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Abstract 

This study reveals the unified geometric origin of the gravitational constant 𝐺 and the speed of 

light 𝑐. By introducing the rotational scaling length lΩ, defining the helical divergence strength 

𝑄 = 4𝜋𝑐lΩ
2  and the space–mass coupling relation 𝑀 = 𝜇𝑔lΩ, we establish a one-to-one 

correspondence between mass and geometric scale. Under the unique bridging law 𝐺𝑀 =
𝑐

ℓΩ
𝑄, 

we rigorously derive the invariant 

𝐺𝑀

4𝜋𝑐2lΩ
= 1  ⇒   𝐺 =

4𝜋𝑐2

𝜇𝑔
 

This result demonstrates that G and c are not independent constants but are jointly fixed by the 

space–mass coupling constant 𝜇𝑔 and geometric structure. Using observational data from solar 

redshift, light deflection, planetary perihelion precession, and both Jupiter’s satellites and the 

white dwarf Sirius B, we verify the universality and cross-modal consistency of this relation. 

Geometric scaling not only explains the origin of G but also establishes a unified theoretical 

framework for future high-precision astronomical observations and constant metrology. This 

offers a more geometric expression than general relativity and proposes testable metrological 

predictions. 

Supplement to the Abstract: Geometric Framework of the Unified Field Theory 

1. Helical Flow of Space 

Space is not a static background, but expands in a right-handed helical flow at the speed of light 

c. The characteristic length ℓΩ is defined where the radial velocity is 𝑣𝑟 = 𝑐 and the tangential 

velocity vanishes 𝑣𝜃 = 0. 

 

https://creativecommons.org/licenses/by/4.0/
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2. Space–Time Equivalence 

Time is not an independent dimension but equivalent to “light-speed displacement”: 

1 𝑠 ≡ 𝑐 × 1 𝑠 = 3 × 108 𝑚. 

This setting ensures the self-consistency of the space-time unified equation and the spiral 

geometry. 

 

 

3. Fundamental Quantities 

The framework naturally introduces: 

 • Helical divergence strength 𝑄 = 4𝜋𝑐ℓΩ
2  

 • Space–mass coupling constant 𝜇𝑔, dimension 𝑘𝑔/𝑚 

 • Coupled mass 𝑀 = 𝜇𝑔ℓΩ 

 • Rotational frequency Ω 
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4. Bridge and Redefinition 

From the geometric helical structure and mass coupling one obtains: 

𝐺 =
4𝜋𝑐2

𝜇𝑔
 

This makes the gravitational constant G no longer an empirical parameter, but naturally derived 

from the speed of light and geometric constant. 

 

 

Part I  Geometric Scaling 

1.1 Definitions and Assumptions 

The Unified Field Theory posits that space is not a static background, but flows helically in a 

right-handed manner at the composite speed of light 𝑐. Within this fluid-like geometry, there 

exists a characteristic radius denoted as ℓΩ. At this location: 

• Tangential velocity: 𝑣𝜑 = 0 

• Radial velocity: 𝑣𝑟 = 𝑐 

We refer to ℓΩ as the rotational scaling length. It serves as the fundamental parameter describing 

the geometric scale of space. 

1.2 Helical Divergence Strength Q 

We define the helical divergence strength Q as the spatial flux passing through the spherical 

surface of radius ℓΩ per unit time: 

(𝐸1) 𝑄 = 4𝜋𝑐ℓΩ
2  

Dimensional check: 

[𝑄] = [𝑐][ℓΩ
2 ] =

𝑚

𝑠
⋅ 𝑚2 = 𝑚3/𝑠 

This is consistent with the dimension of volumetric flux.  
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1.3 Conceptual Explanation 

Equation (E1) shows that the geometric scaling of space is directly related to the speed of light c. 

• In traditional theories: 

• Newtonian mechanics: space is treated as a static absolute background. 

• Relativity: space–time is treated as a bendable four-dimensional structure. 

• In the Unified Field Theory: Space is further endowed with the attribute of a dynamic fluid, 

whose fundamental scale is determined by helical geometry. 

1.4 Experimental and Observational Tests 

Ways to test the rationality of Q: 

 a.  Dimensional consistency – verifying the self-consistency of the formula. 

 b.  Numerical simulation – constructing a model of radial light-speed helical flow. 

 c.  Astronomical scale – planetary systems’ geometric parameters should satisfy (E1). 

1.5 Summary 

The mother formula (E1) establishes the first step of geometric scaling in the Unified Field 

Theory. 

It provides a solid geometric foundation for the subsequent derivation of mass–gravity relations 

and for uncovering the geometric origin of the reduced Planck constant ℏ. 

 

Part II  Space–Mass Coupling and Gravity 

2.1 Definitions and Assumptions 

Within the framework of the Unified Field Theory, mass is not an intrinsic property but the 

coupling strength between space and matter. We define: 

(𝐸2) 𝑀 = 𝜇𝑔  ℓΩ 

where: 

 • M: Coupled mass (kg) 

 • 𝜇𝑔: Space–mass coupling constant, with dimension[ 𝜇𝑔] = 𝑘𝑔/𝑚 

 • ℓΩ: Rotational scaling length (m) 

Dimensional check: 

[𝑀] = [𝜇𝑔][ℓΩ] =
𝑘𝑔

𝑚
⋅ 𝑚 = 𝑘𝑔 

which matches the dimension of mass. 

2.2 Mother Formula Derivation 

From Part I, the helical divergence strength is: 
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𝑄 = 4𝜋𝑐ℓΩ
2  

Assume a geometric–dynamical bridging relation: 

𝐺𝑀 =
𝑐

ℓΩ
 𝑄 

Substitute Q: 

𝐺𝑀 =
𝑐

ℓΩ
 (4𝜋𝑐ℓΩ

2 ) = 4𝜋𝑐2ℓΩ 

Combining with (E2) 𝑀 = 𝜇𝑔ℓΩ, we can get: 

(𝐸3) 𝐺 =
4𝜋𝑐2

𝜇𝑔
 

2.3 Conceptual Explanation 

• Nature of mass: Mass is not a self-contained “intrinsic quantity”, but the degree of coupling 

between matter and space. 

• Gravitational constant G: In the Unified Field Theory, G is not an independent empirical 

constant but determined by the speed of light c and the coupling constant 𝜇𝑔. 

Comparison: 

• Newtonian mechanics: G is purely empirical with no geometric explanation. 

• Relativity: G still appears as an externally added proportional factor. 

• Unified Field Theory: 𝐺 = 4𝜋𝑐2/𝜇𝑔, fully geometrized. 

2.4 Experimental and Observational Tests 

1. Planetary and satellite orbits: Infer the consistency of G and 𝜇𝑔 from celestial motions. 

2. Multi-system comparison: Test whether 𝜇𝑔 remains stable across different astrophysical 

systems. 

3. Laboratory scale: Measure G with high precision and verify its relation with 𝜇𝑔. 

2.5 Summary 

• The mother formulas (E2) and (E3) establish the connection between space–mass coupling 

and the gravitational constant. 

• Both mass and gravity acquire geometric origins within the Unified Field Theory, no longer 

treated as empirical additions. 

• This lays the groundwork for the geometric origin of the reduced Planck constant ℏ. 

2.6 Physical Interpretation of the Space–Mass Coupling Constant 𝛍𝒈 

The constant μ𝑔 is one of the core parameters of this study, with dimension 

[𝜇𝑔] =
𝑘𝑔

𝑚
 

It characterizes the linear coupling strength between mass and spatial scale. From (E2): 

𝑀 = μ𝑔lΩ, 
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a given rotational scaling length lΩ corresponds to a mass proportional to μ𝑔. 

(1) Geometric meaning 

μ𝑔 can be understood as the “coupled mass per unit length.” In the helical geometry, space 

spirals outward at the speed of light c. Mass is not an isolated entity but the result of interaction 

between this divergent flow and matter. μ𝑔quantifies the conversion ratio between “space flow” 

and “mass.” 

(2) Relation to traditional constants 

From the bridging relation: 

𝐺 =
4π𝑐2

μ𝑔
 

once μ𝑔 is determined, the gravitational constant G ceases to be independent, being jointly fixed 

by μ𝑔 and 𝑐. 

(3) Conversion under different notations 

Under different geometric symmetries, alternative forms include: 

𝐾line =
μ𝑔

2
,  𝐾surf =

μ𝑔

8π2
 

Here 𝐾line  corresponds to cylindrical line density, and 𝐾surf to spherical surface density. All are 

physically equivalent, differing only in representation. 

(4) Non-rescaling property 

If the scale is uniformly rescaled lΩ → 𝑎lΩ  𝑎𝑛𝑑  𝑀 → 𝑎𝑀, then μ𝑔 remains invariant. This 

shows that μ𝑔 is a geometric invariant, ensuring comparability across systems and observations. 

(5) Physical essence 

The introduction of μ𝑔 reveals that: 

• Mass is not intrinsic but a geometric projection of space flow. 

• The unification of G and c is essentially locked by μ𝑔. 

• μ𝑔  serves as a mass scale, alongside 𝑐  (space–time scale) and ℏ  (action scale), forming a 

closed set of natural constants. 

 

Part III   Data and Empirical Verification 

 (Step-by-step calculation · Dimensional consistency · Reproducibility) 

In the previous two parts, starting from the “geometric icons”, we derived, via the helical 

divergence strength Q, the space–mass coupling constant μ𝑔, and the geometric–dynamical 

bridging law, the invariant relation: 
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𝐺 =
4π𝑐2

μ𝑔
     (3.0) 

This formula shows that the numerical unification of G and c originates from the same geometric 

scale  lΩ. The next key question is: how can this geometric scaling be tested by actual 

observations? 

To address this, we first construct an observational framework overview. As shown in Figure 5, 

the single scale lΩ defined by geometric scaling simultaneously underpins four classes of weak-

field observations: 

• Orbital motion of planets or satellites (orbital elements 𝑎, 𝑇, 𝑒 →perihelion precession Δ𝜛), 

• Light deflection angle α near strong gravitational fields, 

• Gravitational redshift of stars or white dwarfs (z, R), 

• Shapiro delay Δ𝑡 in radio signals or pulsar timing. 

Each observation can be expressed as a constraint equation on the same lΩ, and all reduce to 

dimensionless consistency relations (see eq. (3.4)). Therefore, as long as the inferred values of lΩ 

from different observations agree, the universality of geometric scaling is validated, and the 

unified relation (3.0) is indirectly confirmed. 

 

The diagram illustrates the unified observational framework. 

At the center is lΩ. Around it is four observational modes: orbital motion (𝑎, 𝑇, 𝑒 → Δ𝜛), light 

deflection(𝛼), gravitational redshift（𝑧, 𝑅）, and Shapiro delay（Δ𝑡）, each linked to 

consistency checks. The central note states: All observation results converge to the same ℓΩ, 

jointly verifying the invariant 𝐺 =
4𝜋𝑐2

𝜇𝑔
. 

In the following, we will examine three typical systems in turn: 

1. solar system —— retrieve ℓΩ,⊙ from the solar gravitational parameter 𝐺𝑀⊙, and test the 

redshift, light deflection, and mercury perihelion precession. 
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2. Jupiter system —— use the orbital parameters of Galileo satellite 𝐼𝑜 and Europa to cross 

retrieve ℓΩ,𝐽 to verify the consistency of multiple satellites. 

3. white dwarf Sirius B —— compare the lΩ,𝐵 retrieved from the redshift path and the dynamic 

path, and check the cross-modal consistency. 

3.1 Constants, Symbols, and Entry Equations  

 • Speed of light: 

𝑐 = 299,792,458 m s−1,  [𝑐] = m s−1      (3.1) 

 • “Geometric icon” bridging (quoted): 

                            𝐺𝑀 =
𝑐

lΩ
𝑄,  𝑄 = 4𝜋𝑐lΩ

2  ⇒  𝐺𝑀 = 4𝜋𝑐2lΩ     (3.2) 

 • Solving for lΩ: 

                           lΩ =
𝐺𝑀

4π𝑐2 ,   [lΩ] = m      (3.3) 

 • Dimensionless consistency conditions (weak field): 

𝑛2𝑎3

4𝜋𝑐2 ℓΩ
= 1,  

𝑧 𝑅

4𝜋 ℓΩ
= 1,  

𝛼 𝑏

16𝜋 ℓΩ
= 1,  

Δ𝜛 𝑎(1−𝑒2)

24𝜋2 ℓΩ
= 1   (3.4) 

Here: 

 • 𝑛 = 2𝜋/𝑇: mean angular velocity 

 • 𝑎, 𝑒: orbital semi-major axis and eccentricity 

 • z: gravitational redshift 

 • R: stellar radius 

 • 𝛼: light deflection angle 

 • b: impact parameter 

 • Δ𝜛: perihelion precession per orbit 

Methodology: for a central body, use any one of the observations to find ℓΩ, and then replace the 

ℓΩ back to other equations to check whether it is "≈ 1". If multiple modes are true, it is proved 

that "the same geometric scale" runs through different observations. 

3.2 The Sun: A Single Parameter Across Three Observations 

Input (standard values): 

𝐺𝑀⊙ ≃ 1.3271244 × 1020 m3s−2,  𝑅⊙ ≃ 6.957 × 108 m （3.5） 

(i) Calculate ℓΩ,⊙ from (3.3): 

4𝜋𝑐2 ≈ 4𝜋 × (2.99792458 × 108)2      (3.6) 

≈ 1.129 × 1018 m2 s−2 
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ℓΩ,⊙ =
1.3271×1020

1.129×1018
≈ 1.176 × 102 𝑚 (3.7) 

(ii) Prediction: Solar gravitational redshift (velocity equivalent): 

𝑧 =
4𝜋ℓΩ,⊙

𝑅⊙
 ⇒  𝑧 𝑐 ≈

4𝜋×117.6

6.957×108
× 𝑐    (3.8) 

Numerical result:  

4𝜋ℓ ≈ 12.566 × 117.6 ≈ 1.478 × 103 𝑚 

𝑧 ≈
1.478×103

6.957×108 ≈ 2.125 × 10−6,  𝑧𝑐 ≈ 637.5 m s−1 (3.9)  

(iii) Prediction: Light deflection near the Sun: 

𝛼 =
4𝐺𝑀

𝑅⊙𝑐2 =
16𝜋ℓΩ,⊙

𝑅⊙
(𝑟𝑎𝑑)     (3.10) 

Numerical result: 

𝛼 ≈
5.91×103

6.957×108 = 8.49 × 10−6 𝑟𝑎𝑑 ≈ 1.75’’    (3.11) 

(iv) Prediction: Mercury perihelion precession: 

Δϖ𝑝𝑒𝑟 𝑜𝑟𝑏𝑖𝑡 =
6𝜋𝐺𝑀⊙

𝑎(1−𝑒2)𝑐2 =
24𝜋2ℓΩ,⊙

𝑎(1−𝑒2)
   (3.12) 

With 𝑎 ≃ 5.791 × 1010 𝑚、𝑒 ≃ 0.20563 ⇒ 1 − 𝑒2 ≃ 0.9577, we get: 

24𝜋2ℓ ≃ 236.87 × 117.6 ≃ 2.779 × 104,      (3.13) 

𝑎(1 − 𝑒2) ≃ 5.791 × 1010 × 0.9577 ≃ 5.544 × 1010. 

 

Δϖ𝑝𝑒𝑟 𝑜𝑟𝑏𝑖𝑡 ≃
2.779×104

5.544×1010 = 5.01 × 10−7 𝑟𝑎𝑑 ≈ 0.103’’.   (3.14) 

Over 415 orbits per century: 

Δϖ𝑝𝑒𝑟 𝑐𝑒𝑛𝑡𝑢𝑟𝑦 ≈ 0.103’’ × 415 ≈ 42.7’’ / 𝑐𝑒𝑛𝑡𝑢𝑟𝑦   (3.15) 

(v) Conclusion (Sun): 

A single ℓΩ,⊙  simultaneously  locks gravitational redshift (∼ 638 m/s), light deflection (1.75’’), 

and Mercury perihelion precession (∼ 43’’/𝑐𝑦), verifying cross modal consistency at the same 

geometric scale. 

3.3 Jupiter System: Multi-Satellite Cross-Calibration 

Using the near-circular Keplerian relation: 

𝐺𝑀𝐽 = 𝑛2𝑎3 = (
2π

𝑇
)

2

𝑎3  ⇒  ℓΩ,𝐽 =
𝐺𝑀𝐽

4𝜋𝑐2     (3.16) 

 • Io (example): 
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𝑎I𝑜 ≃ 4.217 × 108 𝑚,        (3.17) 

𝑇I𝑜 ≃ 1.769137786 𝑑 ≈ 1.5285 × 105 𝑠. 

 

𝑛I𝑜 =
2𝜋

𝑇
≈ 4.11 × 10−5 s−1,     (3.18) 

𝐺𝑀𝐽
(I𝑜)

= 𝑛2𝑎3 ≈ 1.267 × 1017 m3 s−2. 

 

ℓΩ,𝐽
(I𝑜)

=
1.267×1017

1.129×1018 ≈ 1.122 × 10−1 m    (3.19) 

 • Europa (example): 

𝑎E𝑢 ≃ 6.709 × 108 𝑚,      𝑇E𝑢 ≃ 3.551181 𝑑 ≈ 3.067 × 105 𝑠         (3.20) 

𝐺𝑀𝐽
(E𝑢)

≈ 1.266 × 1017 m3 s−2  ⇒ ℓΩ,𝐽
(E𝑢)

≈ 1.121 × 10−1 𝑚   (3.21) 

Conclusion (Jupiter): 

ℓΩ,𝐽
(I𝑜)

  𝑎𝑛𝑑 ℓΩ,𝐽
(E𝑢)

 agree within 10−3, showing that different satellites yield the same central-body 

scale ℓΩ. This supports the “unified geometric scale” hypothesis. 

3.4 Sirius B: Redshift Mass vs. Dynamical Mass 

Input: 

• Gravitational redshift equivalent: 𝑣𝑔 ≃ 80.65 𝑘𝑚 s−1 ⇒ 𝑧 =
𝑣𝑔

𝑐
≈ 2.689 × 10−4. 

• Radius: 𝑅𝐵 ≃ 5.84 × 106𝑚(∼ 0.0084 𝑅⊙) 

(i) From redshift, 𝑖𝑛𝑓𝑒𝑟  lΩ,𝐵: 

𝑧 =
𝐺𝑀

𝑅𝐵𝑐2 =
4𝜋ℓΩ,𝐵

𝑅𝐵
 ⇒ ℓΩ,𝐵 =

𝑧 𝑅𝐵

4𝜋
       (3.22) 

ℓΩ,𝐵 ≈
(2.689×10−4)×(5.84×106)

12.566
≈ 1.25 × 102 m   (3.23) 

(ii) Infer the mass from ℓΩ,𝐵, and compare it with the dynamical mass 

𝐺𝑀𝐵 = 4𝜋𝑐2ℓΩ,𝐵 ≈ (1.129 × 1018) × (1.25 × 102)(3.24) ≃ 1.41 × 1020m3 s−2  (3.24) 

𝑀𝐵 =
𝐺𝑀𝐵

𝐺
≈

1.41×1020

6.6743×10−11 ≈ 2.11 × 1030 𝑘𝑔 ≈ 1.06 𝑀⊙  (3.25) 

This matches the dynamical mass (∼ 1.02𝑀⊙) reported in the literature, showing consistency 

between “redshift path” and “orbital path.” 

3.5 Error Propagation (Self-check by Readers) 

An approximate formula for relative uncertainty of lΩ under different observational inputs is 

provided (see eq. 3.26 in the source). It allows readers to estimate systematic vs. statistical 

contributions depending on data type.  
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(3.26) 

3.6 Summary (Reproducible Closed Loop) 

• Entry: Use (3.3) or any one of (3.4) to determine lΩ. 

• Cross-modal check: Substitute this lΩ into the remaining three consistency equations of (3.4); 

if 𝑎𝑙𝑙 ≈ 1, consistency is confirmed. 

• Equivalence: From lΩ, one can back-solve GM or mass M, all self-consistent.  Equivalent: 

GM is pushed back by  lΩ (use 3.2), or mass M is pushed back (use 𝑀 = (4𝜋𝑐2/𝐺)ℓΩ), which 

is self consistent. 

• Unification: All calculations revolve around the single scale lΩ. This is the power of the three 

master equations plus the bridging relation from the geometric icons. 

 

Part IV  Discussion 

4.1 Structural Simplification from Geometric Scaling 

Proposition A (Reparameterization of Constants) 

Geometric scaling unifies gravitational phenomena under a single geometric scale lΩ. From E1, 

E2, and the bridging relation, we obtain: 

𝐺 =
4𝜋𝑐2

𝜇𝑔
     (4.1) 

which is equivalent to reparametrizing the traditional constant set (G, c) into (𝜇𝑔, 𝑐) together with 

the geometric factor 4𝜋. 

At the observational level: a single ℓΩ suffices for cross-modal predictions (eq. 3.4), thereby 

reducing parameter degeneracy. 

Proposition B (Minimal Geometric–Dynamical Bridging) 

Under spherical symmetry, dimensional correctness, and minimal power scaling constraints, the 

bridging relation: 

𝐺𝑀 =
𝑐

ℓΩ
𝑄    (4.2) 

is the unique linear scheme. The geometric factor 4𝜋 has already been absorbed in E1 and should 

not reappear redundantly. This guarantees the normative stability of the framework. 
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4.2 Non-Rescaling Property and Comparability 

Lemma (𝑁𝑜 − 𝑅𝑒𝑠𝑐𝑎𝑙𝑖𝑛𝑔) 

If ℓΩ → 𝑏ℓΩ, 𝑀 → 𝑎𝑀, while keeping 𝑐 fixed, then from E2: 

𝑀

𝜇𝑔ℓΩ
= 1 ⇒ 𝑎 = 𝑏 ⇒ 𝜇𝑔’ = 𝜇𝑔    (4.3) 

Thus, both sides scale equally and cancel, leaving eq. (2.13) unchanged. 

Conclusion: 𝜇𝑔 is a geometric invariant. Therefore, it provides comparability across datasets 

(different telescopes, modalities, or epochs). This invariance is also why the four “=1” equations 

in (3.4) can serve as consistency checks. 

4.3 Relation to General Relativity (Weak-Field Limit) 

Equivalence to GR leading terms: 

• Gravitational redshift: 𝑧 ≃ 𝐺𝑀/(𝑅𝑐2), same as (3.8), but here rewritten as 𝑧 = 4𝜋lΩ/𝑅. 
• Light deflection: 𝛼 ≃ 4𝐺𝑀/(𝑏𝑐2) , identical to (3.10), 𝑦𝑖𝑒𝑙𝑑𝑖𝑛𝑔  ≈ 1.75’’. 
• Perihelion precession: Δ𝜛 ≃ 6𝜋𝐺𝑀/[𝑎(1 − 𝑒2)𝑐2], equivalent to (3.12). 

The key difference is explicit expression of constants and scales: we consistently rewrite GM as 

4𝜋𝑐2ℓΩ (eq. 3.2), organizing all observations around the same geometric scale. This improves 

interpretability and calibration. 

4.4 Applicability and Boundaries 

Applicable domains (weak-field, steady-state, spherical symmetry valid): 

• Average orbital dynamics of planets and satellites in the Solar System, 

• Stellar surface redshift, limb light deflection, and typical Shapiro delay, 

• White dwarfs and most binaries under far-field/weak-field approximations. 

Caution (strong-field, non-spherical, or strong time variability): 

• Near black holes: higher-order terms and spin/quadrupole corrections required, 

• Strong tidal, rapid rotation, or multi-body chaotic systems: require numerical modeling. 

Thus, the framework provides the leading-order baseline and unified scaling; strong-field 

domains should be extended upon this foundation. 

4.5 Equivalence with Alternative Notations 

Different notations are physically equivalent, differing only in representation: 

𝐺 =
4𝜋𝑐2

𝜇𝑔
=

2𝜋𝑐2

𝐾l𝑖𝑛𝑒
=

𝑐2

4𝜋𝐾s𝑢𝑟𝑓
, 𝐾l𝑖𝑛𝑒 =

𝜇𝑔

2
, 𝐾s𝑢𝑟𝑓 =

𝜇𝑔

16𝜋2
     (4.4)  

Which notation is preferable depends on experimental/geometry configurations (line vs. surface 

coupling). The consistency checks of (3.4) using lΩ remain unchanged. 

4.6 Metrological and Experimental Strategies 
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Strategy S1 (Geometric cross-calibration): For the same central body, derive lΩ independently 

from orbital (a, T, e), redshift (z, R), and deflection (𝛼, 𝑏). If all agree within error, cross-modal 

validation is achieved. 

Strategy S2 (Prior design):  

Use 𝑒𝑞𝑠. (2.13) and (3.4) to forecast experimental magnitudes: 

 • Estimate GR precession for exoplanet monitoring (𝑅𝑉/𝑡𝑟𝑎𝑛𝑠𝑖𝑡). 

 • Use lΩ to predict Shapiro delay amplitude in deep-space VLBI. 

 • Apply gravitational redshift as a spectral prior in high-resolution spectroscopy. 

Strategy S3 (Uncertainty chain listing):  

The error of key inputs(𝑎, 𝑇, 𝑒, 𝑧, 𝑅, 𝛼, 𝑏, Δ𝜛) is propagated to ℓΩ through (3.26), and the 

dominant item of "systematics vs statistics" can be explicitly marked; The "error budget table" 

generated in this way is convenient for reviewers and experimental groups to review. 

4.7 Falsifiability and Predictions 

Falsification points: 

• If for the same central body, lΩ  inferred from different modalities systematically disagree 

beyond errors, the geometric scaling framework is challenged. 

• If any of the “=1” consistency equations in (3.4) persistently deviate under high-precision data 

(after excluding systematic errors), the minimal bridging assumption (2.11) may need revision. 

Predictive examples: 

• Hot Jupiters: Given stellar ℓΩ,⋆ , predict cumulative relativistic precession, testable in 

transit/RV monitoring. 

• Pulsar binaries: Use ℓΩ  to forecast Shapiro delay and precession coupling, aiding timing 

analysis. 

• White dwarf populations: Joint z and R statistics test 𝑒𝑞𝑠. (3.22–3.25) for group consistency. 

4.8 “Shortest Path” for Readers 

To lower entry barriers, a three-step “shortcut card” is recommended: 

ℓΩ =
𝐺𝑀

4𝜋𝑐2
  (3.3), 

From any one observation (eq. 3.4), determine ℓΩ, 

Then substitute the same ℓΩ into the remaining “= 1” consistency relations 

(4.5) 

Readers only need to follow these three steps to "bring different observations onto the same 

plane" for cross-checking. 

4.9 Summary of Key Points 

1. The unified relation 𝐺 = 4𝜋𝑐2/𝜇𝑔  𝑎𝑟𝑖𝑠𝑒𝑠 from E1–E2 plus the unique linear 

bridging (2.11). 
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2. Non-rescaling guarantees 𝜇𝑔 is invariant under scale redefinitions, ensuring 

robustness. 

3. Equivalent to GR leading-order terms, but expressed more geometrically and 

calibratable. 

4. Practical roadmap: use ℓΩ as hub for cross-modal consistency and experimental 

priors. 

5. Falsifiability is explicit, enabling future high-precision data to validate or extend 

the framework. 

 

Part V  Conclusion 

5.1 Core Achievement of Geometric Scaling 

Based on geometric scaling, starting from the three master equations (E1–E3) given by the 

“geometric icons” we constructed a self-consistent geometric–dynamical unified framework. The 

core conclusion is: 

 𝐺 =
4𝜋𝑐2

𝜇𝑔
   (5.1) 

This shows that the gravitational constant G is not an independent empirical parameter but is 

locked jointly by the speed of light c, the space–mass coupling constant 𝜇𝑔, and the spherical 

symmetry factor 4𝜋 . 

5.2 Theoretical Implications 

 1. Simplification of the constant system 

The traditional set of constants (G, c) is reparametrized into (𝜇𝑔, 𝑐), unified under the geometric 

scale lΩ. All observables (orbital motion, redshift, deflection, perihelion precession, time delay) 

are concatenated by the single parameter lΩ. 

 2. Non-rescaling property 

𝜇𝑔 remains invariant under rescaling of lΩ and M (see Sec. 4.3), ensuring universality and 

stability of eq. (5.1). 

 3. Consistency with GR in the weak-field regime 

Redshift, deflection, and perihelion precession match the leading terms of General Relativity. 

The difference lies only in expression: we centralize all observables on lΩ, yielding a clearer 

geometric interpretation. 

5.3 Empirical Support 

• Solar System: With 𝐺𝑀⊙, we find lΩ,⊙ ≈ 117.6 m. The same scale predicts solar redshift (∼
638 m/s), light deflection (1.75’’), and Mercury’s perihelion precession (43’’/𝑐𝑒𝑛𝑡𝑢𝑟𝑦), all 

consistent with observations. 

• Jupiter system: From Io and Europa orbits, lΩ,𝐽  𝑎𝑔𝑟𝑒𝑒𝑠 within 10−3. 

• Sirius B: Independent determinations of lΩ,𝐵 from redshift and orbital dynamics agree, with 
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mass estimates consistent with dynamical measurements. 

These cases demonstrate that across different bodies and observational modalities, results 

converge to the same geometric scale lΩ, thereby supporting eq. (5.1). 

5.4 Predictability and Applications 

• Exoplanets: The host star’s lΩ can predict relativistic precession amplitudes, guiding transit 

and radial velocity experiment design. 

• Pulsar binaries: lΩ  provides a prior scale for Shapiro delay and orbital precession, aiding 

timing analysis. 

• Metrology: 𝜇𝑔 =
4𝜋𝑐2

𝐺
 can be included as a new “geometric–matter constant” in fundamental 

constant tables, serving cross-calibration purposes. 

5.5 Final Statement 

Geometric scaling tightly integrates the geometric normalization of space flow with the linear 

coupling of mass, deriving the unified relation between 𝐺 and 𝑐 via the unique bridging law. The 

logical reasoning, dimensional consistency, and cross-modal empirical evidence demonstrate 

that: 

𝐺 and 𝑐 are no longer independent constants, but are derived from the spatial mass coupling 

constant 𝜇𝑔 and geometric scaling (5.2) 

This not only deepens our understanding of the essence of the gravitational constant but also 

provides an entirely new perspective for astronomical observations, experimental design, and the 

metrology of fundamental physical constants. 

 

Appendix A｜Geometric Scaling with a Single Parameter: Recalculation Guide 

Common entry: 

ℓΩ =
𝐺𝑀

4𝜋𝑐2 (3.3)； 

Consistency equations (weak field), see (3.4): 

𝑛2𝑎3

4𝜋𝑐2ℓΩ
= 1，

𝑧𝑅

4𝜋ℓΩ
= 1，

𝛼𝑏

16𝜋ℓΩ
= 1，

Δ𝜛 𝑎(1 − 𝑒2)

24𝜋2ℓΩ
= 1 

Bridging relation: 𝐺𝑀 = 4𝜋𝑐2ℓΩ (3.2) 

Master equations: 𝐸1𝑄 = 4𝜋𝑐ℓΩ  
2 , 𝐸2𝑀 = 𝜇𝑔ℓΩ   ,   𝐸3𝐺 = 4𝜋𝑐2/𝜇𝑔 

 

A1. The Sun 

Input: 𝐺𝑀⊙ = 1.3271244 × 1020 m3 s−2；𝑅⊙ = 6.957 × 108 𝑚；𝑐 = 2.99792458 ×

108 𝑚 s−1 

Find:  ℓΩ,⊙ℓΩ,⊙ =
𝐺𝑀⊙

4𝜋𝑐2
 (3.3) → ℓΩ,⊙ ≈ 1.176 × 102 𝑚 
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Predicted redshift: 𝑧 =
𝐺𝑀⊙

𝑅⊙𝑐2 =
4𝜋ℓΩ,⊙

𝑅⊙
(from 3.2) → 𝑧 𝑐 ≈ 6.38 × 102 𝑚 s−1 

Light deflection: 𝛼 =
4𝐺𝑀⊙

𝑅⊙𝑐2 =
16𝜋ℓΩ,⊙

𝑅⊙
→ 𝛼 ≈ 1.75’’ 

Perihelion precession (centered on the sun)  Δϖp𝑒𝑟 𝑜𝑟𝑏𝑖𝑡 =
24𝜋2ℓΩ,⊙

𝑎(1−𝑒2)
(3.12) ；Mercury every 

century ∼ 415 weeks → ≈ 43’’/𝑐𝑦 

Consistency check: Substituting the same lΩ,⊙ into eq. (3.4), all ≈1 (redshift, deflection, 

precession). 

 

A2. Jupiter System: Io and Europa Cross-Calibration 

Quantity Io Europa 

Input: 𝑎 = 4.217 × 108  𝑚,𝑇 = 1.769137786 d𝑎 = 6.709 × 108 𝑚,       𝑇 = 3.551181 𝑑 

Find:  G𝑀𝐽𝐺𝑀 = 𝑛2𝑎3 = (2𝜋/𝑇)2𝑎3(3.16) → 1.267 × 1017 Same equation  

→1.266 × 1017 

Find: ℓΩ,𝐽ℓΩ,𝐽 =
𝐺𝑀𝐽

4𝜋𝑐2
(3.3) → 1.122 × 10−1 𝑚1.121 × 10−1 𝑚 

Consistency: The two values differ by ∼ 10−3, confirming Io and Europa yield the same lΩ,𝐽. 

It indicates that the operational parameters of different satellites are consistent with lΩ,𝐽 of the 

same central body, and supports "one parameter penetration" 

 

A3. Sirius B: Redshift Mass vs. Dynamical Mass 

Input spectral redshift velocity equivalent 𝑣𝑔 = 80.65 𝑘𝑚 s−1 ⇒ 𝑧 = 𝑣𝑔/𝑐;  radius  𝑅𝐵 ≈

5.84 × 106 𝑚 

From redshift:  ℓΩ,𝐵𝑧 =
𝐺𝑀

{𝑅𝐵
 𝑐2 =

4𝜋ℓΩ,𝐵

𝑅𝐵
→ ℓΩ,𝐵 =

𝑧𝑅𝐵

4𝜋
(3.22) →≈ 1.25 × 102 𝑚 

Back-calculated mass: 𝐺𝑀𝐵 = 4𝜋 𝑐2ℓΩ,𝐵 (3.2) → 𝑀𝐵 = 𝐺𝑀𝐵/𝐺 ≈ 1.06 𝑀⊙ 

Consistency: Matches the dynamical mass ∼ 1.02𝑀⊙.  

Thus, redshift and orbital methods give consistent lΩ,𝐵 and mass estimates. 

 

A4. Quick Recalculation Checklist (for readers) 

1. Select a central body/system and any one observation (orbital (a, T, e), redshift (z, 

R), deflection(𝛼, 𝑏), or perihelion precession Δ𝜛 — eq. (3.4). 

2. Solve for lΩ (via eqs. 3.3 or 3.4). 
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3. Predict the other observables (redshift, deflection, precession, delay) and verify 

the “=1” condition (eq. 3.4). 

4. Back-calculate GM or M if needed: 𝐺𝑀 = 4𝜋𝑐2ℓΩ(3.2); 𝑀 = (4𝜋𝑐2/𝐺)ℓΩ. 
5. Error assessment: propagate uncertainties via eq. (3.26). 
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