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Abstract: The Global climate change and the lack of fossil fuels reserves have already had observable effects on 

the environment. Therefore, an undeniable investment is being made to respond these heavy challenges and to 

accelerate the momentum towards further embracing the electrification of transportation in smart microgrids, 

energy efficiency and clean energy production. The paper presents a novel cost-effective management of non-

renewable resources of a multi-microgrid system under different operating modes (islanded, connected) with 

integrating renewable energy sources. Also, we investigate the impact of controlling vehicle-to-grid (V2G) 
operations on the multi-microgrid system by establishing a coordinated charging control strategy for plug-in 

electric vehicles (PEVs) with the aim of obtaining the maximum benefit from the grid as well as minimize the 

overall operating cost of the system. Both, the management of the multi-microgrid system and the EVs charging 

strategy have been formulated and solved using the Genetic Algorithm (GA), where the obtained results have 

shown that this method increases the quality, and the efficiency of obtained day-ahead scheduling solutions 

under any operating mode. 

Keywords: Multi-Microgrids, Plug-in Electric Vehicles, Vehicle-to-Grid, Genetic Algorithm, Renewable 

Energy Sources, Connected, Islanded. 
 

 

1. Introduction  

 
The global climate change, growing demand for electricity, unsustainable population growth, fast 

development of industrial sectors and economic growth are representing the most risk factors that will extremely 

harm all life on earth. According to IEO report, the electricity energy consumption will increase by about 50% in 

China and 29% in India from 2015 to 2040 [1] which both of these countries have the world's largest population. 

This insight may give us a good vision about the excessive burden on current energy sources. All these 

significant long-term challenges that are facing the power grid, force both governments and stakeholders as much 

as they can to adopt new clean and renewable power generation resources that will further improve dependency 

on carbon-based fuels and reduce the CO2 emissions. Furthermore, many notable changes have been carried 

through to an energy economically efficient and environmentally friendly electricity system. It is redefining the 

overall electrical power systems towards new concepts such as smart grids, smart microgrids, and smart cities 

that are focusing on increase generating electricity from Renewable Energy Sources (RES) (photovoltaic (PV) 
systems, small wind farms), using the information and communication technologies (ICTs) [2-4], developing 

energy storage systems [5-7] and electrifying transportation. Power grids of the near future will control 

electricity generation by deploying diverse types of distributed generators (DGs), advanced information and 

communication technologies to ensure the cost reduction, save energy and match the loads at any particular time. 

Now, unpredictable loads put the capacity of the generation system under some excessive pressure. This pressure 

is not generally sorted out directly specially in case of insufficient generation at peak periods in the day, but it 

could be solved through voluntary load curtailment, demand response and peak shaving programs. Most of the 

systems, power generation control tends to adjust the power output of used generators to follow the changes in 

the load. This load-following approach gets more difficult by integrating renewable energy sources to the grid. 

Also, this emission free sources are not unscheduled and unpredicted due to their intermittency. For these reason 

microgrids are considered as an effective remedy for intermittency in the power grid. These small-scale power 

systems are controlling several renewable and non-renewable energy sources, loads and flexible storage 
capacities, not necessarily geographically near to each other. And they can function synchronously and/or 

isolated (island/stand-alone mode) from the utility grid [8-10]. The Microgrids allow the transition between these 

two modes following continuous efficient strategy as physical, economic, or other conditions dictate. This 

transition gives more stability for both central system and local grid, reduces carbon footprint and green gas 

emissions by enhancing environmentally friendly local energy generation, improves supply security, provides 

resiliency, efficiency and reliability. More than that, the growing fleet of fully electric cars and plug-in hybrids of 

electric vehicles (EVs) represents additional stress for the power grid while charging a large number of EVs in 
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peak load which can lead to heavy impact on system aggregated operation cost. Nevertheless, Electric vehicles 

on the other side could potentially contribute in the load curtailment and peak shaving in the network by using 

them as flexible storage capacities that can deliver or/and receive energy from power grid.  
 

The widespread attention beyond the community of researchers and major utilities around the world, for the 
microgrids that are being promoted as an intelligent solution when organizing and facilitating effectively 

optimization tools and instituting robust and appropriate design methods to manage this kind of novelty systems. 

While most researches and studies that have been addressed, many of approaches have investigated the optimal 

management of resources of a Microgrid by considering different time-scheduling horizon. For example, in [11] 

the authors analyze the optimal decision problem addressed by managing a set of distributed resources 

(renewable and non-renewable systems, energy storage systems to optimize the buying and selling process of the 

Distributed Energy Resources (DERs) aggregation in virtual power plants which is similar to Microgrids. In the 

literature about aggregators used to manage microgrids, most of the research investigations focus on the optimal 

operation and the best employment of a microgrid’s resources, for example, in [12] where the authors propose a 

risk-constrained scenario-based stochastic framework for the optimal operation of a microgrid, where the 

aggregator sells electricity, generated by local DERs or procured by pool market to its customers by offering 

optimal hourly bids in the day-ahead market. In [13] a management framework of a grid-connected microgrid is 
presented based on agent-based modelling in order to increase the Microgrid stakeholders’ revenues from power 

selling. The developed framework faces the uncertainties relating to the stochasticity nature of renewable power 

generators, operational and environmental parameters. In [14], investigate the impact of demand response 

aggregators by proposing an energy and reserve management approach to schedule the resources of small and 

medium scale in a prosumer microgrid in order of reducing both the microgrid operating cost and the distributed 

resources utilization. Other interesting contributions, including optimal operation of microgrids can be found in 

[15] and [16]. Much work has therefore been carried out essentially with grid-connected microgrids as one high 

priority in the literature, but less strongly investigated and considered in optimal energy dispatch in the stand-

alone operating modes. For example, in [17], a system-wide optimal coordinated energy dispatch method is 

presented for a multi-energy microgrid with various non-renewable generation units, renewable generation units 

and energy storage devices. For both the grid-connected and islanded operating mode of microgrid with the aim 
of minimizing the microgrid operating cost and improve the dispatch flexibility, and other contributions on 

power dispatch of the islanded microgrids [18–23]. The research work in [24] was considered as one of the very 

rare examples of which proposed a bi-level multi-objective operation model: the first level(upper model) 
establishes an optimal dispatch of distribution network to reduce power loss and improve the voltage profile and 

the second level (lower model) attempts to get maximum performance of a grid-connected microgrids at the 

lowest possible operating cost. The same procedure was applicated in [25], where a robust multi-objective 

economic dispatch strategy is used for grid-connected microgrids that are under the worst scenario considering 

simultaneously uncertainties from both EV charging loads and wind power. As many papers have pointed out, 

the ESS plays significant role in smoothing load, improving the economic efficiency and ameliorating stability, 

strengthening reliability, and ensuring security of microgrid systems in the presence of intermittency and 

fluctuation challenges due to vast system integrating several renewable energy resources. [26] is regarded as one 
example of integrating renewable generation by optimally discharge scheduling of the Energy Storage System 

(ESS) through reducing the Microgrid’s energy consumption from the utility grid and enhancing the generation 

and load profiles. Similar thing for the integration of EVs into the grid which are expected to reign the roads that 

will reach 9 million-20 million by 2020[27]. Several researches have been carried out to investigate the impact of 

controlling EVs charging in coordination with the optimal operation microgrid’s resources, in [28], an aggregator 

model for an EV fleet is introduced to deal with a stochastic formulation of DER-CAM (problem of optimally 

sizing and scheduling DER [23]), for an optimal DER investment in microgrids considering the impact of freely 

available EVs and the uncertainty in EV driving schedules. In [30], a coordinated scheduling method is presented 

for system a grid-connected gas/electricity/heat microgrid in a day-ahead scheduling considering a temporal-

spatial EV charging model, where a real-time dispatching is used following the day-ahead exchanged energy 

with the utility grid 

 
In this paper, we suggest a model for managing multi-microgrids, under different operating modes, which 

will guarantee the right balance between different power-supply participants and consumers in the power system 

(microgrids, utility grid …). The objectives of the management strategy are to minimize the overall operating 

cost of the multi-microgrids system by optimally scheduling micro conventional generators, integrating 

renewable energy sources, controlling the ESSs charging and discharging and the substantial quantities of power 

purchased from the central power grid. Therefore, in this sense, the model can manage simultaneously both the 

charging and discharging of electric vehicles plugged into microgrids on one side, and the microgrids’ resources, 

power exchanged locally or/and power exchanged centrally with the utility grid on the other side, in order to 

obtain the maximum benefit in the interests of all stakeholders and EVs owners through V2G operations. To 
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assesses the impact of EVs charging strategy, we will design six cases in which the multi-microgrids system will 

vary depending on both the EVs charging strategy (coordinated, uncoordinated) and microgrids’ operating 

modes. Our contributions are summarized as follows: 

 

 We formulate a global Resource Management problem of multi-microgrids system, which aims to 
minimize the system operation cost within the day. The optimization problem contains the scheduling of 

micro-conventional generators, ESSs’ scheduling and integrating renewable energy sources. · To obtain 

the lowest total operating cost, we propose using a genetic algorithm-based optimization approach to 

solve this convex optimization problem efficiently. 

 We formulate a local scheduling optimization problem of each vehicle in the local microgrid using The 

Genetic Algorithm (GA). The scheduling process is carried out based on an integrated optimizer at the 

level of each microgrid that will defend the benefits of each EV owner and the microgrid. The EVs 

optimal scheduling profiles will contribute to reduce minimize the system operation cost by smoothing 

the load profile, curtailing load peak and using the EVs as extra and small storage capacities.  

 The rest of this paper is organized as follows: we focus on the mathematical model of the multi-

microgrids system problem in part 2. In part 3, we expose the EV charging strategy investigated in this 
study. In part 4, we present some numerical simulations and experimental findings to assess the proposed 

strategies and algorithms. Finally, in part 5, conclusion is presented. 

 

2. Multi-Microgrid System Formulation  

 

2.1. Objective Function Formulation 

 

The main goal of the objective function is to minimize the overall operating cost of all renewable and non-

renewable resources, the cost of power exchange among microgrids and with the utility grid under any operation 

mode (Islanded, integrated, grid-connected modes) in which all operating characteristics of all resources are 

considered in this paper. The following indices t, (n and m), i, l represent the time slots over the scheduling 
horizon, the microgrids index, the conventional generators, the plugged in EVs and the ESSs index, respectively. 

For the micro conventional generators, ut,n,i represents the binary commitment status (where 0 denotes the 

generators is OFF and 1 denotes the generators is ON), Pi,n(t) is the amount of generated power, Ci,n
𝐺  the 

generation cost of the i-th generators in the n-th microgrid at time t. For the second term, 𝑃𝐸𝑆𝑆/t,n,s 
𝐶ℎ𝑎𝑟𝑔

/𝑃𝐸𝑆𝑆/t,n,s
𝐷𝑖𝑠𝑐ℎ  

represents the amount of energy charged/discharged from the s-th ESS at the s-th microgrid at the t-the time slot, 

where CESSt,n,s
𝑐ℎ𝑎𝑟𝑔

/CESSt,n,s
𝐷𝑖𝑠𝑐ℎ are the charging/discharging cost of the same ESS. The Pt,n,m

𝑀  is the amount of 

power exchanged in-between integrated microgrids (from microgrid n to microgrid m) at time t. Pt,n,m
𝑀  could have 

both positive value or negative value and calculated twice, where α denotes the ability of exchanging power ( 

α=0 microgrids operate without changing power, α=0 microgrids operate with changing power alongside each 

other). Finally, PUtility,n is the power of the n-th microgrid purchased from the utility grid, where its cost is 

depend on the electricity price on the market Ct
𝑈at time t and β determines the operating mode in the objective 

function, where β = 0 denotes the islanded mode and β = 1 denotes the grid-connected mode. The various cost 

terms involved in the objective function of the system’s operating cost are modelled as follows:  

 

𝑚𝑖𝑛 𝒇 =∑∑∑Ci,n
𝐺 . Pi,n(t). ut,n,i

𝑁𝑔

𝑖=1

N

n=1

H

t=1

+ ∑  ∑ ∑(CESSn,s
𝑐ℎ𝑎𝑟𝑔

. 𝑃𝐸𝑆𝑆/t,n,s 
𝐶ℎ𝑎𝑟𝑔

+ CESSn,s
𝐷𝑖𝑠𝑐ℎ . 𝑃𝐸𝑆𝑆/t,n,s

𝐷𝑖𝑠𝑐ℎ )

N𝐸𝑆𝑆

s=1

𝑁

𝑛=1

H

t=1

 

+ α∑∑ ∑ Ci,n
𝑀 . Pt,n,m

𝑀  (t)

N

m=1

N

n=1

 

H

t=1

+ β. Ct
𝑈 . PUtility,n(t) 

∀ t, ∀ i, ∀ n, ∀ l       (1) 

 

2.2. Micro-Generation Units’ Constraints 

 

Constraint in (2) guarantee that each conventional generator operates on a specific bound, where 
Pn,i
min , Pn,i

max are the minimum and maximum generation limits, respectively. Eq (3), limits each generator of 

remaining operational or switched off for not more than a maximum or less than a number of hours, constraints 

(4) and (5) specify the ramp up and ramp down limits of generators. Constraints (6) et (7) enforce line capacity 

limits of both existing lines, the first line in-between microgrids is limited in PMax,n,m
𝑀  and the second line 

between microgrids and utility grid is limited in PUtility,n
𝑀𝑎𝑥 . 

Pn,i
min . ut,n,i ≤ Pn,i(t) ≤ Pn,i

max . ut,n,i, ut,n,i ∈  {0;  1} ∀ t, ∀ n, ∀ i   (2) 
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{
if ut,n,i = 1 then MUn,i × (1 − ut,n,i) ≤ XUn,i 

if ut,n,i = 0 then  MDi,n × ut,n,i ≤ XDi,n 
 ∀ t, ∀ n, ∀ i   (3) 

Pi,n(t + 1) − Pi,n(t) ≤  RUi,n ∀ n, ∀ i     (4) 

Pi,n(t) − Pi,n(t + 1) ≤  RDi,n ∀ n, ∀ i     (5) 

0 ≤ PUtility,n(t) ≤ PUtility,n
𝑀𝑎𝑥  ∀ n      (6) 

0 ≤ Pt,n,m
𝑀  (t) ≤ PMax,n,m

𝑀  ∀ n, ∀ m     (7) 

 

2.3. Integrated Multi-Microgrids System Power Balance Constraint 

 

In the multi-microgrids system, the conventional generators along with the wind, solar power, ESSs must 

meet the load demand at each microgrid and at any hour t, where the system load balance equation is given as: 
 

PPV(t) + PWT(t) + β. PUtility(t) + α∑∑∑Pi,n(t). ut,n,i

𝑁𝑔

𝑖=1

N

n=1

H

t=1

+ ∑ ∑ ∑  𝑃𝐸𝑉/t,n,i
𝐷𝑖𝑠𝑐ℎ

N𝑃𝐸𝑉

l=1

𝑁

𝑛=1

H

t=1

 + ∑ ∑ ∑ 𝑃𝐸𝑆𝑆/t,n,i 
𝐷𝑖𝑠𝑐ℎ

N𝐸𝑆𝑆

s=1

𝑁

𝑛=1

H

t=1

 

= D(t) +∑∑ ∑ Pt,n,m
𝑀  (t)

N

m=1

N

n=1

 

H

t=1

+∑ ∑ ∑ 𝑃𝐸𝑆𝑆/t,n,i 
𝐶ℎ𝑎𝑟𝑔

N𝐸𝑆𝑆

s=1

𝑁

𝑛=1

H

t=1

+∑∑ ∑  𝑃𝐸𝑉/t,n,i
𝐶ℎ𝑎𝑟

N𝑃𝐸𝑉

l=1

 

𝑁

𝑛=1

H

t=1

  

∀ t, ∀ n, ∀ i, ∀ l, ∀ s       (8) 

 

2.4. ESS Charging Strategy 

 

For each microgrid’s ESS, the state of charge must be limited range within of less than a maximum value 

LB𝑙,𝑛  but above maximum value UB𝑙,𝑛 at each time slots t (10). Equation (11) imposes the systems to not exceed 

the ramp up/down limits by more than RU𝑙,𝑛 or less than RD𝑙,𝑛. The initial SOC of ESS at the beginning of the 

scheduling horizon can critically affects on the results of operation, benefits and costs. We consider that 

scheduling strategy will give priority to charge ESSs from renewable energy sources PV and WT. 

 

Et,n
ESS = Et−1,n

ESS + 𝛈Char 𝑋t,𝑙,𝑛
Char +

𝑋t,𝑙,𝑛
Disch 

𝛈Disch 
     (9) 

LB𝑙,𝑛 ≤ Et,n
ESS ≤ UB𝑙,𝑛        (10) 

RD𝑙,𝑛 ≤ Et,n
ESS  −  Et−1,n

ESS ≤ RU𝑙,𝑛      (11) 

 

2.5. Modeling of Wind Turbines 

 

The wind turbine output depends essentially on the stochastic behavior of wind speed during the day. Eq (12) 

represents the function that describes the generated power of wind turbine which can be defined as the following: 

 

𝑃𝑊𝑇 = 

{
 

 
0 0 ≤ 𝑉 ≤ 𝑉𝑐𝑢𝑡−𝑖𝑛

𝑎 + 𝑏 × 𝑉 + 𝑎 × 𝑉2 𝑉𝑐𝑢𝑡−𝑖𝑛 ≤ 𝑉 ≤ 𝑉𝑟𝑎𝑡𝑒𝑑
𝑃𝑊𝑟𝑎𝑡𝑒𝑑

 𝑉𝑟𝑎𝑡𝑒𝑑 ≤ 𝑉 ≤ 𝑉𝑐𝑢𝑡−𝑜𝑢𝑡
0 𝑉𝑐𝑢𝑡−𝑜𝑢𝑡 ≤ 𝑉

    (12) 

 

Table 1. The Characteristics of Wind Turbines 
  𝑷𝒎𝒊𝒏(𝒌𝒘) 𝑷𝒎𝒂𝒙(𝒌𝒘) 𝑽𝒄𝒖𝒕−𝒊𝒏 

(m/s) 

𝑽𝒄𝒖𝒕 − 𝒐𝒖𝒕 
(m/s) 

𝑽𝒓𝒂𝒕𝒆𝒅 

(m/s) 

𝑷𝑾𝒓𝒂𝒕𝒆𝒅
 

(kw) 

a b c 

MG1 WT1 0 500 3 25 10 500 0.2 -0.005 0.019 

MG2 WT1 0 500 3 25 10 500 0.2 -0.005 0.019 

MG2 WT2 0 500 3 25 10 500 0.2 -0.005 0.019 

 

2.6. Modeling of Solar Cells 

 
The output power model of PV, which depends on cells temperature, solar irradiance and the ambient 

temperature, is expressed in Eq. (13) as follows: 

 

𝑃𝑃𝑉 = 𝑃𝑆𝑇𝐶
𝐺𝐼𝑁𝐺

𝐺𝑆𝑇𝐶
[1 + 𝑘(𝑇𝑐 − 𝑇𝑟𝑒𝑓)]                                                                   (13) 
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The temperature of cells can also be obtained from Eq (14). 

 

𝑇𝑐 = 𝑇𝑎 + 
(𝑁𝑂𝑇−20)

0.8
× 𝐺       (14) 

 

3. The Charging Control Strategy  

 

As shown in Figure1, the microgrids are considered which includes developed charging infrastructure and 

equipment needed at the charging stations to ensure the bidirectional power flows. A smart measurement tool is 

installed on each charger which measures following PEV data at the charger node and transfers them to the 

central optimizer. In this section, the charging control strategy is applied based on the GA optimizer concept 

used in [33]. The optimizer generates the optimal charging strategy at each sampling step to make every EV 

battery fully-charged and ready for next trip with the ability of feeding back its stored energy to the microgrid. 

To reach that objective, in n-th microgrid, at 𝑡𝑘-th step, the charging of l-th PEV is controlled by minimizing its 

total charging  

 

 
Figure 1. The Configuration of a Multi-Microgrid System with Plug-in Electric Vehicles 

 

cost in order to always put EV owners’ interests first. The optimization problem f(x) is defined in the 

following expression: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 = ∑∑ [∑ 𝜼𝐶ℎ𝑎𝑟 . 𝐸𝑛 .𝑤𝑛
𝑡𝑘 . 𝑃𝑟𝑖𝑐𝑒(𝑡𝑘)

𝑤𝑛
𝑡≥0

− ∑ 𝜼𝐷𝑖𝑠𝑐ℎ . 𝐸𝑛 . |𝑤𝑛
𝑡𝑘|. 𝑃𝑟𝑖𝑐𝑒(𝑡𝑘)

𝑤𝑛
𝑡≤0

]

𝑇

𝑡𝑘=1

 

𝑁

𝑛=1

 (15) 

 

The objective function f is formed by two terms that describes the cost of the power delivered/received from 

the grid. Where 𝑃𝐸𝑉,𝑙,𝑛  (𝑡𝑘) determines the EV mode from the given three states: 

 

 𝑃𝐸𝑉,𝑙,𝑛  (𝑡𝑘)  = 0 : The Idle mode (not charging or discharging). 

 𝑃𝐸𝑉,𝑙,𝑛  (𝑡𝑘)  ≥ 0 : The Charging mode. 

 𝑃𝐸𝑉,𝑙,𝑛  (𝑡𝑘)  ≤ 0 : The Discharging mode. 

 

It must be underlined that the scheduling process is carried out for every PEVs of a given microgrid in day-

ahead planning horizon. In order to obtain a high scheduling accuracy, we define a small-time step (with 15min 

time steps (𝑡𝑘)): 

1. The continuous listening in the connectors’ output ports in the charger attached to EVs to determine the 
online vehicles for each microgrid at k-th time period. 
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2. The optimizer receives the online EVs’ operational data (including battery charging state and unplug 

time) measured and acquired at the connectors. 

 

 Initial state of charge (current SOC at time steps (𝑡𝑘)) of each PEV. 

 Plug-in time of PEV to the grid (𝑡𝑖𝑛.𝑙 ).  
 Rower rates of each PEV 

 Full battery capacity. 

 Real-time SOC in the next time steps. 

 Predefined departure time for each PEV (𝑡𝑜𝑓𝑓.𝑙). 

 Needed SOC for each PEV at its departure time ( SoCl,n
need). 

 

3. Forecasting electricity price (𝐏𝐫𝐢𝐜𝐞𝑡𝑘) at 𝑡𝑘 till the departure time and expecting future profits of each 

PEV. 
4. The optimizer affects the optimal charging schedules which can maximize PEV owners’ profits using 

Genetic algorithm.  

 

3.1. Constraints 

 

Constraint (17) ensures that the optimizer satisfies each single PEV’s energy demand (SoCn
need) at departure 

time at each microgrid. Constraints (18) and (19) limit the variations of the SOC at each time slot t within a 

predefined range not more than a maximum level SoCl,n
maxand not less than a minimum level SoCl,n

min. 

 

SoCn
t = SoCn

t−1 +𝛈Char 𝑃𝐸𝑉,𝑙,𝑛  (𝑡𝑘) + 𝛈Disch 𝑃𝐸𝑉,𝑙,𝑛  (𝑡𝑘)  (16) 

 

∑ 𝛈Char 𝑃𝐸𝑉,𝑙,𝑛  (𝑡𝑘) + ∑ 𝛈Disch 𝑃𝐸𝑉,𝑙,𝑛  (𝑡𝑘) 
𝑇
𝑡=1, xn

t ≤0
= SoCl,n

need𝑇
𝑡=1, xn

t ≥0
 (17) 

 

𝛈Char 𝑃𝐸𝑉,𝑙,𝑛  (𝑡𝑘) ≤ SoCl,n
max      (18) 

 

−𝛈Disch  𝑃𝐸𝑉,𝑙,𝑛  (𝑡𝑘)  ≤ −SoCl,n
min      (19) 

 
Therefore, the cost of charging and discharging of EV fleet is obtained by using Eq. (20). 

 

CPEV = ∑  ∑ ∑ CostChar. 𝑃𝐸𝑉/t,n,i
𝐶ℎ𝑎𝑟 + CostDisch. 𝑃𝐸𝑉/t,n,i

𝐷𝑖𝑠𝑐ℎH
t=1

N𝑃𝐸𝑉
i=1

𝑁
𝑛=1  (20) 

 

4. Simulation Results  

 

4.1. Description of the System 

 

The test system contains two microgrids in six cases in different operating modes (islanded, Connected, 

integrated), to assess the impact of EV charging and the ability of reinjecting the energy stored in EV batteries 

pack into these microgrids, on the economic aspect of the generation system. The first microgrid is consisting of 

4 conventional generators, one 500 kW wind Turbine, 500 kW PV system and 1 MW ESS system. The second 

microgrid is formed by 5 conventional generators, one 1 MW wind Turbine, 500 kW PV system and 2 MW ESS 

system. All configuration and operation parameters of micro conventional generators and ESSs are summarized 

in Tables2-3. Hourly forecasted electricity market prices in Figure 2 [31]. Both microgrids are connected and 

exchange power with the utility grid by a dedicated line with 10 MW capacity limit. Same thing for the local 

power exchange, microgrids are related to each other using a dedicated line (capacity limit of 4 MW). Table 4 

shows the output of wind power and solar power that have been estimated based on wind speed solar and 
insolation data over 24 hours at a location in the western USA [32] along with the hourly microgrids’ load 

demand. Let us consider two fleets of 2,000 and 4,000 EVs are assumed to be plugged-in respectively into 

microgrid 1 and 2 via an adequate equipment that generates the optimal charging/discharging strategy in a period 

of 24 hours using a genetic algorithm-based optimization technique [33]. The deterministic and probabilistic 

uncertainties (initial SOC, arrival and departure times …) are similarly generated using [33]. To perform the 

simulation of the economic dispatch for all studied cases, we used C++ in a personal computer with 3.00 GHz 

core i5 processor and 8 GB RAM. The program is run with 70 population and 500 iterations, it is required a 

couple of repeated trials with different parameter combinations for the optimization technique used to set the 

right parameters. Where the crossover probability (Pc) and mutation probability (Pm) 0.95, 0.1 are respectively 

selected to perform the GA. Table 3 reports the characteristics for each storage system [34], including its lower 
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and upper bound for storage level, its maximum capacity, its initial energy level and charging/discharging 

efficiency. 

 

 
Figure 2. Hourly Electricity Price Values for the Scheduling Day 

 

Table 2. Characteristics of Generators in Microgrid 1 and 2. 

 
Microgrid 1 Microgrid 2 

 
G1 G2 G3 G4 G1 G2 G3 G4 G5 G6 

Max capacity (MW) 5 5 5 3 6 6 5 3 3 3 

Minimum production level (MW) 1 1 5 0.8 1 1 1 0.8 0.8 1 

Ramp-up limit (MW) 2.5 2.5 2.5 3 3 3 2.5 3 3 3 

Ramp-down limit (MW) 2.5 2.5 2.5 3 3 3 2.5 3 3 3 

Initial status 1 1 0 0 1 1 1 0 0 0 

Minimum up-time (h) 3 3 1 1 3 3 3 1 1 1 

Minimum down-time (h) 3 3 1 1 3 3 3 1 1 1 

Number of periods online (h) 8 8 -4 -4 8 8 8 -4 -4 -4 

Cost coefficient ($/MWh) 
27.7 39.1 50.5 61.3 26.8 35.5 39.1 64.1 72.3 85.6 

 

Table 3. Characteristics of ESS in Microgrid 1 and 2. 

 

ESS Microgrid 1 ESS Microgrid 2 

 

B1 B1 B2 

Capacity [MW] 1 1 2 

Initial storage level [MW] 0.1 0.2 0.1 

Unit storage cost [e/MW*h] 0.3 0.3 0.3 

𝜂Char[%]  98 97 96 

𝜂𝐷𝑖𝑠𝑐ℎ [%] 97 96 95 

LB [%] 5 10 15 

UB [%] 75 80 85 

RD/RU [%] 50 60 70 
 

Table 4. Forecast Demand, Wind and Solar Generation Outputs for Both Microgrids 

Hour 
Hourly load 

MG1 (MW) 

Solar output 

(KW) 

Wind output 

(KW) 
Hourly load MG2 (MW) Solar output (KW) Wind output (KW) 

1 7 0.00 390.32 13.05 0.00 780.64 
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2 6.8 0.00 431.07 12.6 0.00 862.14 

3 6.73 0.00 500.00 11.62 0.00 1000.00 

4 7.31 0.00 475.51 13.35 0.00 951.03 

5 7.06 0.00 500.00 14.07 0.00 1000.00 

6 7.08 37.03 500.00 15.12 37.03 1000.00 

7 8.43 121.55 500.00 14.51 121.55 1000.00 

8 9.27 216.53 436.09 13.31 216.53 872.18 

9 9.54 272.55 449.80 12.49 272.55 899.60 

10 10.14 373.02 361.85 14.16 373.02 723.69 

11 10.45 424.34 500.00 14.43 424.34 1000.00 

12 10.5 447.53 500.00 16.46 447.53 1000.00 

13 12.35 445.88 420.05 17.33 445.88 840.09 

14 13.74 392.04 246.14 18.69 392.04 492.27 

15 13.83 296.83 266.01 19.91 296.83 532.01 

16 14.18 287.84 216.46 20.21 287.84 432.92 

17 14.63 164.92 152.87 20.76 164.92 305.74 

18 14.64 37.39 179.87 20.59 37.39 359.73 

19 14.04 0.00 209.23 18.11 0.00 418.47 

20 13.99 0.00 270.61 17.93 0.00 541.22 

21 12.43 0.00 249.65 15.62 0.00 499.31 

22 11.43 0.00 347.55 13.39 0.00 695.10 

23 8.12 0.00 405.60 13.09 0.00 811.21 

24 7.74 0.00 500.00 12.69 0.00 1000.00 

 

4.2. Islanded Multi-Microgrids 

 

Case 0 

 

In this kind of operating mode, each microgrid is scheduled under resource-independent condition to prevent 

power outages when the power supply from the utility grid is interrupted after an intentional or unintentional 
islanding decision [34-38], that may be taken in severe weather circumstances, overload conditions, grid 

equipment damage or other emergency situations. For that reason, microgrids in this case search for optimal 

operating planning for conventionnel generating units without exchanging power with each other or with the 

utility grid, without the ESS and without the renewable sources, meanwhile, is trying to achieve minimized 

operating cost as far as possible. In this case, we investigate the impact of uncoordinated charging where the EVs 

begin charging immediately when connected to the grid at work place or home and mostly in the peak hours. 

Most of EVs start charging unfortunately alongside each other and simultaneously with peak demand see Fig. 3. 

Thus, if the EVs charged in an uncoordinated way, they may generate an extra load coincident with the peak 

which could enhance undeniably the operating cost or rise the risk of overloading the system. Results of islanded 

mode optimization are shown in Table 5 where the microgrid power-generating cost is minimized during the 

whole scheduling period. The obtained results show that every microgrid try to make a profit by running 
inexpensive generators to meet the load demand and avoid enable generators that are regarded as an unnecessary 

and costly to participate fully in the daily routine in the operating process (G3 and G4 in Microgrid 1, G5 and G6 

in Microgrid 2). Under the deployment of 64,01% of microgrids’ full generation capacity at the optimized 

schedule, these inexpensive conventional generators are trying to produce sufficient energy to meet the demand 

in every hour of the day. As shown in Figure 4, the total realized operational cost in the islanded mode for both 

microgrids 1 and 2 is about 23157,1$. 
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Figure 3. Charging Profile of the Microgrids’ Fleets for the Scheduling Day  

 

Table 5. Day Ahead Scheduling of Sources for Case 0 (MW). 

 
Microgrid 1 Microgrid 2 

Hour G1 G2 G3 G4 G1 G2 G3 G4 G5 G6 

1 5.00 2.25 0.00 0.00 6.00 6.00 1.49 0.00 0.00 0.00 

2 5.00 4.42 0.00 0.00 6.00 6.00 4.99 0.80 0.00 0.00 

3 5.00 1.95 0.00 0.00 6.00 5.04 1.00 0.00 0.00 0.00 

4 5.00 2.39 0.00 0.00 6.00 6.00 1.55 0.00 0.00 0.00 

5 5.00 2.06 0.00 0.00 6.00 6.00 2.07 0.00 0.00 0.00 

6 5.00 2.08 0.00 0.00 6.00 6.00 3.12 0.00 0.00 0.00 
7 5.00 3.52 0.00 0.00 6.00 6.00 2.71 0.00 0.00 0.00 

8 5.00 4.27 0.00 0.00 6.00 6.00 1.31 0.00 0.00 0.00 

9 5.00 4.73 0.00 0.00 6.00 5.89 1.00 0.00 0.00 0.00 

10 5.00 4.59 0.80 0.00 6.00 6.00 2.71 0.00 0.00 0.00 

11 5.00 5.00 0.82 0.00 6.00 6.00 3.19 0.00 0.00 0.00 

12 5.00 4.70 0.80 0.00 6.00 6.00 4.47 0.00 0.00 0.00 

13 5.00 5.00 2.36 0.00 6.00 6.00 4.56 0.80 0.00 0.00 

14 5.00 5.00 2.95 0.80 6.00 6.00 5.00 1.71 0.00 0.00 

15 5.00 5.00 3.00 3.00 6.00 6.00 5.00 3.00 3.00 1.18 

16 5.00 5.00 3.00 1.18 6.00 6.00 5.00 2.42 0.80 0.00 

17 5.00 5.00 3.00 1.63 6.00 6.00 5.00 2.97 0.80 0.00 
18 5.00 5.00 3.00 1.64 6.00 6.00 5.00 2.79 0.80 0.00 

19 5.00 5.00 3.00 1.04 6.00 6.00 5.00 1.12 0.00 0.00 

20 5.00 5.00 3.00 0.99 6.00 6.00 5.00 0.93 0.00 0.00 

21 5.00 5.00 2.44 0.00 6.00 6.00 3.65 0.00 0.00 0.00 

22 5.00 5.00 1.62 0.00 6.00 6.00 1.84 0.00 0.00 0.00 

23 5.00 3.28 0.00 0.00 6.00 6.00 1.41 0.00 0.00 0.00 

24 5.00 2.84 0.00 0.00 6.00 5.97 1.00 0.00 0.00 0.00 
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Figure 4. The Hourly Operating Cost for the Whole System in All Cases 

 

Case 1 
 

As the precedent case, we consider both microgrids are scheduled under the same conditions in Case 0 

(without the ESS, the renewable sources and any ability of exchanging power). The only change is the 

coordinated strategy of EVs which is smartly control the charging and discharging profile of each EV plugged 

into the grid., which is expected to avoid any risk of overloading microgrids and to reduce the overall operating 

cost. Figures 5 and 6 illustrate the good distribution of charging and discharging acts of the EV batteries’ fleet 

during the scheduling time. Table 6 represents the commitment status, and the power contribution of each 

conventional generator in microgrid 1 and 2 obtained by using the proposed approach in the islanded mode. In 

which the proposed approach nevertheless shows a great flexibility of avoiding costly generators in both 

microgrids and giving an adequate scheduling. The total operation costs of two microgrids in Case 1 (22906,9$) 

is reduced by the amount of 250,2$ per day compared with the previous total operating costs of Case 0 which 

corresponds to 7756,2 per month and 93074,4$ per year see Fig 4. This undeniably reduction in the operating 
cost is because the entry into operation of the coordinated EV charging strategy which has a positive impact on 

the local power-generating savings, and the load demands for both microgrids by maintaining the right balance 

between satisfying EV owners and delivering power to the grid to relieve the load on the peak hours. 

 

  
Figure 5-6. Charge/Discharge of Batteries’ Fleet in Both Microgrids Over the Scheduling Day 
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Table 6. Day Ahead Scheduling of Sources for Case 1 (MW). 

 
Microgrid 1 Microgrid 2  

Hour G1 G2 G3 G4 G1 G2 G3 G4 G5 G6 

1 5.00 2.55 0.00 0.00 6.00 6.00 2.24 0.00 0.00 0.00 

2 5.00 2.65 0.00 0.00 6.00 6.00 2.35 0.00 0.00 0.00 

3 5.00 1.58 0.00 0.00 6.00 5.35 0.00 0.00 0.00 0.00 

4 5.00 2.39 0.00 0.00 6.00 6.00 0.00 1.49 0.00 0.00 

5 5.00 3.97 0.00 0.00 6.00 6.00 0.00 3.00 2.94 0.00 

6 5.00 4.54 0.00 0.00 6.00 6.00 5.00 2.23 0.80 0.00 

7 5.00 3.35 0.00 0.00 6.00 6.00 2.42 0.00 0.00 0.00 

8 5.00 4.80 0.00 0.00 6.00 6.00 2.33 0.00 0.00 0.00 

9 5.00 4.43 0.00 0.00 6.00 5.26 1.00 0.00 0.00 0.00 

10 5.00 4.31 0.80 0.00 6.00 6.00 2.09 0.00 0.00 0.00 

11 5.00 4.58 0.80 0.00 6.00 6.00 2.35 0.00 0.00 0.00 

12 5.00 4.65 0.80 0.00 6.00 6.00 4.43 0.00 0.00 0.00 

13 5.00 5.00 2.51 0.00 6.00 6.00 4.87 0.80 0.00 0.00 
14 5.00 5.00 3.00 1.14 6.00 6.00 5.00 2.46 0.00 0.00 

15 5.00 5.00 2.56 0.00 6.00 6.00 4.51 0.80 0.00 0.00 

16 5.00 5.00 3.00 0.00 6.00 6.00 3.74 0.80 0.80 1.00 

17 5.00 5.00 3.00 0.00 6.00 6.00 5.00 1.14 0.81 1.00 

18 5.00 5.00 3.00 3.00 6.00 6.00 5.00 2.99 2.84 1.01 

19 5.00 5.00 3.00 1.02 6.00 6.00 5.00 1.06 0.00 0.00 

20 5.00 5.00 3.00 2.04 6.00 6.00 5.00 2.92 0.00 0.00 

21 5.00 5.00 2.42 0.00 6.00 6.00 3.67 0.00 0.00 0.00 

22 5.00 5.00 1.81 0.00 6.00 6.00 2.16 0.00 0.00 0.00 

23 5.00 1.56 0.00 0.00 6.00 3.89 0.00 0.00 0.00 0.00 

24 4.93 1.00 0.00 0.00 6.00 3.09 0.00 0.00 0.00 0.00 

 

4.3. Cooperative Islanded Multi-Microgrids 

 

In this operational mode, microgrids can exchange power with each other during the islanded operation, in 

other way they can share unused and/or inexpensive the counterpart’s generators to meet the load demands, 

mitigate the risk of committing costly generators, avoid operationally deficient, reduce the total operating cost, 

and make them in a fully independent position far away from utility grid. 

 

 Case 2  
 

The stacked bar chart is presented in Fig 7. it displays detailed information about the total contribution of 

each of the conventional generator and RSS system in 24h scheduling horizon for microgrid 1 and 2. From that 

chart, it is remarked that the conventional generators are producing power at their full capacity to meet a big part 

of demand in both microgrid. And some generators are most time switched off or generate less amount of power, 

especially at the peak time. Furthermore, the hourly amounts of exchanged power between both microgrid over 

time, which microgrid1 delivers an overall amount of 14,29 MW to microgrid2, whereas microgrid2 purchases 

an overall amount of 8,00 MW to microgrid1. Whether it could simply be deduced from the cheap production 

costs in microgrid1 which gives more reliability and operational flexibility to the whole system and guarantee the 

low-cost production facility to meet the load demands. As shown in Fig 4, it's remarkable that the overall 

operating cost is about 21728,87$ which is notably reduced by a percentage of 6,16% and 5,14% compared with 
Case 0 and 1, respectively. This reduction is the fruit of decreasing the deployment of a considerable part of 

generation capacity in the microgrid that has the cheaper generators in the multi-microgrid system, integrating 

renewable sources, optimally scheduling ESS, profiting the positive effects of both exchanging power in-

between microgrids, and the good management of power exchanges which makes the power flows either from or 

towards EVs more efficient and useful. 

 

Case 3 

 

 As the precedent-setting case, microgrids can exchange power under the same conditions in Case 2 with 

adopting the efficient strategy for charging and discharging of EVs batteries. Figure 8 presents a stacked bar 
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chart different levels of power production in the microgrids 1 and 2 alongside with the RSS within a 24-hour 

time horizon. While these structural changes in the system, the microgrids have shared an overall amount of 

16,41 MW evenly through the day (10,73 MW from microgrid 1 to microgrid 2; 5,67 MW from microgrid 2 to 

microgrid 1). The operation of a smart strategy for charging and discharging of EVs will progressively lead to 

daily savings on the overall system operating costs of 21273,32$ up to 1883,76$ per day a reduction of about 8% 
compared to the first case, see Fig 4. Which presents an important potential savings for EVs contribution, based 

on delivering energy in the high-cost operation periods and scheduling their charging cycles in the low-cost 

operation periods. 

 

  
Figure 7-8. Commitment Statuses of Conventional Generators, ESS and the Amounts of Energy Exchanged 

Among Microgrids for Case 2 and 3 

 

4.4. Cooperative Connected Multi-Microgrids 
 

In the following two cases, the microgrids operate in the grid-connect mode with the ability of exchanging 

power alongside each other and purchasing power from the utility grid as conditions dictate. Microgrids 

encompass multiple types of conventional generation resources, renewable sources, ESS, efficient strategy for 

charging and discharging of EVs batteries (see Figure 5-6). Microgrids 1 and 2 are designed to purely manage 

their local resources when the utility grid is offering a limited cost-effective or less energy-saving potential. Two 

other stacked bar charts are presented in Fig 9-10. It shows the results of applying our approach with detailed 

information about the contribution of conventional generators, RSS, the amounts of exchanged power between 

microgrids 1 and 2 and the power purchased from the utility grid over the scheduling horizon in cases 4 and 5. 

Figures 11 and 12 indicate clearly not only the amounts of energy exchanged locally in-between microgrids, but 

also the electricity purchased from the utility grid in both cases 4 and 5.  
 

Case 4 

 

 In this case, the microgrids had been designed to switch off most of generators (G1 is excluded in microgrid 

2) especially in the first 10 time slots in the scheduling time, where the electricity price is less than 27.09$. For 

that reason, the multi-microgrid system decreases its deployment of the microgrids’ full generation capacity to 

39,48% and then the overall operating cost to 19030,32$ compared with Case 0 which the system totally 

powered by its local resources to meet the local load demand as illustrated in Fig 4. Which refers to purchase 

smarty power when the electricity price is lower than the electricity that it could be generated locally. 

 

Case 5 

 
The total amount of delivered power from the utility grid, in this case, to microgrid 1 is about 115,98 MW, 

meanwhile, Microgrid 2 has purchased an amount of 104,88 MW from the utility grid. It should be noted that the 

total exchanged energy in-between the two microgrids in this operation mode is 30,99 MW (microgrid1 delivers 

22,89 MW to microgrid2, whereas microgrid2 purchases an overall amount of 8,1 MW to microgrid1), with a 

diminution of 18% compared with Case2. This diminution is due to microgrids’ recourse to purchase power from 

the utility gird when the electricity price is lower than the electricity generated in the counterpart microgrid. We 

have assumed a high decrease of the overall operating cost of 11,7% and 18% compared respectively with Case3 

and Case1. Where the overall operating cost is about 18775,73$ (see Fig 4) with deploying approximately more 

than the half of the microgrids’ maximum generation capacity. Microgrids had realized net benefits under this 

case up to 4381,37$ per day, 135822,2 $ per month and 1 629 866,687 $ per year compared to the base Case 0 

which can reveal that the algorithm is smart enough to control the flows exchanged between the microgrids, 
efficiently determinate the purchased energy from the utility grid and precisely allocate the cheapest power 
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generators at each hour. These results indicate the hugely disproportionate numbers between this case and the 

other five cases. Additionally, they also indicate the impact of effectiveness of a model when microgrids are set 

up to be in the connected mode where variant resource availability, Optimal scheduling of ESS system and the 

renewable resources allow microgrid to get some adequate and quick needed supplies which makes the cost and 

efficiency of the whole operation a lot better. 
 

  
Figures 9-10. Commitment Statuses of Conventional Generators, ESS and the Amounts of Energy Exchanged 

Among Microgrids and with the Utility Grid for Case 4 and 5 

 

 
Figure 11. The Power Exchanged in-between Microgrids and with the Utility Grid for Case 4-5 

 

5. Conclusion  
 

This paper assesses the effectiveness and the robustness of smartly managing the charging and discharging of 

EVs batteries under different multi-microgrids operating modes (islanded, integrated, grid-connected modes) 

with variant combinations of several non-renewable and renewable sources (conventional generators, wind 

turbines, PV systems) and energy storage system. Six different cases were studied in this paper, each case 

represents a distinct operating mode with a specific EV charging/discharging strategy (uncoordinated for cases 0, 

2 and 4, coordinated strategy for Cases 1,2,3) to gradually evaluate the improvement in system reliability and 

flexibility. Adequate robust optimization is developed in this paper to optimally scheduling the resources 

commitment, ESS, the power shared among microgrids, and the amounts of energy purchased from the utility 

grid which it was deployed the Genetic Algorithm to find the optimal schedules while minimizing the operating 

cost at every mode’s dictated conditions over the scheduling time. Thus, a more resource deployment and 
imposed conditions decrease the expense of higher robustness and quality of solutions created. There were also 

quantitative analyses and numerical simulations on a test system conducted to validate the effectiveness of the 
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proposed methods and their high performance to provide the optimal charging/discharging of EV batteries that 

guarantee the load shedding and deliver a low-cost solution for an optimal schedule of all microgrids. 
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