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Abstract: All through the life-cycle of a standby system, it is verychallenging to keep a standby unit workable.It
may be fatalif the standby found non-workablewhen needed.This paper evaluates the performance of a standby
systemworking under two primary constraintsby underlining the condition of the spare unit in standby mode. The
first constraint is the maximum redundancy time for the standby and the second is maximum operation time for
the operating unit.The standby unit failson exceeding the maximum time threshold andthereafterthe decision
about its repair/replacement is subjected tothe inspection. While after surpassing the maximum operating time
limit preventive maintenance is carried outfor the operating unit.To study the long-run performance or life-cycle
of the system various performance indices have been analyzed usingthe theory of discrete-state continuous-time
semi-Markov regenerative processes.Exponential, Rayleigh and Weibull probability distributions are used to
study the system performance numerically.
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1. Introduction

In everyday life, we come across many systems equipped with redundant units to facilitate the smooth
functioning andensuringhigheravailability and system reliability. For instance, the spare engine in a jet
fighter,alternate power supply in an Intensive Care Units, redundant safety installation in an atomic power plant,
parallel lines in a communication network, parallel service counter in a bankand many more.Though the
provision of a spare componentguarantees reliability, availability and even safety in some cases but side by side
put challenges to the budgetary resources. Despite all financial obligations, however, there are many safety
installations where risk cannot be taken with reliability, in any case.Therefore, the provision of standby remains
popular among safety and reliability professionals[ see [1], [2], [3], [4], [5]]. An essential thing about a standby
system is that it can be restored if and only if the spare unit found perfectly operable. In all the above studies, it is
commonly assumed that the standby unit always found operable when needed.lIs it practically correct? There is
no doubt that the active operating load on standby unit in a cold-standby system is not equal to that of an
operating unit, but this factor alone cannot be assumed responsible for the current state of standby. Indeed, the
state of standby depends firstly onthe local environment andsecondly on the ways of its handling[[6], [7]].So
depending upon such factors the standby unit may or may not found operable. If not thenthere would be adverse
consequences. Therefore, the study of standby systems with the possibility of standby failure becomesvery
muchsignificant.Earlier, this issuehasbeen discussedhardly [[8], [9], [10] ].Furthermore,no preventive measures
are takenbeforethe system failure. It is either repaired or replaced at itsfailure. In particular, the preventive
maintenance plan can better improve the system performance [[11], [12], [13]]. Keeping this fact in view this
paper analyzes a stochastic model of a cold standby system incorporating the idea of pre-failure preventive
maintenance of the operative unit after crossing a pre-specified time limit, termed as maximum operation
time.This paper presents the analysis of a two-unit cold standby system using the theory of discrete-state
continuous-time Markov regenerative processes[[14], [15], [16]]. The system works under two constraints
namely maximum redundancy time for the standby unit and maximum operation time for the operative unit.
Upon crossing a pre-defined threshold time limit the standby fails and passes through inspection for deciding
about its repair or replacement whereas the operative unit be given preventive maintenance aiming at enhancing
system performance. The practical importance of theoretical results is shown in a particular case using Weibull
distribution [[17],[18]].

2. Acronyms and Notations
E/E : The set of regenerative/ Non-regenerative states

: The set of up-states/ down states
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Ng

CS

alb

F./F,
F,/Fxe
Furp / Fure
FWi / |:WI
F../Fir
P, /Py
WP, /WP,,

2()/ Z(t)
s(t)/S(t)
o(t) /O(t)
h(t)/ H (t)
g(t)/G(t)
f(t)/F(t)

m, (1) / M (1)

q; (6)/Q; (®)
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: The unit is operative and in normal mode
: The unit is in cold-standby mode

: Probability that repair / replacement feasible
: Failed unit under inspection /under inspection continuously from previous state

: Failed unit under repair / under repair continuously from previous state

: Failed unit under replacement / under replacement continuously from previous
state

. Failed unit waiting for inspection / waiting for inspection continuously from
previous state

: Failed unit waiting for repair / waiting for repair continuously from previous
state

. The unit is under preventive maintenance/ under preventive maintenance
continuously from previous state

. The unit is waiting for preventive maintenance/ waiting for preventive
maintenance continuously from previous state

: pdf / cdf of failure time of operative unit

: pdf / cdf of failure time of cold-standby unit

: pdf/ cdf of maximum operation time

: pdf / cdf of inspection time of unit

: pdf / cdf of repair time of unit

: pdf / cdf of replacement time of unit

: pdf/ cdf of preventive maintenance of unit

. pdf/cdf of first passage time from regenerative state Si to regenerative State S j

or failed state Sj without visiting any other regenerative state in (0, t]

qij_kr(t)/ Qij,kr(t) . pdf/cdf of first passage time from regenerative state Si to regenerative state S j

£ (t)

M, ()

W, (0

[s1/[c]
~ /*
CDF
Pdf

I/R/Rp/PM
t)

or failed state Sj visiting state S, , S once in (0, t]

. Probability that the server is busy due to inspection/ repair/ replacement/
preventive maintenance in the state S; € E up to time ‘t" without making any

transition to any other state S; € E or returning to the same state via one or more states
S, € E

. Probability that the system up initially in state Si eEis up at time t without

visiting to any regenerative state

Probability that the system up initially in state SiE Eis up at time t without

visiting to any regenerative state

. Probability that server busy in the state Si up to time t without making any

transition to any other regenerative state or returning to the same state via one or more

non-regenerative states
: Symbol for Laplace-Stietjes convolution/Laplace convolution

: Symbol for Laplace- stietjes Transform (LST)/Laplace transform (LT)

:Cumulative distribution Function
: Probability density function

System Description And Assumptions

1. The system consists of two identical units. There are two modes of the units- operable (Normal) or non-
operable (failed).
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2. Attime t=0, the system starts with one unit in active operation mode and another in cold standby.
3. The standby unit instantly switches into operation at the failure of operating unit, putting the failed
directly under repair.

4. At the instant the unit in cold standby mode crosses a pre-specified maximum redundancy time failsjust
taken for inspectionfor deciding about repair or replacement.

5. The unit in operation taken under preventive maintenance just after crossing a pre-specified time limit,
called maximum operation time.

6. The random variables associated with the model follow arbitrary probability distributions.
7. All the repairs and switching are perfect.

4. Mathematical Description Of The Model
In this study, a stochastically failing and renewable system is considered. Figure 1 shows the conceptual

layout of the system design. LetS,;i =0,1,2,............ 16, denote the i™ state of the system. At the time,t =0
the system starts operation in the state S . All the possible states are classified into two mutually exclusive and
exhaustive categories; regenerative and non-regenerative states. It is observed that S,,S,,S,,S; and S, are
regenerative  states. If  7,,7,,7,,........ be the time points at which system enters into
S, € E, set of regenerative statesand X, be the state visited at instant 7, +i.e. just after the transition at

7, then{X,,7,;n € E, set of regenerative states} represent Markov renewal stochastic process. The
transition  probability ~matrix of the associated embedded Markov chain is given by
P=[R]1=Q;()=Q(x).  HereQ;(t)is the  semi-Markov  kernel ~ overEsuch that

Q; (t) =PIX,,; = J, 7,y —7, <t| X, =1i], with non-zero elements B; , as follows:

Po1 = IZ(t)a(t)S_(t)dt, Po2 = jS(t)Z(t)(S(t)dtl Po3z = jo(t)s_(t)z_(t)dt,
0 0 0
P1o = Tg(t)a(t)z_ ()dt, pis = TZ(t)f? (O (t)dt, pis = To(t)z_ ®G (t)dt,
0 0 0

Po1 = Tah(t)ﬁ (t)Z (t)dt, pas = Tbh(t)5 (DZ (B)dt, por = To(t)ﬁ(t)z_ (t)dt,
0 0 0

P21z = [ 2O MH AL, pao = [M OO MZ B)dt, psr = [2(®O (H)M:(t)dlt,
0 0 0

0

pss = [O(t)Z (YMidt, pao = [ (O (MZ (1), pas = [o(t)F (H)Z (t)dt,
0 0 0

pazo = [ 2O MF (W)dt, ps; = [ gL, pes = [ g()dlt, prr = [mu(t)dt, pss = [ (t)ct,
0 0 0 0 0

Po3 = J‘ f(t)dt, pios = I f(t)dt, pris = Iah(t)dt, P14 = jbh (t)dt, pi2gs = Ibh (t)dt,
0 0 0 0 0

P1216 = Iah(t)dt, P13z = Ig(t)dt, Praz = _[ f(t)dt, pis1 = I f(t)dt, pis1 = Ig(t)dt,
0 0 0 0 0

P15 = P1sPs1 Pize = P16 Pes, Par1215 = P212P1215 P15y Parizge = P212Pi216 Pisa
P231113 = P211P1113P133 P23i11a = P211P1114aPras Pa17 = Pa7 P71y Pagzs = PasPes,

Pa39 = PagPo3s Par10 = Pa10Pioz
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Evidently,
PoutPotPos =1 Pio+Pis +P1s=1 Poy + P2+ PositPory =L P+ Py + Psg =L Pyg+PagtPaso =1

P5i=Pe=P7= Pgs = Poz = Pioy =1lalso Pi11s + Piraa =1 Pi21s t Pize =1 Piss = Piaz = Piss = Pisa =1

00
The mean sojourn time in the state S; € E is given by 14;= E(t) = J.o P(T >t)dt, where T denotes the

time to system failure, such that

Ho = [OMZMS O, 44 = [OMGOZ (t)dt, 1, = [OOHOZ (),
0 0 0

s = [OOMOZ O, 4, - [DOZOF Qe
0 0

The unconditional mean time taken by the system to transit to any regenerative state Sj when time is

counted from an epoch of entrance into that state Si is given by;
00
my;= [ td4Q; (0}
mlO + m11.5 + I’nl3.6 = IUi’ I’nZl + m24 + m21.12,15 + m21.12,16 + m23.11,13 + m23.11,14 = :u2 ’
My ++Myy 7+ My g = Lz, Myg +Myz g +Myy 39 = 14

All the possible transition states of the system model are as follows:
The regenerative states:

SO: (NO’CS)’ Si= (Fur’No)’
Sy= (No’Fui)r Sg= (Pm’ No)'
S,= (No' Furp)

The non-regenerative states:

Sg= (FUR’ Fur )1 Sg = (FUR!WPm)'
S7=(Pum.Fur), Sg=(Py,WPy),
59: (\Npm!FURp)’ 810: (F Wr1FURp)1
Sy= (me’ Fu )’ Sip= (er1 Fui )’
S15= WPy, F, ), Siu= WPy Fupy )
Si5= (FWR ' Furp )! Si6= (FWR ' Fur)

The expressions for all the measures of system performance can be expressed in terms ofthe transition
probabilities and the mean sojourn times.
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5. Reliability and Meantime to system failure (MTSF)
Let ¢| (t) be the cdf of time to system failure i.e. first passage time, starting from the state Si €eEuwtoa

failed state. Using the theory of regenerative processes, we have the following set of recursive relations for(/ﬁ, (t)

je(EnU) ie(ENU)
I,m...eU feU

é(t) = Z Q; (t) + Qi i« (t)+ Qi,j.kl(t) Fot Q ki (t)}[s]¢j (t)+ ZQi,f (t); 1=01234

i
k,

Here, S j is an operative regenerative state to which the given regenerative state Si can transit and Sk is a

failed state to which the state Si can transit directly. Further, S denotes the transition of the system from

i, jkim....
state S; € E to S; € Evia failed states S5, Sy

Fori =1, we have

¢1(t) =Qyp (t)[S]¢0 (t) + ZQlj (t)

j=5,6

The left-hand side of this equation shows that the system remains operative S1 € ENU, until timet. The
first term of right-hand side indicates that the system transits from Sl to SO at a time less than timetand the
system completes its operation until the timet, starting from state S0 whereas the second term implies thatthe

system moves from a regenerative up-state S1 to failed states S and S .Similarly, all other possible equations
can be obtained and explained using above general expression.
Taking LST of above relation (1) and solving for¢0 (s) , omitting the argument s for brevity,we get:

[615 + 616][601 + éozézi] +~602~[62,11~+ 6~2,12] +~602§24 [6:19 t 64,10] + 603 [637 + 638]
1-Qp2Q24Q40 — Qu3Q30 — Quo[Qo1 + Q02 Q21 ]
The reliability and mean time to system failure (MTSF) are given by

Reliability R(t) = L—l{iso(s)}

Bo(s) =

MTSE = lim 1=%0() _ N1
s—0 S D]_
Where

N; = g +[Poy + Poa Pl + Poatts + Postis + Poz Paskty
Dy =1— PosPio = Po2l P10 Paz + Pag Pao ] — Poz P3o

6. Analysis of Economic Measures
Let the system entered the regenerative state S; € E, at t=0. Considering Sj € E, as a regenerative state to

which the given regenerative state S, € E, reaches. Now using the above terms the recursive relations for various

measures of system performance are given as follows:

a.  System availability:
Let A(t)= P[Si eU,attimet| Si € E,att=0], then using the standard notations given in section 2,

we have the following expression for the system availability in (0, t]:
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AO=M_6®+ X 00,0+, {6, 0+, O+ JOAi=01234 (2

i,jeE o
k,I,m....e(U NE)

b. Busy period
Let us define

B:/B/Rp/PM (t) = P[Server is busy in inspection/repair/replacement/PM at time t|S, e Eat t=0]

Now using the simple probability rules we have following expressions for different busy periods of the server
in (0, 1] :

i Server busy period due to inspection
BO-W. 0+ 3,046, {0,000, O OB @ 1-01234 (@

i,jeE
k,I,m....e(U NE)

ii. Server busy period due to repair
R R R .
B, ()=W O+ z {qi’j )+ 5i’j’k’|__.____.{qi’J..k )+ qi’j.kl(t) F e }}(C)Bj (t); i=01234 4

i,jeE o
k,I,m....e(UNE)

iii. Server busy period due to replacement
Rp Rp Rp .
B, (t)=W,, (t)+' Z {qi,j(t)+5i,j,k,|.........{qi,j.k (t)+qi,j.kl(t)+ ........ }}(c)Bj t); 1=01234 (5

i,jeE o
k.I,m....e(UNE)

iv. Server busy period due to preventive maintenance
PM PM PM .
B, O=W_ O+ z {qiyj (t)+5i,j,k,|.........{qi,j.k O+ qiyj.kl(t)+ ........ }}(c)Bj t); 1=01234 (6)

i,jeE o
k.I,m....e(UNE)

c.  Expected number of remedial activities
Let us first define the conditional expectation of the remedial activities done on the system i.e.

I.(t)/ R (t)/RE (t)/ P (t) = E[No of insp./repars/repl.PM of unitin (0,t]|S; € Eat timet =0]

Now using some probabilistic rules we have the following expressions:
i Expected number of inspections of the unit

L= ¥ {Qi‘j(t)+6i]jlk| ........ Q; O+Q O+ }}(s){5j+lj(t)}; i=01234  (7)

K\m...<TE)
ii. Expected number of repairs of the unit
R, (t) = ] > {Qi,j (t)+5i,j.k| ........ {Qi,j.k )+ Qi’j.kl(t)+ ....... }}(s){ch + Rj(t)}; i=01234 8)
i,je
k,JI,m.....e(lij)
iii. Expected number of replacements of the unit
c c .
R (t):_ . > {Qi,j(t)’L5i,j.k| ........ {Qi'j.k )+ Qi,j.kl(t)+ ....... }}(s){&j +R ()} 1=01234 9)
i,je

k,I,m....(U ~E)

iv. Expected number of preventive maintenance of the unit

M M .
P = Z {Qi’j ®+ 6i,j.k| IIIIIIII {Qi,j.k )+ Qi,j.kl ®+....... }}(S){é‘j +B (O} i=01234 20)
i,jeE o
k,I,m....e(U NE)
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1 ;if thereis a repair/ treatment fromS. t0 S.
Hereo ;. = I

0 ; Otherwise
1 ;if thereis a transition from Si to Sj via Sk |

0 ; Otherwise

7. Steady-State Analysis

To obtain the steady results we use the method of Laplace/ Laplace-Stieltjes transform. The Laplace-Stieltjes
transform of a real-valued function f is given by

L[ (©)]= [e™df (t) = f(s)
The final value formula of Laplace transform states that
!im f(t)= |irT(]) sf (s)

—o s—

Using these formulae, we obtained the expressions for following system performance indices:
|

) ) N I | I N
=lim A, (t) = lim sL[A, ()] = —%: =i =i =3,
A, = lim A (t) =lim sL[A, (t)] D, By = 1im By () = limsL{B, (O] =~
R Rp
R . R . R N, Rp . Rp . Rp N,
B, = limB, (t) = limsL[B, (t)]=D—2, By =limB; (t)=limsL[B, (t)]:D—Z,
PM |
8™ _iimB™ ) = limsB™ 1= 2 : 1 = lim 1 ()= limsL[l ()] = % -
0 _tl—>r2 0 ()_sI—T)S[O 1= D2 ’ 0 5w 0V 550 0 _D2’
R C
] . N, c . c . c N,
Ry = im R, (t) = limsLIR, (t)] =D, Ry =limR, (1) = limsL[R, (V)] :D_2 ;
PM

—I. t —I. L M )] = N4
P imP imsL[P
0 t 0 () S0 [ 0 ()] D

2
N, = Lag + 4, Py + 14 Py Pop Py [1= Pag g1+ Pig 6 Pag 3+ 2440y P4 (Pg Pyt 19— Pag Py 7)
+ Pao (Poy + Poy 10,15 T Poy 123601+ Poy Pag + Pag 73+ 5[ Pop{Pyg (Pog 1143 + Pog 1114 + Py Pagg)

= PPy p13_6}+ P36+ Pos plO]
D, =[x, + ﬂ’2 P + ﬂlt P Pop Py L= Py g1+ P36 P3o} + ”i{ Po2LPas (P Py 10 = Pag Py 7)

+ p30([)21 + p21.12,15 + p21.12,16 )] + pOl p30 + p31.7}+'ui;[pOZ{plo(pB.ll,lS + p23.11,14 + p24 p43.9)

= Py Py p13.6}+ P36 T Pog plO]

*

R R” R
Ny, =W, OR- p33.8][p02{p24 Para0 ¥ P2 ¥ Pyppas + p21.12,16}+ p01]"'W1 ©) p31.7[p02{pz4 Pusg
T Pya1g3 t p23.11,14}+ pos]

Rp Rp™ I 1
Ny =W, (0)Pg, Py {Pioll = Pyz gl + Pia g Pyt Ny =W, (0)PpoyiPyg[l = Paz gl + Pis g Pk

PM PM * oM *
N, =W, O~ p11.5]{p02[pzs.11,13 + Px1114 1 P Pagolt P+ W5 (0)P3 6Py, [Py + P21.1215

+ p21.12,16 + p24 p41.10]+ pOl}

R
N4 = [1_ p33.8]{p02 p24 p41.10 + p02 [1_ p24:I + pOl + p02 plO[le.12,16 + p23.11,13]}+ p02 p24 p31.7 p43.9

- p02 p30[p23.11,13 + p23.ll,14] + p03 p31.7 + [p21.12,l6 + p23.1l,13] pOZ p13.6 p30

C I
N4 = poz{plo [1- p33.8] + Pz pao}[p24 + p21.12,15 + p23.11,14]' N4 = poz{plo[l_ p33.8] * Pige pso}
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PM
N, =0 PyslPy Py 1115 T Posarna + Pag Pago]+ Pogdt Pugg{PrlPoy + Pt 135 + Par o6

+ p24 p4l.10] + pOl}
Now we can obtain the profit incurred to the system in steady-state viz.
Profit = (total revenue generated) - (total expenses occured)

( ) | R Rp c PM M
=\KoA )-| KBy +K,By +K By +K, Iy + KR+ KRy +K, By +K.Fy

K0 = Revenue per unit up-time of the system
K, = Cost per unit time for which server is busy in the inspection of the standby

K, = Cost per unit time for which server is busy due to repair

K = Cost per unit time for which server is busy due to replacement

K, = Cost per unit inspection

K¢ = Cost per unit repair

K6 = Cost per unit replacement

K = Cost per unit time for which server is busy due to preventive maintenance

K8 = Cost per unit preventive maintenance

8. Graphical Illustrations
a. Case-1: Weibull Distribution
Taking shape parameter n=0.5, the pdf for different random variables becomes as follows:

2(t) = %exp(—wf), s(0) =S exp(-u), off) = %EXD(—cfx/f),

g(t) = \/—eXIO( ),

f(t) = —L=exp(~yt), ht) =

o exp( at), m1<t>——exp(—uf t),

MTSF V/S FAILURE RATE

500 - S

50 MTSF(7=0.5, =03, b=0.7, a=0.14, $=0.12, 7=0.2, 1=0.25, £=0.041, =0.1)

[~=MTSF
—*-MTSF(a=0.3)

Failure Rate

Fig. 1: Effect of various parameters on MTSF (;=0.5)

AVAILABILITY V/S FAILURE RATE

== AVAIL
AVAIL( 0.5, 2=0.3, b=0.7, @=0.14, =0.12, v=0.2, v=0.25, £=0.041, ;1=0.1)| ~*~AVAIL( a=0.3)
AVAIL( 5=0.2)
A= AVAIL( 7=0.4)
%= AVAIL( =0.3)
AVAIL( £=0.06)
—9- AVAIL( ;1=0.5)

03
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
Failure Rate

Fig. 2: Effect of various parameters on Availability ¢; =0.5)
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PROFIT V/S FAILURE RATE

P(3=0.5, 2=0.3, b=0.7, a=0.14, #=0.12, y=0.2, y=0.25, £=0.041, 4=0.1)

=P
——P(a=0.3) |

P(f=0.2)
A P(1=0.4) |
“¥-P(v=03)

P(£=0.06)[
-P(u=0.5) ||

I
0.01 0.02

I I
0.03 0.04

0.05 0.06 0.07 0.08 0.09
Failure Rate

Fig. 3: Effect of various parameters on Profit (; =0.5)

PROFIT V/S REVENUE

P
——P(a=0.3)
300 P(3=0.2)
—AP(7=0.4)
“¥-P(=0.3)
P(£=0.06)
—-P(u=0.5)

Profit

P(77=0.5,2=0.3,b=0.7, a=0.14, $=0.12, 7=0.2, 1=0.25, £=0.041, u=0.1) J

Fig. 4: Effect of various parameters on Profit (; =0.5)

b. Case-2: Exponential Distribution

Taking shape parameter n=1.0, the pdf for different random variables becomes as follows

2(t) = Aexp(=At), s(t) = uexp(-ut), o(t) = Sexp(=ct), g(t) = Sexp(-/),

f (t) = yexp(—nt), h(t) = aexp(-at), m,(t) = vexp(-ut).

where t>0andn, A, 1,0, 5,7, a,& >0

MTSF V/S FAILURE RATE
——— T T -
MTSF(7=1, =03, b=0.7, @=0.14, =0.12, 7=0.2, 1=0.25, £&=0.041, u=0.1)

. T T T U B L
0.01 0.02 0.03 0.04 0.05 0.06
Failure Rate

0.07

[—MTSF
—~MTSF(a=0.3)
MTSF(3=0.2)
A= MTSF(7=0.4)
~¥-MTSF(v=0.3)
MTSF(£=0.06)

~—MTSF(p=0.5)

0.08 0.09

Fig. 5: Effect of various parameters on MTSF (7 =1

085

Availability
a5

05

0450

AVAILABILITY V/S FAILURE RATE
S o S ———

AVAIL( =1, a=0.3, b=0.7, a=0.14, 3=0.12, v=0.2, v=0.25, £=0.041, p=0.1)

e S S S W
0.01 0.02 0.03 0.04

Fig. 6: Effect of various parameters on Availability ¢; =1

10t PROFIT V/S FAILURE RATE
e R LI LA B T

P(7=1,2=0.3, b=0.7, a=0.14, #=0.12, 7=0.2, 1=0.25, £=0.041, u=0.1)

Profit

~fw—AvaIL
—#—AVAIL( a=0.3) [/

AVAIL( $=0.2)
A= AVAIL( 7=0.4) |
=¥~ AVAIL( 1=0.3)

AVAIL( £=0.06)
- AVAIL( 4=0.5) ||
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Fig. 7: Effect of various parameters on Profit ¢; =1
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Fig. 8: Effect of various parameters on Profit ¢; =1

c. Case-3: Rayleigh Distribution
When shape parameter n=2 then the probability distributions reduce to Rayleigh with the pdfs given below:

2(t) = 24t exp(—At2), S(t) = 24t exp(~44?), ot) =2 texp(-a ). g(t) = 2/Aexp(—A2),
f(t) = 2texp(—3t*), h(t) = 2atexp(~at®), m,(t) = 2vtexp(-ut?),
where t>0andn, A, 1, &, B, 7, a,0>0
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Fig. 9: Effect of various parameters on MTSF (; =2)
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Fig. 10: Effect of various parameters on Availability ¢;=2)
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Fig. 11: Effect of various parameters on Profit ¢; = 2)
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Fig. 12: Effect of various parameters on Profit ¢; =2)

8.  Discussion On Results

To carry out above graphical study all the random variables are supposed to follow Weibull distribution and
the following data set is considered:

a=03, b=07, a=0.14, B=0.12, y=0.2, 8=0.07, p=0.1, v=0.25, £=0.041, K =30000, K =100,
K, =500, K, =150,K , =800,K =1000,K , =700, K. =300, K_ = 400.

The system performance is studied for three different values of the shape parameter of Weibull distribution
that exhibit three distinct probability distributions as follows:

1) 0<n<1; n=0.5, decreasing failure rate (DFR), fig.1-4.

2) m=1, constant failure rate (CFR)i.e.case of exponential distribution, fig.5-8.

3) m>1;m=2, increasing failure rate i.e. case of Ryleigh distribution, fig.9-12.

In all three cases, we observed that MTSF, Availability and Profit declines with increasing value of failure
rate. When we fixed the values of other parameters, the values of all these indices go up as value of any of the
parameters Vviz. inspection rate; a=0.14 to a=0.3, repair rate; f=0.12 to p=0.2, replacement rate; y=0.2 to y =0.4
or the preventive maintenance rate; v=0.25 to v=0.3 increases. All these indices declines with increasing value of
u (Maximum redundancy time) and rate at which operative unit goes under preventive maintenance (maximum
operation time). Figure 4, 8 and 12 gives the cutoff points for profit against revenue per unit up time of system.
In case of n=0.5, the trend lines of a = 0.3 decline sharply than the lines corresponding to B = 0.2 for A> 0.02. It
means that replacement works better as compare to inspection after failure rate 0.02. In case of n=1, the trend
lines of o = 0.3 decline sharply than the lines corresponding to f = 0.2 for A> 0.04. In case of n=2, the trend lines
of a = 0.3 decline sharply than the lines corresponding to f = 0.2 for A> 0.06.

9. Conclusion and Future Directions

This paper analyzed a two-unit cold standby system with limits on maximum redundancy time for the
standby and maximum operation time for the operative unit. The discrete state-continuous time Markov
regenerative processes are used to develop and analyze the model. The standby unit went under inspection for
checking the practicability of repair or replacement after surpassing the maximum redundancy time limit. On the
other hand, preventive maintenance is used on the operative unit just after crossing the maximum operation time
limit. The grapgical trends obtained for various measures of system performance underlined the proven facts
thatsystem performance declines with failures and uprises with remedial activities, that advocate for the
model’spracticality.

For future research, the prospective option may be the generalization of this model considering m-operative
and n-standby components.The assumption of independence of all random variables maybe relexed for more
realism.
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