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Abstract : In wireless communication systems, the performance of the receiver is very sensitive to time and frequency 

offsets. In particular, orthogonal frequency division multiplexing (OFDM) systems are highly vulnerable to those offsets due 

to inter-carrier interference (ICI) and inter-symbol interference (ISI). To solve this problem, wireless local area network 

(WLAN) systems transmit a preamble for synchronization. In this paper, we propose a joint time and frequency offsets 

estimation technique based on convolutional neural network (CNN) for WLAN systems. In the proposed technique, the 

correlation between the received signal and the transmitted preamble is performed first. Then the frequency offset is coarsely 

compensated by several hypothesized offsets. The compensated signals are inputted to the proposed CNN and the CNN 

predicts the time and frequency offsets. The estimation performance is examined through computer simulation. According to 

the results, the proposed time offset estimator shows 3 dB to 6 dB performance gain, and the frequency offset estimator 

shows much lower root mean square error (RMSE) performance than the conventional technique at low SNRs. 

Keywords: WLAN, OFDM, Timing offset, Carrier frequency offset, Convolutional neural network, Synchronization. 

 

1. Introduction 

Orthogonal Frequency Division Multiplexing (OFDM)-based communication systems such as Wireless 

LAN (WLAN) are very sensitive to synchronization errors such as timing and frequency offsets. Due to the 

clock offset between transmitter and receiver, and the propagation delay due to the distance between them, the 

exact arrival time of the packet is not known at the receiver. In addition, carrier sense multiple access (CSMA) 

systems have a random transmission time. In this case, the timing offset (TO) is random and should be estimated 

at the receiver. Especially, in OFDM systems, the receiver must find the start position of the OFDM symbol to 

avoid inter OFDM symbol interference. Carrier frequency offset (CFO) is the frequency difference between the 

carriers of the transmitter and the receiver. CFO is due to the oscillator tolerance and Doppler frequency. If 

synchronization is not perfect, the orthogonality of OFDM is broken, and accordingly, inter-symbol interference 

(ISI) or inter-carrier Interference (ICI) may happen [1]. Hence, synchronization is a crucial task of the receiver. 

Many studies have been conducted for synchronization [2-7]. In the IEEE 802.11 standard, short training field 

(𝑆𝑇𝐹 ) and long training field (𝐿𝑇𝐹 ) are transmitted ahead of the packet for receiver synchronization. 

Conventional synchronization such as [2] and [3] proceed in the following procedure. First, the 𝑆𝑇𝐹 is used to 

detect whether a valid packet has arrived, and coarse CFO is compensated. Next, fine TO and CFO correction is 

performed using 𝐿𝑇𝐹. 

In this paper, we propose a new synchronization technique using convolutional neural network (CNN) for 

WLAN systems. CNN was first introduced by LeNet-5 as one of the deep learning techniques and has recently 

been widely used in image processing tasks [8-10]. First, the proposed technique compensates the CFO at a 

specific frequency interval within the maximum possible CFO range allowed in the standard. Since multiple 

CFO candidates are compensated with the received signal, multiple signal branches are made after CFO 

compensation. After that, we perform cross-correlation between each compensated signal and 𝑆𝑇𝐹. The 

multiple correlation outputs are stacked to form a two-dimensional matrix. This matrix is the input of the 

proposed CNN and the CNN predicts both the TO and CFO. 

We compare the performance of the proposed technique and the conventional technique through computer 

simulation. In the simulation, the channel environments defined in the standard are used. According to the 

results, the proposed technique shows 3 dB ~ 6 dB gain for false detection probability (FDP) performance than 

the conventional technique in TO estimation, and the proposed CFO estimator shows better root mean square 

errors (RMSEs) than the conventional technique at low to medium signal to noise ratios (SNRs). 
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2. System model 

In WLAN standards (IEEE 802.11ac or IEEE 802.11n), a legacy preamble precedes the transmission 

packet for synchronization and backward compatibility. The legacy preamble consists of STF repeated 10 times, 

LTF repeated 2 times, and signal field as shown in Fig. 1. 

 

 
Fig. 1. Legacy preamble structure 

 

In [2] and [3], the packet is detected using 𝑆𝑇𝐹1~7, the CFO is coarsely estimated using 𝑆𝑇𝐹8~10, and fine TO 

and CFO estimations are done using 𝐿𝑇𝐹1~2. The synchronization procedure is shown in Fig. 2. 

 

 
Fig. 2. WLAN synchronization flow chart 

 

In this paper, it is assumed that a packet arrival is detected using the time 𝑆𝑇𝐹1~7 in advance. The problem to 

solve here is to estimate the TO and CFO afterward. 

 

2.1 Conventional CFO estimation technique 

In the conventional technique, CFO is estimated using both 𝑆𝑇𝐹 and 𝐿𝑇𝐹. The CFO was estimated by 

using the autocorrelation of the received repetitive signal, and in this case, the CFO can be estimated without 

being affected even when the TO and multipath channels exist. The following equation is the conventional CFO 

estimation technique. 

 

𝑟(𝑛) = 𝑠(𝑛)𝑒𝑗2𝜋(𝑓𝑡𝑥−𝑓𝑟𝑥)𝑛𝑇𝑠 = 𝑠(𝑛)𝑒𝑗2𝜋𝑓∆𝑛𝑇𝑠            (1) 

 

𝑧(𝑛) = ∑ 𝑠(𝑛)𝑒𝑗2𝜋𝑓∆𝑛𝑇𝑠(𝑠(𝑛 + 𝐷)𝑒𝑗2𝜋𝑓∆(𝑛+𝐷)𝑇𝑠)
∗𝐿−1

𝑛=0
= 𝑒−𝑗2𝜋𝑓∆𝐷𝑇𝑠 ∑ |𝑠(𝑛)|2𝐿−1

𝑛=0  (2) 

       

𝑓∆̂ = −
1

2𝜋𝐷𝑇𝑠
𝑎𝑟𝑔(𝑧)                       (3) 

 

where 𝑠 is transmitter signal, 𝑓𝑡𝑥  is carrier frequency of the transmitter, 𝑓𝑟𝑥  is carrier frequency of the 

receiver, 𝑓∆ is the CFO, 𝑟 is the received signal, 𝐿 is the training signal length, 𝐷 is the repetition period of 

the training field, 𝑧 is autocorrelation output, and 𝑎𝑟𝑔 is phase angle. 

 

2.2 Conventional TO estimation technique 

In the conventional technique, TO is estimated using 𝐿𝑇𝐹. TO is estimated by using the cross-correlation 

between the received signal and the LTF. Autocorrelation technique can be used as well, but the cross-

correlation shows superior performance to the autocorrelation [11]. The following equation is a conventional 

cross-correlation based TO estimator. 

 

𝑑∆̂ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑛

|∑ 𝑟(𝑛 + 𝑘)𝑡(𝑘)∗𝐿−1
𝑘=0 |2                (4) 

 

where 𝑡(𝑘) is 𝐿𝑇𝐹 and  𝑑∆ is the TO. 
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2.3 System parameter 

The parameters of WLAN systems used in this paper are shown in Table 1. 

 

Table 1. Parameters of WLAN system 

Parameter Details 

Frequency band 5.3 GHz 

Bandwidth 40 MHz 

FFT size 128 

 

The carrier frequency is 5.3 GHz, the bandwidth is 40 MHz, and the FFT point is 128. At this time, the length of 

𝑆𝑇𝐹 is 32 samples and the length of 𝐿𝑇𝐹 is 160 samples. Therefore, the range of packet detection is in 

𝑆𝑇𝐹1~𝑆𝑇𝐹7, that is, 1~224 samples, so it is necessary to find the exact arrival time of packet. In addition, the 

oscillator precision tolerance is specified to be less than ±20 Parts Per Million (ppm), so that CFO is in the range 

from - 40 ppm to +40 ppm. when the carrier frequency is 5.3 GHz, the range of CFO is -212 kHz to 212 kHz. 

 

3. Proposed technique 

In this paper, we propose a deep learning based TO and CFO estimation technique using only 𝑆𝑇𝐹, 

assuming that packet arrival is already detected in advance. First, the received signal is compensated with a 

constant frequency interval. If the frequency interval is 𝑓0, the number of branches is 𝐾, and 𝑓0 × 𝐾 =
212 𝑘𝐻𝑧. The equation is as follows.  

 

𝑥𝑖(𝑛) = 𝑟𝑒𝑗2𝜋(−212 𝑘𝐻𝑧+𝑖𝑓0)𝑛𝑇𝑠  𝑓𝑜𝑟 𝑖 = 0, ⋯ , 𝐾 − 1             (5) 

 

where 𝑥𝑖(𝑛) is the 𝑖-th CFO compensated signal. We set 𝑓0 at 42.4 kHz. Next, cross-correlation between 

𝑥𝑖 and 𝑆𝑇𝐹1~10 are performed. The equation is as follows.  

 

y𝑖(n) = ∑ 𝑥𝑖(𝑛 + 𝑘)𝑠(𝑘)∗𝑀−1
𝑘=0                      (6) 

 

𝐲𝒊 = [𝑦𝑖(0), ⋯ , 𝑦𝑖(𝐵 − 1)]                    (7) 

 

𝐘 = [

𝐲𝟎

⋮
𝐲𝑲−𝟏

]                            (8) 

 

where 𝑠(𝑘) is 𝑆𝑇𝐹, 𝑀 is length of the 𝑆𝑇𝐹, y𝑖(n) is the correlator output, 𝐵 is the window size of the 

correlator, and 𝐘 is a matrix that collects the correlator output of each branch. 𝐵 is fixed to 864 in this paper 

because the size that can express the correlation characteristics of all 𝑆𝑇𝐹 is 640 and the maximum TO is 224. 

Overall structure is as shown in the following figure. 

 
Fig. 3. Procedure for generation of proposed CNN input 

 

In other words, First the multiple CFOs are compensated, and then the cross-correlation is conducted at each 

branch. Total 864 correlator output is collected. So, the final signal becomes 11 by 864 matrix. This matrix 

performs normalization and is used as input to two proposed CNNs. As shown in Fig. 4, two CNNs are designed 

for estimation of TO and CFO. The two CNNs predict the TO and CFO, respectively from the same 11 x 864 
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input. Table 2 summarizes the parameters of the proposed CNNs. 

 

Table 2. The parameters of the proposed CNNs 

CNN of TO estimation CNN of CFO estimation 

Input 

Layer 
Input size 11 × 864 × 1 

Input 

Layer 
Input size 

11 × 864 × 

1 

Conv. 

Layer 1 

Num. of filters 32 

Conv. 

Layer 1 

Num. of filters 32 

Filter size 1 × 49 Filter size 1 × 49 

Activation function ReLU Activation function ReLU 

Max Pooling 
size: 2 × 2 

stride: 2, 2 
Max Pooling 

size: 2 × 2 

stride: 2, 2 

Num. of parameters 1,600 Num. of parameters 1,600 

Conv. 

Layer 2 

Num. of filters 64 

Conv. 

Layer 2 

Num. of filters 64 

Filter size 1 × 49 Filter size 1 × 49 

Activation function ReLU Activation function ReLU 

Max Pooling 
size: 2 × 2 

stride: 2, 2 
Max Pooling 

size: 2 × 2 

stride: 2, 2 

Num. of parameters 3,200 Num. of parameters 3,200 

Conv. 

Layer 3 

Num. of filters 128 

Conv. 

Layer 3 

Num. of filters 128 

Filter size 1 × 49 Filter size 1 × 49 

Activation function ReLU Activation function ReLU 

Max Pooling 
size: 2 × 2 

stride: 2, 2 
Max Pooling 

size: 2 × 2 

stride: 2, 2 

Num. of parameters 6,400 Num. of parameters 6,400 

Conv. 

Layer 4 

Num. of filters 256 

Conv. 

Layer 4 

Num. of filters 256 

Filter size 1 × 49 Filter size 1 × 49 

Activation function ReLU Activation function ReLU 

Max Pooling 
size: 2 × 2 

stride: 2, 2 
Max Pooling 

size: 2 × 2 

stride: 2, 2 

Num. of parameters 12,800 Num. of parameters 12,800 

Conv. 

Layer 5 

Num. of filters 512 

Conv. 

Layer 5 

Num. of filters 512 

Filter size and stride 1 × 49 Filter size and stride 1 × 49 

Activation function ReLU Activation function ReLU 

Max Pooling 
size: 2 × 2 

stride: 2, 2 
Max Pooling 

size: 2 × 2 

stride: 2, 2 

Num. of parameters 256,000 Num. of parameters 256,000 

Skip- 

connection 

1 

Num. of filters 128 
Skip- 

connection 

1 

Num. of filters 128 

Filter size and stride 1 × 1, (2, 2) Filter size and stride 1 × 1, (2, 2) 

Activation function ReLU Activation function ReLU 

Num. of parameters 4,224 Num. of parameters 4,224 

Skip- 

connection 

2 

Num. of filters 512 
Skip- 

connection 

2 

Num. of filters 512 

Filter size and stride 1 × 1, (2, 2) Filter size and stride 1 × 1, (2, 2) 

Activation function ReLU Activation function ReLU 

Num. of parameters 66,048 Num. of parameters 66,048 

Fully- 

connected 

layer 

Output size 224 Fully- 

connected 

layer 

Output size 1 

Activation function Soft-max Activation function ∙ 

Num. of parameters 3,096,576 Num. of parameters 13,824 

Num. of total parameters 3,446,848 Num. of total parameters 364,096 
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Fig. 4. Proposed CNN structures for (a) TO estimation and (b) CFO estimation 

 

Both the networks consist of 5 convolutional layers, 2 skip-connections, and one fully-connected layer. The TO 

estimator is a classification network and the CFO estimator is a regression network. 

 

4. Simulation result 

Computer simulation was performed to compare the performance of the proposed technique and the 

conventional technique. The channel environment used in the simulation used the channel models in the 

standard [12]. The following table is the parameters of the channel models. Model A is AWGN channel, Model 

C and Model E are multipath fading channels. 

 

Table 3. Parameters of channel models 

Model Environment 
1st break 

point 

RMS 

Spreading 

 delay 

Max 

delay 
# tap # cluster Doppler 

A AWGN - 0nsec 0nsec 1 - 1.2km/h all tap 

C Small office 5m 30nsec 200nsec 14 2 1.2km/h all tap 

E Indoor hotspot 20m 100nsec 730nsec 18 4 1.2km/h all tap 

  

4.1 CNN training 

To train the proposed CNN, 100,000 training sets were used. At this time, TO and CFO were randomly 

generated, and SNR was also randomly selected in the range of -10dB to 30dB. The Table 4 summarizes the 

optimization techniques for TO and CFO training. 

 

Table 4. Optimization techniques for training 

CNN of TO estimation CNN of CFO estimation 

Optimization algorithm Adam Optimization algorithm Adam 

Learning rate 0.001 Learning rate 0.001 
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Epoch 20 Epoch 80 

Cost function Cross-entropy Cost function Mean square error 

 

 
Fig. 5. Learning curves for TO CNN((a), (b)) and for CFO CNN((c), (d)) 

 

4.2 TO estimation performance 

To verify the performance of the TO estimation CNN, 50,000 test sets were generated each at 1dB interval 

in the range of -10dB to 15dB SNRs. The performance evaluation measure is false detection probability. For 

channel Model A, correct TO estimation means the exact TO for the first STF arrival. For Model C and Model E, 

the channel has long delay spreads by the channels, and there are some ambiguity for defining the exact TO. In 

this paper, correct TO estimation means that the estimated TO is within −𝐿𝐶𝑃/2 to +𝐿𝐶𝑃/2 from the arrival 

time of the maximum multipath components. Fig. 6 shows the FDR performances under channels: Model A, 

Model C and Model E. According to the results, the proposed technique shows performance gain of about 6 dB 

over the conventional technique in Model A, and about 3dB in Model C and Model E. 

 

 
Fig. 6. TO estimation performances for (a) Model A, (b) Model C and (c) Model E 

 

4.3 CFO estimation performance 

Since the TO estimation CNN and CFO estimation CNN use the same input signal, the test set for TO 

estimation is the same as TO estimation. The performance evaluation measure of CFO estimation is RMSE. Fig. 

7 shows the RMSE performance for Model A, Model C, and Model E. According to the results, the proposed 

technique shows much lower RMSE than that of the conventional technique at low to medium SNRs. However, 

at high SNRs, the conventional technique becomes similar or better [13,14]. 
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Fig. 7. CFO estimation performances for (a) Model A, (b) Model C and (c) Model E 

 

5. Conclusions 

This paper proposed a new deep learning based joint TO and CFO estimation technique for WLAN systems 

over multipath fading channels. The proposed technique estimates TO and CFO using only 𝑆𝑇𝐹 among legacy 

preambles for synchronization. According to computer simulation results, the proposed TO estimator show 

about 3 dB ~ 6 dB better than the conventional technique, and the proposed CFO estimator is better at low to 

medium SNRs. Therefore, if the proposed technique is applied to WLAN receivers, the receiver performance 

can be improved at low to medium SNRs. 
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