 ppp =

,93499.43 ppp = 1,1010,410.41 ppp =
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 Evidently, 

1,1,1 also 1

,1,1,1,1 ,1

1,161,153,143,1316,1215,1214,1113,111,109383716351

10,4494038373012,211,22421161510030201

=====+=+======

=++=++=+++=++=++

pppppppppppppp

pppppppppppppppp

 

The mean sojourn time in the state ESi  is given by 


==
0

)()( dttTPtEi , where T denotes the 

time to system failure, such that 

,)()()(

0

0 


= dttStZtO ,)()()(

0

1 


= dttZtGtO ,)()()(

0

2 


= dttZtHtO

,)()()(

0

13 


= dttZtMtO 


=
0

4 )()()( dttFtZtO
 

The unconditional mean time taken by the system to transit to any regenerative state jS  when time is 

counted from an epoch of entrance into that state iS   is given by; 




=
0

)}({ tQtdm ijij  

  ,,16.135.1110 =++ mmm ,

214,11.2313,11.2316,12.2115,12.212421 =+++++ mmmmmm ,   

,,

38.337.3130 =+++ mmm ,

410.419.4340 =++ mmm
 

  

All the possible transition states of the system model are as follows: 

The regenerative states: 

( ),,0 so CNS = ( )our NFS ,1= ,     

( )uio FNS ,2= ,   ( ),,3 om NPS =
 

( )urpo FNS ,4=  

The non-regenerative states: 

( ),,5 wrUR FFS = ( )mUR WPFS ,6 = ,    

( )wrM FPS ,7= ,   ( )mM WPPS ,8= ,  

( ),,9 URpm FWPS = ( ),,10 URpwr FFS =  

( ),,11 UIm FWPS = ( ),,12 UIwr FFS =
 

( ),,13 urM FWPS = ( ),14 urpM FWPS =  

( ),,15 urpWR FFS = ( )urWR FFS ,16=  

The expressions for all the measures of system performance can be expressed in terms ofthe transition 

probabilities and the mean sojourn times.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. Possible System States 
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5. Reliability and Meantime to system failure (MTSF) 

Let )(ti  be the cdf of time to system failure i.e. first passage time, starting from the state ESi  up to a 

failed state. Using the theory of regenerative processes, we have the following set of recursive relations for )(ti

: 

 4,3,2,1,0  );()(][)(.....)()()()(

...,,
)(, )(

,........,.,.,, =








+++++=  






itQtstQtQtQtQt

Umlk
UEji

Uf
UEi

fijklmjikljikjijii 

 

Here, jS  is an operative regenerative state to which the given regenerative state iS can transit and kS  is a 

failed state to which the state iS can transit directly. Further, ....., klmjiS denotes the transition of the system from 

state ESi  to ES j  via failed states ......,, mlk SSS .  

For 1=i , we have  


=

+=
6,5

10101 )()(])[()(
j

j tQtstQt   

The left-hand side of this equation shows that the system remains operative ,1 UES   until time t . The 

first term of right-hand side indicates that the system transits from 1S to 
0S at a time less than time t and the 

system completes its operation until the time t , starting from state
0S whereas the second term implies thatthe 

system moves from a regenerative up-state 1S to failed states
5S and

6S .Similarly, all other possible equations 

can be obtained and explained using above general expression. 

Taking LST of above relation (1) and solving for )(
~
0 s , omitting the argument s for brevity,we get: 

]
~~~

[
~~~~~~

1

]
~~

[
~

]
~~

[
~~

]
~~

[
~

]
~~~

][
~~

[
)(

~

210201103003402402

38370310,449240212,211,2022102011615

0
QQQQQQQQQ

QQQQQQQQQQQQQQQ
s

+−−−

++++++++
=

 

 The reliability and mean time to system failure (MTSF) are given by 








 −
= −

s

s
LtRliability

)(
~

1
)( ,Re 01 

 

1

10

0

)(
~

1
lim

D

N

s

s
MTSF

s
=

−
=

→


 

Where 

42402303202121020101 ][  pppppppN +++++=

3003402421100210011 ][1 pppppppppD −+−−=
 

 

 

6. Analysis of Economic Measures 

Let the system entered the regenerative state ,ES
i
  at t=0. Considering ,ES

j
  as a regenerative state to 

which the given regenerative state ,ES
i
 reaches. Now using the above terms the recursive relations for various 

measures of system performance are given as follows: 

 

a. System availability: 

Let )(tAi
= ]0at  ,| at time ,[ = tE

i
StU

i
SP , then using the standard notations given in section 2, 

we have the following expression for the system availability in (0, t]: 
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)2(          4,3,2,1,0);()(......}])()({)([)()(

)(.....,,

,
,.,.,......,.,,)(

=++++= 






itActqtqtqtMtA
j

EUmlk

Eji
lkjikjilkjijiEUii



 

b. Busy period  

Let us define  

] 0at t ES | tat time PMplacement//repair/reinspectionin busy  isP[Server  (t)
I/B/Rp/PM
i

B i ==

 

Now using the simple probability rules we have following expressions for different busy periods of the server 

in (0, t] : 

 

i. Server busy period due to inspection 

  (3)         4,3,2,1,0   );()(  ........})()({)()()(
.,

)(.....,,
,

.,.........,,,,
=++++= 





itBctqtqtqtWtB

I

jklji

EUmlk
Eji

kjilkjiji

I

Ei

I

i


 

ii. Server busy period due to repair 

  (4)         4,3,2,1,0   );()(  ........})()({)()()(
.,

)(.....,,
,

.,.........,,,,
=++++= 





itBctqtqtqtWtB

R

jklji

EUmlk
Eji

kjilkjiji

R

Ei

R

i


 

iii. Server busy period due to replacement 

  (5)      4,3,2,1,0   );()(  ........})()({)()()(
.,

)(.....,,
,

.,.........,,,,
=++++= 





itBctqtqtqtWtB

Rp

jklji

EUmlk
Eji

kjilkjiji

Rp

Ei

Rp

i


 

iv. Server busy period due to preventive maintenance 

  (6)    4,3,2,1,0   );()(  ........})()({)()()(
.,

)(.....,,
,

.,.........,,,,
=++++= 





itBctqtqtqtWtB

PM

jklji

EUmlk
Eji

kjilkjiji

PM

Ei

PM

i


 

c. Expected number of remedial activities 

Let us first define the conditional expectation of the remedial activities done on the system i.e. 

]0= tat time ES | t](0,in unit  of PMirs/repl./insp./repa of [)(/)(/)(/)( i = NoEtPtRtRtI M

i

C

iii

Now using some probabilistic rules we have the following expressions:  

i. Expected number of inspections of the unit 

 )7(            4,3,2,1,0       )};(){(.......})()({)()(
.,

)(.....,,

,
.,.........,,

=+




+++= 





itIstQtQtQtI
jjklji

EUmlk

Eji
kjikljijii

  

ii. Expected number of repairs of the unit 

 )8(            4,3,2,1,0       )};(){(.......})()({)()(
.,

)(.....,,

,
.,.........,,

=+




+++= 





itRstQtQtQtR
jjklji

EUmlk

Eji
kjikljijii



 

iii. Expected number of replacements of the unit 

 )9(            4,3,2,1,0       )};(){(.......})()({)()(
.,

)(.....,,

,
.,.........,,

=+




+++= 





itRstQtQtQtR
C

ijklji

EUmlk

Eji
kjikljiji

C

i


 

iv. Expected number of preventive maintenance of the unit 

 )10(          4,3,2,1,0       )};(){(.......})()({)()(
.,

)(.....,,

,
.,.........,,

=+




+++= 





itPstQtQtQtP
M

ijklji

EUmlk

Eji
kjikljiji

M

i

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Here






=

 Otherwise                                               ;   0
j

S  to
i

S fromeatment repair/ tr a is  thereif ;  1
  

j


 

And 







=

 Otherwise                                                      ;   0

l,........k,
S  via

j
S 

 i
S fromn  transitioa is  thereif ;  1

  
...........,

to

lkji
  

 

7. Steady-State Analysis 

To obtain the steady results we use the method of Laplace/ Laplace-Stieltjes transform. The Laplace-Stieltjes 

transform of a real-valued function f is given by  

)()()]([ sftdfetfL st == 
−

 

The final value formula of Laplace transform states that 

)(lim)(lim
0

ssftf
st →→

=  

Using these formulae, we obtained the expressions for following system performance indices: 

2

2
0

0
00 )]([lim)(lim

D

N
tAsLtAA

st
===

→→
;              

2

3

0000
)]([lim)(lim

D

N
tBsLtBB

I

I

s

I

t

I
===

→→
;     

2

3

0000
)]([lim)(lim

D

N
tBsLtBB

R

R

s

R

t

R
===

→→
;                

2

3

0000
)]([lim)(lim

D

N
tBsLtBB

Rp

Rp

s

Rp

t

Rp
===

→→
;   

2

3

0000
)]([lim)(lim

D

N
tBsLtBB

PM

PM

s

PM

t

PM
===

→→
;         

2

4

0000
)]([lim)(lim

D

N
tIsLtII

I

st
===

→→
;         

2

4

0000
)]([lim)(lim

D

N
tRsLtRR

R

st
===

→→
;            

2

4

0000
)]([lim)(lim

D

N
tRsLtRR

C

C

s

C

t

C
===

→→
;      

2

4

0000
)]([lim)(lim

D

N
tPsLtPP

PM

M

s

M

t

M
===

→→
 

]}      

)({[})](      

)([{}]1[]{[

10036.136.134024

9.432414,11.2313,11.23100237.31300116,12.2115,12.212130

7.314010.413024021306.138.33100224402202

pppppp

ppppppppppppp

pppppppppppppN

++−

++++++++

−++−++=





]}        

)({[})](        

)([{}]1[]{[

10036.136.134024

9.432414,11.2313,11.231002

,

37.31300116,12.2115,12.212130

7.314010.41302402

,

1306.138.33100224

,

402

,

202

pppppp

ppppppppppppp

pppppppppppppD

++−

++++++++

−++−++=





 

]}          

{[)0(]}{][1)[0(

0314,11.2313,11.23

9.4324027.31

*

10116,12.2115,12.212110.4124028.33

*

13

ppp

ppppWppppppppWN
RRR

+++

+++++−=
 

}]1[{)0(
306.138.33102402

*

43
ppppppWN

RpRp
+−= , }]1[{)0(

306.138.331002

*

23
pppppWN

II
+−=  

}]            

[{)0(}][]{1)[0(

0110.412416,12.21

15,12.2121026.13

*

3039.432414,11.2313,11.23025.11

*

33

pppp

ppppWpppppppWN
PMPMPM

+++

+++++−=
 

306.130213,11.2316,12.217.310314,11.2313,11.233002

9.437.31240213,11.2316,12.21100201240210.4124028.334

][][          

]}[]1[]{1[

ppppppppppp

pppppppppppppppN
R

++++−

++++−+−=
 

]}[]1[{
14,11.2315,12.2124306.138.3310024
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Now we can obtain the profit incurred to the system in steady-state viz.

occured)  expenses (total-generated) revenue total(ofitPr =
 

( ) 







+++++++−=

MPMCRpRI

PKBKRKRKIKBKBKBKAKP
0807060504030201000

 

0
K = Revenue per unit up-time of the system 

1
K = Cost per unit time for which server is busy in the inspection of the standby    

2
K   = Cost per unit time for which server is busy due to repair 

3
K = Cost per unit time for which server is busy due to replacement 

4
K = Cost per unit inspection  

5
K = Cost per unit repair 

6
K = Cost per unit replacement  

7
K = Cost per unit time for which server is busy due to preventive maintenance 

8
K = Cost per unit preventive maintenance 

 

8. Graphical Illustrations 

a. Case-1: Weibull Distribution 

Taking shape parameter η=0.5, the pdf for different random variables becomes as follows: 
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Fig. 1: Effect of various parameters on MTSF )5.0( =  

 

 
Fig. 2: Effect of various parameters on Availability )5.0( =  
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Fig. 3: Effect of various parameters on Profit )5.0( =  

 
Fig. 4: Effect of various parameters on Profit )5.0( =  

 

b. Case-2: Exponential Distribution 

Taking shape parameter η=1.0, the pdf for different random variables becomes as follows 

),exp()( ttz  −= ),exp()( tts  −= ),exp()( tto  −= ),exp()( ttg  −=

),exp()( ttf  −= ),exp()( tth  −= )exp()(1 ttm  −= .

0,,,,,, , and 0  t  where  

 

 
Fig. 5: Effect of various parameters on MTSF )1( =  

 
Fig. 6: Effect of various parameters on Availability )1( =  
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Fig. 7: Effect of various parameters on Profit )1( =  

 
Fig. 8: Effect of various parameters on Profit )1( =  

 

c. Case-3: Rayleigh Distribution 

When shape parameter η=2 then the probability distributions reduce to Rayleigh with the pdfs given below:
 

),exp(2)( 2tttz  −= ),exp(2)( 2ttts  −= ),exp( 2)(
2

ttto  −= ),exp(2)( 2tttg  −=

),exp(2)( 2tttf  −= ),exp(2)( 2ttth  −= ),exp(2)( 2

1 tttm  −=

0,,,,,, , and 0  t  where
 

 

 
Fig. 9: Effect of various parameters on MTSF )2( =  

 
Fig. 10: Effect of various parameters on Availability )2( =  

 
Fig. 11: Effect of various parameters on Profit )2( =  
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Fig. 12: Effect of various parameters on Profit )2( =

 
 

8. Discussion On Results 

 

To carry out above graphical study all the random variables are supposed to follow Weibull distribution and 

the following data set is considered:  

a=0.3, b=0.7, α=0.14, β=0.12, γ=0.2, δ=0.07, μ=0.1, ν=0.25, ξ=0.041, ,30000
0
=K ,100K

1
=

,500K
2
= ,700,1000,800,150 ====

6543
KK K K 300=

7
K , 400K

8
= .  

The system performance is studied for three different values of the shape parameter of Weibull distribution 

that exhibit three distinct probability distributions as follows: 

1) 0  1; = 0.5, decreasing failure rate (DFR), fig.1-4. 

2) = 1, constant failure rate (CFR)i.e.case of exponential distribution, fig.5-8. 

3)  1; = 2, increasing failure rate i.e. case of  Ryleigh distribution, fig.9-12. 

In all three cases, we observed that MTSF, Availability and Profit declines with increasing value of failure 

rate. When we fixed the values of other parameters, the values of all these indices go up as value of any of the 

parameters viz. inspection rate; α=0.14 to α=0.3, repair rate; β=0.12 to β=0.2, replacement rate; γ=0.2 to γ =0.4 

or the preventive maintenance rate; =0.25 to =0.3 increases. All these indices declines with increasing value of 

μ (Maximum redundancy time) and rate at which operative unit goes under preventive maintenance (maximum 

operation time). Figure 4, 8 and 12 gives the cutoff points for profit against revenue per unit up time of system. 

In case of η=0.5, the trend lines of α = 0.3 decline sharply than the lines corresponding to β = 0.2 for λ 0.02. It 

means that replacement works better as compare to inspection after failure rate 0.02. In case of η=1, the trend 

lines of α = 0.3 decline sharply than the lines corresponding to β = 0.2 for λ 0.04. In case of η=2, the trend lines 

of α = 0.3 decline sharply than the lines corresponding to β = 0.2 for λ 0.06.  

 

 

9. Conclusion and Future Directions 
 

This paper analyzed a two-unit cold standby system with limits on maximum redundancy time for the 

standby and maximum operation time for the operative unit. The discrete state-continuous time Markov 

regenerative processes are used to develop and analyze the model. The standby unit went under inspection for 

checking the practicability of repair or replacement after surpassing the maximum redundancy time limit. On the 

other hand, preventive maintenance is used on the operative unit just after crossing the maximum operation time 

limit. The grapgical trends obtained for various measures of system performance underlined the proven facts 

thatsystem performance declines with failures and uprises with remedial activities, that advocate for the 

model’spracticality.  

 

For future research, the prospective option may be the generalization of this model considering m-operative 

and n-standby components.The assumption of independence of all random variables maybe relexed for more 

realism. 
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