
 

Turkish Journal of Computer and Mathematics Education       Vol.12 No.2 (2021), 2771-2780 

Research Article    

2771 

 

 

Incomplete Information And Columns-Based Intelligent Systems 
 

Chesnokov A.M 

 
1Cand. Sc., Institute of Control Sciences of RAS, Moscow 
1alex-ches@yandex.ru 

Article History: Received: 11 January 2021; Accepted: 27 February 2021; Published online: 5 April 2021  
 

Abstract: The paper considers columns-based intelligent systems that work under conditions of incomplete information, that 

is, input patterns are represented by their sub-patterns. The definition of direct and inverse problems under incomplete 

information is given. The solution of these problems is shown using the method of element-wise comparison of patterns and 

the intersection method. A relation between system’s ability to work under incomplete information and prediction is shown. 

Keywords: artificial intelligence, columns-based intelligent systems, column, incomplete information, prediction. 

 

1. Introduction 

Column-based intelligent systems are an example of systems whose main function is to memorize patterns. 

Such systems have not become widespread, since at first glance it seems that such systems, apart from 

memorizing patterns, cannot solve any other problems. Column-based intelligent systems show that this is not 

the case at all.  

 

Column-based intelligent systems are the systems considered within the following model [1, 2]. 

There is, albeit a very large, yet a finite set of names U , intended for naming objects of arbitrary nature. 

Without loss of generality, the set of names U  is considered to be a subset of the set of integers Z .  

 

In a set of names U  disjoint subsets are distinguished, called name domains. The number of name domains 

allocated is not constant. New name domains can be introduced at any time, and additional elements can be 

added to any name domain. The allocation of name domains in real subject areas can be caused by various 

reasons (for example, typification). One of the main reasons is the need to make sure that there are no random 

name conflicts in different parts of a large-scale system. 

 

Any finite set of names belonging to one or another name domain is called a pattern.  

Patterns of any set of patterns P  can be renumbered using the names of some name domain U  : 

 

{ | }iP p i U =  . 

 

An ordered pair ( , )ii p  is called a column. A column is designated as ( | )ii p , where i  is the column name, 

ip  is the column pattern. Also used notation ii p→ . In this case, it says that the column name i  is a reference 

or a pointer to a column pattern ip . In turn, about the pattern ip  itself it will be said that this pattern has a name 

i  or known by the name i .  

 

The mapping : ii p →  is called name mapping. By default, the name mapping is considered to be one-to-

one. All cases when this is not the case are discussed separately. 

To name an pattern p  with a name i , or assign a name i  to the pattern p , means that the definition of the 

name mapping   an addition is made such that ( )i p = . 

 

A name i , that has not yet been used for naming patterns is called a pure, or empty name. It can be thought 

of as a column with an empty pattern, i.e. a column ( | )i   or i → , where   is an empty set.  

 

Column patterns include other column names as well as pure names. Therefore, a column pattern is entirely 

composed of the names of other columns, each of which serves as a pointer to the corresponding pattern, 

possibly empty. In turn, any name from a non-empty pattern also points to its own pattern, etc. The result is a 

complex column structure. 

 

mailto:alex-ches@yandex.ru


Chesnokov A.M. 

 

2772 

 

An index is any finite set of columns. The composition of any index can be changed by adding or removing 

columns. These operations are called index addition and subtraction and are denoted by + and −. In the example 

below, to the index A , l  columns ( | )k ki p  are added: 

 

1

( | ) .
l

k k

k

A i p
=

+     

 

Obviously, the index can be represented in the form of a table consisting of records of the form “column 

name – names included in the column pattern”. Such a table in vertical form is composed of columns of variable 

height. In the bottom row of the table, under the line, are the names of the columns. All names included in the 

column pattern are listed above the name of each column. By default, column names and names in patterns are 

assumed to belong to different name domains. 

If the patterns are unordered sets of names, then the order of the names in the column patterns can be 

arbitrary. Below, as a simple example, an index A  with patterns in the form of unordered sets, consisting of 

three columns  (1|{1, 3}) , (1|{2, 3, 4})  and (3 |{4, 5}) , is given. 

 

                A 

 4  

3 3 5 

1 2 4 

1 2 3 
 

If the patterns are ordered, then the names in the column patterns are recorded in a certain order, for example, 

from the bottom up, i.e. the first name of the pattern in the first row above the line, the second in the second row, 

etc. This writing order is adopted in this article and in other works devoted to column-based intelligent systems. 

 

An column-based intelligent system is one or more indexes and a mechanism that operates on them, called a 

column engine. Receiving information about the external world in the form of patterns, the column engine forms 

new columns, modifies existing ones, deletes unnecessary ones, and performs all other operations with columns. 

 

Knowledge in the systems under consideration is represented using columns, and the process of accumulating 

knowledge is based on memorizing new patterns under certain names. Obviously, elementary basic problems, 

without the solution of which the functioning of such a system is impossible, are the direct problem (given a 

pattern, obtain its name) and the inverse problem (given a name, obtain the corresponding pattern). 

Memorization of new patterns is carried out as a part of the direct problem. If when solving this problem a 

nameless pattern is found, then the column engine assigns a certain name to it and saves the corresponding data. 

 

From a formal point of view, memorizing any pattern under a certain name always means the formation of 

the corresponding column ( | )ii p . At the same time, this does not mean that the data will be stored in this form 

inside the system. The internal representation of the stored data is determined only by the method of solving 

basic problems and the way of its implementation. Internal representation may differ significantly from the 

formal column description ( | )ii p . An example of a method for which the formal description coincides with the 

internal data representation is the method based on element-wise comparison of patterns [1, 2]. In other cases a 

formed column ( | )ii p
 
most probably will be stored in an implicit form, and solving basis problems will not 

only show its existence, but will also help to receive its pattern by the column name, and a column name, by its 

pattern. 

 

By solving basic problems, the column engine actually implements the following links ip i→  in the direct 

problem and ii p→  in the inverse problem. This provides the basis on which to build the solution to all other 

problems. The solution to any such problem is essentially a chain of links until the result is obtained.  

 

Since in the considered model everything is finite, the solution to basic problems always exists. Thus, a 

universal method of solving them is the afore-mentioned method of element-by-element pattern comparison. 

From the theoretical standpoint, this is enough to estimate the possibilities of solving different problems with the 

help of column-based intelligent systems. However, if we are talking about practical application of such systems, 

we need more efficient methods of solving basic problems, especially high dimension problems. 



INCOMPLETE INFORMATION AND COLUMNS-based intelligent systems 

 

2773 

 

One of the possible methods for more efficient solution of basic problems is the intersection method. The 

idea behind the intersection method goes back to the book index. In it, for each heading, there are many pointers 

to those pages of the book where this heading can be found. A query from several headings obviously 

corresponds to intersection of pointer sets for these headings. 

 

In the early 2000s. A.M. Mikhailov showed that the intersection method can be used to work with patterns [6, 

7]. Within the framework of the emerging direction, called the index approach, the intersection method is used 

mainly in solving problems of pattern recognition [8-10]. 

 

Based on the results of [6, 7], the author proposed a variant of the intersection method intended for research 

in the field of column-based intelligent systems [1, 2]. For this version, necessary and sufficient conditions for 

the existence of a solution to the direct problem were obtained, the fulfillment of which has little effect on the 

universality of the method. This variant of the intersection method is also characterized by the complete absence 

of the need for element-wise comparison of patterns.  

 

It should be emphasized that the intersection method is not a necessary component of column-based 

intelligent systems. This is just one of the possible methods for solving basic problems. Instead of it, any other 

methods and means can be used, in particular, software-hardware, providing high efficiency in solving basic 

problems of one type or another. 

 

In works [1-3] the solution of various basic problems for patterns in the form of unordered finite sets, for 

patterns in the form of vectors or finite sequences, as well as for patterns in the form of finite multisets was 

considered. In [1, 2] it was proved the possibility of implementing arbitrary Boolean functions : nf B B→ , 

where {0,1}B = . In the article [4] a much stronger result was proved – arbitrary functions of the kind 

: n mf U U→  can be implemented in the systems under consideration, including arbitrary Boolean functions 

: n mf B B→ . In addition, it was shown in [5] that in column-based intelligent systems, arbitrary relations 

(predicates) 
nr U  can be realized, where r  is a n-ary relation over a set U , ...nU U U=    is a finite 

Cartesian power of a set U . 

 

As mentioned earlier, in column-based intelligent systems, basic problem solving serves as the basis for 

solving all other problems. The solution to any such problem is a chain of links until the result is obtained. When 

solving the problem of implementing functions, such a chain consists of three links – two links of the direct 

problem and one link of the inverse problem [4]. When solving the problem of realizing relations, the chain of 

transitions is even shorter. It consists of only two links – one direct problem link and one inverse problem link 

[5]. The simplicity of the solution scheme allows the formation of functions and relationships dynamically 

during the functioning of the column-based intelligent system. As a result, as knowledge accumulates, such a 

system can form an increasingly accurate and complex internal representation of those functional dependencies 

and relationships that exist in the real world. 

 

Working in the real world means, among other things, that the system can operate with incomplete 

information, when, for one reason or another, only a part of the original pattern (sub-pattern) enters the system. 

Therefore, in order for the system to work in the real world, it must solve basic problems under conditions of 

incomplete information. This work is devoted to this.  

 

The next section describes the definition of basic problems under incomplete information. Further, the 

existence of a solution to these basic problems for all types of patterns is shown. Then, for patterns in the form of 

finite unordered sets and patterns in the form of finite sequences or vectors, the solution of basic problems under 

incomplete information is considered using the intersection method. Finally, in conclusion, the relation between 

system’s ability to work under incomplete information and prediction is shown. 

 

2. Basic problems under incomplete information 

 

We denote by 0p  the original full pattern, and by p  the pattern that came into the system and is only a part of 

the original pattern 0p  (sub-pattern). For patterns in the form of finite unordered sets, what has been said means 

that 0p p . 

 



Chesnokov A.M. 

 

2774 

 

In what follows, we will assume that the column engine has additional information with which it can 

distinguish between complete and incomplete patterns. For patterns in the form of finite unordered sets, the 

number of elements of the original pattern 0 0| |n p=  can be used, where | |  – number of elements (cardinality) 

of a set. The sign of completeness in this case will be the equality 0| |p n= . For other types of patterns, it is most 

simple to distinguish between complete and incomplete patterns by replacing the missing pattern elements with  

special service names. An obvious sign that the pattern p  is complete is the absence of the specified service 

names in its composition. 

 

A simple definition of basic problems will be considered, in which parts of patterns are not memorized. 

Consider first the direct problem under incomplete information.  

 

Let be p  – a complete pattern, i.e. 0p p= . In this case, the usual direct problem is solved [1, 2]. Need to get 

the name i  of the pattern p . If the column engine manages to do this, then the name i  is a solution to the direct 

problem. Otherwise, the pattern p  is new and memorized under a certain name 
pi , which in this case will be the 

solution to the direct problem. 

 

Let the pattern p  – now be an incomplete pattern. In this case, the column engine must specify the names of 

all those known patterns, of which the pattern p  is a part.  If it succeeds, then the set of names of such patterns 

0S  is a solution to the direct problem. Otherwise, the pattern under consideration p  is a part of some pattern 

unknown to the system. 

 

The inverse problem under conditions of incomplete information remains unchanged – by the name of the 

pattern i  it is necessary to obtain an pattern p  known by this name. 

 

3. Solving basic problems under incomplete information using the method of element-wise comparison 

 

A general universal method for solving basic problems is a method based on element-wise comparison of 

patterns. To solve basic problems under incomplete information, one index A  is used, which consists of 

columns ( | )ii p , where ip  is the pattern known by the name i . 

Initially, A = .  

Let us denote by P  the set of patterns with which the system works.  

Let be p P  – some complete pattern for which it is necessary to solve the direct problem. It is element-

wise compared against the patterns of all columns of the index A . If a match is found, then the name ai  of the 

column ( | )ai a A  is such that p a= , is the name of the pattern p . If no match is found, then the pattern p  is 

new and must be memorized. Any pure name 
p pi U  is chosen for it, where 

pU  – name domain for patterns P , 

and addition is performed 

 

( | )pA i p+ ,  

 

that is to the index A  a column ( | )pi p  is added. The name pi  is the solution to the direct problem and is the 

name by which the pattern p  will now be known. If the pattern p  reappears at the system input, then the 

element-wise comparison will give a name pi  for it. 

Now let the pattern p P  – be some incomplete pattern, i.e. it is only a part of some original pattern 0p . The 

solution to the direct problem in this case will be a set of names 0S , which consists of the names of all complete 

patterns known to the system, of which the pattern p  is a part. When solving the direct problem, first the set 0S  

is set to the initial state 0S = . Then the incomplete pattern p  is element-wise compared with the patterns of 

all columns of the index A . If all elements of the pattern p  match the corresponding elements of the pattern ka  

of  the column ( | )k ki a A , then name ki  added to the name set 0S . After elementwise comparison finished, 

set 0S  is a direct problem solution for the pattern p . If after all comparisons it turns out that 0S = , then the 

pattern p  – it is part of some pattern unknown to the system. 



INCOMPLETE INFORMATION AND COLUMNS-based intelligent systems 

 

2775 

 

The inverse problem is solved in the same way as in the case of complete information. For 
pi U   the 

pattern known by this name is equal to the pattern ia  of the column ( | )ii a A . If the index A  there is no 

column with that name, then i  – a pure name. 

 

 

4. Solving basic problems under incomplete information using the intersection method 

Intersection method for patterns in the form of finite unordered sets 

 

We will assume that the patterns of the set P  are finite unordered sets of names 1{ , ..., }mp i i= , 1m  , 

where ki U  , U   – is a certain name domain. 

In addition, we will assume that the true cardinality 
0m , is known for each input pattern p  i.e. the 

cardinality that the complete pattern 
0p  has. Because 0p p , then 0| |p m m=  . Obviously, the sign of the 

completeness of the pattern p  is the equality 0m m= .  

To solve basic problems using the intersection method, indices A , B  will be used and given as a set of 

ordered pairs ( , )ii m  function ( )m i , which contains the cardinalities of the complete patterns known to the 

system. 

In the initial state A = , B =  and ( )m i = . 

For any 1{ , ..., }mp i i P=   denote by ( , )A p  intersection 

 

1

( , )
m

k
k

A p a
=

= , 

 

where ka  is the pattern of the column  ( | )k ki a A  for all names ki p . 

Let be p P  – some complete pattern, i.e. 0| |p m= . For it, the direct problem is solved in the usual way [1, 

2]. 

If the intersection ( , )A p   and there is at least one name ( , )i A p , for which ( ) | |m i p= , then such 

a name is unique and is the name by which the pattern p  is known.  

In all other cases, the complete pattern 1{ , ..., }mp i i=  is new and must be memorized. The column engine 

chooses some pure name p pi U  for it, where pU  – name domain for naming patterns P , and performs 

additions: 

 

( |{ }) ( |{ })
k

p k p

i p

A p i A i i


+ = + , 

( | )pB i p+ ,  

 

i.e. to index A added m  columns ( |{ })k pi i  for all names ki p , and to the index B  column ( | )pi p . In 

addition, in the function definition ( )m i  pair ( , )pi m  is added. The name pi  is the direct problem solution and is 

the name by which the complete pattern p  will now be known. 

Let now p  – incomplete pattern, i.e. 0| |p m . In this case, it is necessary to find a set of names of complete 

patterns known to the system, of which the pattern p  is a part. Obviously, for any non-empty subset p , 

included in some known pattern, the intersection ( , )A p  . Therefore, if ( , )A p = , then incomplete 

pattern p  is a subset of the unknown pattern.  

If ( , )A p   and 0( )m i m  for ( , )i A p  , then the pattern p  is also part of an unknown pattern.   

Finally let ( , )A p   and there is at least one name ( , )i A p  such that 0( )m i m= . In this case, the 

name set  

 

0 0{ ( , ) | ( ) }S i A p m i m=  =  

 



Chesnokov A.M. 

 

2776 

 

is a solution to the direct problem. For 0i S   the pattern known by this name contains p  as a subset and 

has cardinality 
0m .  

The inverse problem is solved in the usual way [1, 2]. For any name 
pi U  the pattern that is known by this 

name is equal to the pattern 
ib  of the column ( | )ii b B . If the index B  does not have a column with this name, 

then i  – a pure name. 

 

 

5. Intersection method for patterns in the form of finite sequences or vectors 
 

Let us now consider the application of the intersection method for solving basic problems under incomplete 

information for patterns in the form of finite sequences or vectors 1 2( , , ..., )mp i i i= , 1 m n  . The pattern p  

may be known only partially and contain a special service name 
0ki  or simply 0 instead of some coordinates. The 

name 0 is interpreted as the absence of data on the corresponding coordinate. For example, 2(0, , ..., )mi i  or 

2 1(0, , ..., , 0)mi i − . Thus, any pattern p  belongs to the set of patterns 

  

1

n
k

k

P P
=

= ,  

 

where 
0 0

1 ...k

kP U U=   , 
0 { 0 }k kU U= , kU  – k-th coordinate name domain.  

To solve basic problems using the intersection method, the index 1 2{ , , ..., }nA A A A=  will be used, where 

kA  – k-th coordinate index, index B , and also given by a set of ordered pairs ( , )ii m  function ( )m i , which 

contains the dimensions of the complete patterns known to the system. 

Initially, A = , B = , ( )m i = .  

Let be 1 2( , , ..., )mp i i i P=   – an arbitrary pattern for which it is necessary to solve the direct problem  

Let us denote by ( , )A p  intersection 

  

1
0

( , )

k

m

k
k
i

A p a
=


 = ,  

 

where ka  is the pattern of the column ( | )k k ki a A , ki  is the name that is the k-th coordinate of the pattern 

1 2( , , ..., )mp i i i= .  

Obviously, if the pattern p  is complete and does not contain zero coordinates, then ( , )A p  – this is a 

common intersection 

 

1

( , )
m

k
k

A p a
=

= .  

 

Therefore, for complete patterns, the usual intersection method can be used [1, 2]. 

So, let it be necessary to solve the direct problems for the complete pattern 1( , ..., )mp i i P=  , which has no 

zero coordinates.  

If ( , )A p    and there is at least one name ( , )i A p  such that ( )m i m= , then such a name is unique 

and is the name by which the pattern p  is known. 

In all other cases, the pattern p  – unknown complete pattern and must be memorized. To do this, the column 

engine chooses any pure name p pi U , where pU  – name domain for naming patterns P , and performs 

additions: 

 

1 1( |{ }) { ( |{ }), ..., ( |{ })}p p m m pA p i A i i A i i+ = + + , 

( | )pB i p+ ,    

 



INCOMPLETE INFORMATION AND COLUMNS-based intelligent systems 

 

2777 

 

where 
ki  is the name that is the k-th coordinate of the pattern 1 2( , , ..., )mp i i i= . In addition, in the function 

definition ( )m i  pair ( , )pi m  is added. The name 
pi  is the solution to the direct problem and is the name by 

which the complete pattern p  will now be known.  

Now let the direct problem be solved for an incomplete pattern 1 2( , , ..., )mp i i i P=  , which has coordinates 

containing name 0.   

First of all, it should be noted that for any complete pattern of the dimension m  known to the system  and 

any nonempty subset, {1, ..., }K m  the intersection 

 

( , ) k
k K

A p a


 =   .  

 

Therefore, if for an incomplete pattern p  intersection ( , )A p = , then the incomplete pattern p  is part 

of the unknown pattern. 

If ( , )A p    and ( )m i m  for ( , )i A p  , then incomplete pattern p  also part of an unknown 

pattern.  

Finally, if ( , )A p    and there is at least one name ( , )i A p  such that ( )m i m= , then the set of 

names 

 

0 { ( , ) | ( ) }S i A p m i m=  =   

 

is a solution to the direct problem. This set contains the names of all dimension m  known patterns, for which 

the corresponding coordinates coincide with the nonzero coordinates of the pattern p .  

The inverse problem is solved in the usual way [1, 2]. For any name 
pi U  the pattern that is known by this 

name is equal to the pattern ib  of the column ( | )ii b B . If in the index B  there is no column with that name, 

then i  – a pure name. 

Obviously, the results obtained are valid for time sequences 1 2( , , ..., )t mp i i i= , where ki  – this is the name 

of the pattern that describes the state of some process at the k-th moment of time. The most important 

consequence of this is that a system that is able to solve basic problems under incomplete information has the 

ability to make a prediction. According to the part of the time sequence available at the k-th moment of time 

1( , ... , 0, ..., 0)ki i  the system can receive 0| |S  future process development options. Each of these options is a 

complete known sequence 1 1( , ..., , , ..., )t k k mp i i i i+= , whose name is 
0pti S . It should be noted that in the part 

of the sequence available at the k-th moment of time 1, ..., ki i  there can also be names equal to 0. Thus, in this 

case we are talking about a prediction under conditions of incomplete information. 

As already mentioned, in column-based intelligent systems, the solution to any problem is a chain of links 

until the result is obtained. To make a prediction, such a chain consists of only two links – one direct problem 

link and one inverse problem link. 

 

0

dir inv

1 1 1( , ..., , 0, ..., 0) ( , ..., , , ..., )

...

k k k npt

S

i i i i i ii +⎯⎯→ ⎯⎯→ 
 
 

 

 

Example. Let be 3n =  and there are indices shown below 1 2 3{ , , }A A A A= , B  and function ( )m i .  



Chesnokov A.M. 

 

2778 

 

        A1                    A2                   A3                                                     

4  2  2     4   

1  3  3 4 1   3 2  

1 2 3  1 2 3  1 2 3  

            

         B   

 3 2 2     

3 1 1 2     

1 3 3 1     

1 2 3 4     

 

 m(i) 

i 1 2 3 4   

m 2 3 3 3   

 
It is easy to see that the system has memorized 4 patterns: pattern 1 (1, 3)p =  under the name 1, pattern 

2 (3,1, 3)p =  under the name 2, pattern 3 (3,1, 2)p =  under the name 3 and pattern 4 (1, 2, 2)p =  under the 

name 4. 

Let the complete pattern be given (3,1)p = . Intersection ( , ) {2, 3}A p = . Wherein (2) 2m   and 

(3) 2m  . Therefore, the pattern (3,1)p =  – this is an unknown complete pattern to be memorized. After 

memorizing it under the name 5 indices 1 2 3{ , , }A A A A= , B  and the function ( )m i  will take the form. 

 

        A1                    A2                   A3                                                     

  5  5        

4  2  2     4   

1  3  3 4 1   3 2  

1 2 3  1 2 3  1 2 3  

            

            B   

 3 2 2     

3 1 1 2 1    

1 3 3 1 3    

1 2 3 4 5    

 

 m(i) 

i 1 2 3 4 5  

m 2 3 3 3 2  
 

 

If the full pattern (3,1)p =  appears again at the entrance, the intersection ( , ) {2, 3, 5}A p =  and 

(5) 2m = , i.e. pattern (3,1)p =  – this is an pattern by name 5. 

Let an incomplete pattern (1, 0, 3)p =  be given. Because ( , )A p = , then incomplete pattern p  is part 

of some pattern unknown to the system.   

 

Now let an incomplete pattern (3,1, 0)p = . Intersection ( , ) {2, 3, 5}A p =  and (2) (3) 3m m= = , i.e. set 

of names 0 {2, 3}S = . Therefore, an incomplete pattern (3,1, 0)p =  nonzero coordinates coincides with the 

patterns of the same dimension that are known to the system under the name 2 and 3. Solving the inverse 

problem, we find that these patterns are equal to the patterns of the columns 2 3(2 | ), (3 | )b b B , i.e. these are 

patterns (3,1, 3)  and (3,1, 2) . For time sequences, this will mean that for the sequence available at time 2 

(3,1, 0)p =  possible scenarios are sequences (3,1, 3)  and (3,1, 2) . 

 

 



INCOMPLETE INFORMATION AND COLUMNS-based intelligent systems 

 

2779 

 

6. Results 

 

In the real world, the system should be able to work under conditions of incomplete information, when, for 

one reason or another, only a part of the original pattern (sub-pattern) enters the system. In column-based 

intelligent systems, basic problems form the basis for all other problems. Therefore, in order for such systems to 

work in the real world, they must solve basic problems under incomplete information. 

The paper proposes a simple definition of basic problems under conditions of incomplete information. It is 

assumed that the system, in addition to the received pattern, has additional information that makes it possible to 

distinguish between complete and incomplete patterns. In this case, incomplete patterns in the system are not 

memorized. 

For complete patterns, the setting of basic problems does not change. In the direct problem, for a complete 

pattern p  you need to get its name. If the pattern p  – nameless full pattern, then it must be memorized. In the 

inverse problem for pattern name i  you need to get a complete pattern known by this name. 

For incomplete patterns, the direct problem changes. For an incomplete pattern p  you need to get a set of 

names 0S , consisting of the names of all complete patterns known to the system, of which the pattern p  is a 

part. 

Using the method based on element-by-element comparison of patterns, a solution to basic problems under 

incomplete information was obtained for any types of patterns. Using a more efficient intersection method, we 

show the solution of basic problems under conditions of incomplete information for patterns in the form of finite 

unordered sets 1{ , ..., }mp i i=  and patterns in the form of finite sequences or vectors 1 2( , , ..., )mp i i i= , 

1 m n  .  

The presented methods for solving basic problems under conditions of incomplete information represent 

more general variants of methods [1, 2], which for incomplete patterns are supplemented by the construction of a 

set of names 0S . In this case, the structure of the solution remains practically unchanged. Element-wise 

comparison and intersection are performed for those elements of the incomplete pattern that are available. For 

example, in finite sequences or vectors 1 2( , , ..., )mp i i i= , 1 m n  , the missing elements are replaced with the 

service name 0. To build the set 0S  the intersection  

 

1
0

( , )

k

m

k
k
i

A p a
=


 = , 

 

is used, which is part of the regular intersection ( , )A p  for available elements of pattern p , where ka  is 

the pattern of the column ( | )k k ki a A , ki  is the name that is the k-th coordinate of the pattern 

1 2( , , ..., )mp i i i= . Moreover, the set of names  

 

0 { ( , ) | ( ) }S i A p m i m=  = ,  

 

where ( )m i  is the dimension of the complete pattern, which is known by name i . 

Critical implication for temporal sequences 1 2( , , ..., )t mp i i i=  is that a system that is able to solve basic 

problems under incomplete information has the ability to make a prediction. According to the part of the time 

sequence available at the k-th moment of time 1( , ... , 0, ..., 0)ki i  the system can receive 0| |S  future scenarios. 

Each of these options is a known complete sequence 1 1( , ..., , , ..., )t k k mp i i i i+= , whose name 0pti S . Moreover, 

we are talking about a prediction under conditions of incomplete information, since in the part of the sequence 

available at the k-th moment of time 1, ..., ki i  there can also be names equal to 0.  

The scheme for solving the prediction problem is very simple. The chain of following links when solving it 

consists of only two links – one link of the direct problem 1( , ... , 0, ..., 0)k pti i i→  and one link of the inverse 

problem 1 1( , ..., , , ..., )pt t k k mi p i i i i+→ = . As a result, as knowledge accumulates, an columns-based intelligent 

systems can not only form an ever more accurate and complex internal representation of those functional 

dependencies and relationships that exist in the real world, but also expand its predicting capabilities. 

 

7. Conclusion 



Chesnokov A.M. 

 

2780 

 

 

The methods for solving basic problems presented in the work represent a more general version of the 

methods from [1, 2], which includes the ability of the system to work under incomplete information. The most 

important consequence of this is that the ability of the system to work under incomplete information at the same 

time means the ability of the system to predict, since from the currently available part of the time sequence, the 

system can restore options for the development of events in the future. Moreover, the part of the sequence 

available to the present moment may be known only partially, i.e. we are talking about a prediction under 

incomplete information. Thus, an elementary baseline prediction is an intrinsic property of a system capable of 

solving basic problems under conditions of incomplete information. This demonstrates one of the main features 

of the column-based model – its versatility, where the same mechanism serves different purposes. 

 

References 

 

1. Chesnokov A.M. Column-Based Intelligent Systems (Intellektual'nye sistemy na osnove kolonok) // 

Upravlenie bol'shimi sistemami (Large-Scale Systems Control), 2013, No. 46, pp. 118–146. 

2. Chesnokov A.M. Vvedenie v obshchuyu teoriyu kolonok (Introduction to General Columns Theory). – 

M.: IPU RAN publ., 2012. 

3. Chesnokov А.М. Finite Multisets as Patterns in Column-Based Intelligent Systems // Automation and 

Remote Control, 2015, Vol. 76, No. 9, pp. 1681–1688. 

4. Chesnokov А.М. Functions in Column-Based Intelligent Systems // International Journal of Engineering 

and Advanced Technology (IJEAT), Vol. 9 Issue 2, December 2019, pp. 5045-5051. 

5. Chesnokov A.M. Implementation of Relations (Predicates) In Column-Based Intelligent Systems // 

Journal of Advanced Research in Dynamical and Control Systems (JARDCS), Vol. 12, Special Issue-02, 2020, 

pp. 518-526. 

6. Mikhailov A., Pok Y.M. Artificial Neural Cortex // Proceedings of Artificial Neural Networks in 

Engineering Conference (ANNIE 2001), Nov. 4−7, 2001, St. Louis, Missouri, U.S.A. 

7. Mikhailov A. Biologically Inspired Artificial Neural Cortex and its Formalism // World Academy of 

Science, Engineering and Technology, August 2009, Vol. 56, p. 121. 

8. Mikhailov A. Indexing-based Pattern Recognition // Advanced Materials Research. – 2012, Vols. 403–

408, pp. 5254–5259. 

9. Mikhailov A.M. Pattern recognition by indexing // Automation and Remote Control, 2012, Vol. 73, 

No. 4, pp. 717–724.  

10. Mikhailov A.M. An indexing-based approach to pattern and video clip recognition // Automation and 

Remote Control, 2014, Vol. 75, No. 12, pp. 2201–2211. 

 


