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ABSTRACT 
The rising demand for real-time data analytics in domains such as the Internet of Things (IoT) 
and telecommunications necessitates hybrid big data architectures that seamlessly combine 
batch and stream processing. This study investigates the integration of Hadoop with real-time 
streaming engines, specifically Apache Storm and Apache Flink, to address the challenges of 
low-latency analytics within traditional big data frameworks. We analyze performance trade-
offs, latency mitigation techniques, and fault tolerance mechanisms involved in such hybrid 
deployments. Through benchmarking and architectural evaluation, the research identifies key 
design considerations, including pipeline optimization and efficient resource management 
strategies that support concurrent batch and real-time workloads. Empirical insights from IoT 
and telecom use cases illustrate the effectiveness of integrating Hadoop’s scalable storage with 

the high-throughput, low-latency processing capabilities of modern stream engines. The 
findings affirm the practicality and performance benefits of adopting a unified analytics 
ecosystem for real-time data-driven decision-making. 

 

KEYWORDS: Hadoop, Real-time analytics, Apache Storm, Apache Flink, Hybrid big data 
architecture. 

 

INTRODUCTION 
The rapid advancement of digital technologies has ushered in an era where organizations are 
increasingly reliant on big data for decision-making and operational optimization. Hadoop, a 
distributed framework for processing and storing large volumes of data, has played a pivotal 
role in enabling the storage and batch processing of vast datasets through its Hadoop 
Distributed File System (HDFS) and MapReduce framework. However, the inherent 
limitations of batch processing, particularly the latency associated with long processing times, 
pose challenges for applications that require real-time insights. 

In response to these challenges, real-time stream processing engines such as Apache Storm and 
Apache Flink have emerged, enabling the processing of continuous data streams with low-
latency, high-throughput capabilities. These engines provide essential features for processing 
and analyzing data in real-time, but they are often used independently of batch systems like 

1347 

Vol.11 No.02(2020),1347-1358 
DOI:https://doi.org/10.61841/turcomat.v11i2.15250

https://creativecommons.org/licenses/by/4.0/
https://turcomat.org/


Turkish Journal of Computer and Mathematics Education (TURCOMAT)  ISSN: 3048-4855 
 
                           

 

 

Hadoop. This separation creates a significant gap between the processing of real-time and 
historical data, making it difficult to derive insights from both sources in a unified manner. 

The hybrid integration of Hadoop with streaming engines like Apache Storm and Apache Flink 
offers a promising solution to this issue by enabling the simultaneous processing of batch and 
real-time data. This research investigates the integration of these technologies, focusing on key 
areas such as performance trade-offs, latency management, and fault tolerance. By combining 
the strengths of Hadoop’s robust storage and batch processing capabilities with the low-latency 
processing of streaming engines, it is possible to build a more efficient and reliable big data 
ecosystem. 

In this paper, we explore the architecture and design of hybrid big data systems that integrate 
Hadoop with Apache Storm and Apache Flink. We provide a comprehensive analysis of the 
performance implications, including the impact on throughput, latency, and resource 
utilization. Additionally, we examine real-world use cases in industries like IoT and 
telecommunications to highlight the practical advantages of such hybrid systems. 

RESEARCH OBJECTIVES 
The primary objective of this research is to explore how Hadoop can be integrated with real-
time stream processing engines, specifically Apache Storm and Apache Flink, to create a 
hybrid big data architecture. The research will focus on: 

● Evaluating the performance trade-offs between batch processing and real-time stream 
processing within Hadoop ecosystems. 

● Investigating the latency challenges associated with integrating real-time stream 
processing into batch-oriented systems. 

● Exploring fault tolerance mechanisms in hybrid systems to ensure high reliability and 
consistency of both batch and real-time data. 

● Identifying architectural considerations and strategies for optimizing resource 
management and data pipelines in hybrid systems. 

● Demonstrating the effectiveness of hybrid big data solutions through case studies in 
IoT and telecommunications. 

By addressing these objectives, this research aims to provide insights into the feasibility and 
advantages of integrating Hadoop with real-time streaming engines, and to contribute to the 
development of more efficient and scalable hybrid big data architectures. 

PROBLEM STATEMENT 
As organizations increasingly rely on data-driven decisions, the ability to process and analyze 
both historical and real-time data simultaneously becomes a critical requirement. Traditional 
Hadoop ecosystems excel at processing large volumes of batch data, but they are not well-
suited for real-time stream analytics, which necessitates low-latency, high-throughput 
processing. 

Real-time analytics engines like Apache Storm and Apache Flink are designed to address these 
needs, but they are typically deployed separately from Hadoop’s batch processing framework. 
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This separation leads to challenges in integrating real-time data with historical data, making it 
difficult to gain comprehensive insights from both data sources in a unified system. The lack 
of integration also introduces performance trade-offs, including increased latency and resource 
contention, as well as challenges in fault tolerance and system reliability. 

The key problem addressed by this research is the challenge of creating an efficient, integrated 
architecture that combines the strengths of Hadoop’s batch processing with the capabilities of 

real-time stream processing engines. The goal is to identify strategies for overcoming latency 
issues, optimizing resource allocation, and ensuring fault tolerance in hybrid systems, while 
also providing practical insights into the benefits of such hybrid solutions in real-world 
applications like IoT and telecommunications. 

 

BACKGROUND AND RELATED WORK 
The Hadoop ecosystem is renowned for its ability to store and process massive datasets using 
a batch-oriented approach. The Hadoop Distributed File System (HDFS) enables scalable and 
reliable storage of data, while the MapReduce framework facilitates large-scale data processing 
through batch jobs. However, traditional Hadoop workflows are not designed for real-time 
stream processing, which often leads to high latency in systems requiring near-instantaneous 
data analysis. 

To address the need for real-time data processing, streaming engines such as Apache Storm 
and Apache Flink have emerged. These platforms are specifically designed to handle 
continuous data streams with low-latency processing. Apache Storm, a distributed real-time 
computation system, processes unbounded streams of data in real-time, whereas Apache Flink 
offers high-throughput stream processing with event-time handling and stateful computation, 
making it particularly suitable for complex analytics. 

Several research efforts have investigated integrating Hadoop with real-time streaming engines 
to leverage both batch processing and real-time analytics in hybrid big data architectures. These 
studies have focused on system performance, fault tolerance, and the complexities of managing 
both batch and stream-based data processing within the same ecosystem. 

However, there are still gaps in understanding the specific performance trade-offs, latency 
challenges, and fault tolerance mechanisms that arise when combining Hadoop with real-time 
stream processing engines. This paper aims to fill this gap by providing a detailed evaluation 
of these challenges and offering insights into how to optimize hybrid data pipelines. 

3. HYBRID BIG DATA ARCHITECTURE: INTEGRATING HADOOP WITH 
STREAMING ENGINES 
3.1 ARCHITECTURE OVERVIEW 
In a hybrid architecture, Hadoop is used for long-term storage and batch processing, while a 
streaming engine like Apache Storm or Apache Flink processes real-time data streams. The 
integration of these components involves several architectural considerations, including data 
ingestion, storage, and processing. 
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● Data Ingestion: Real-time data is ingested into the streaming engine, which processes 
the data and performs real-time analytics. At the same time, batch data is processed by 
Hadoop’s MapReduce jobs or other batch processing frameworks, such as Apache 

Spark, within the Hadoop ecosystem. 

● Data Storage: HDFS serves as the centralized data storage system for both batch and 
real-time data. Data processed in real-time is typically stored temporarily in the 
streaming engine’s buffer, and later transferred to HDFS for long-term storage. 

● Data Processing: The streaming engine handles the real-time data processing, 
performing tasks such as aggregation, filtering, and enrichment. Batch processing in 
Hadoop handles historical data and large-scale computations, such as training machine 
learning models or running ETL (Extract, Transform, Load) jobs. 

DATA FLOW AND SYNCHRONIZATION 
In a hybrid architecture, maintaining data consistency and synchronization between batch and 
real-time streams is critical. Real-time data must be processed quickly to meet the demands of 
low-latency analytics, while historical data in Hadoop needs to be available for comprehensive 
analysis. 

● Stream-to-Batch Integration: One key challenge is ensuring that real-time streams 
are effectively merged with batch data stored in Hadoop. This may involve periodically 
dumping processed stream data into HDFS or using tools like Apache Kafka to manage 
data flow between the streaming engine and Hadoop. 

● Real-Time Data Enrichment: Real-time data streams are often enriched with 
additional contextual information, which can come from batch-processed datasets 
stored in HDFS. This can be achieved by querying batch data from Hadoop or through 
the use of a hybrid processing framework like Apache Spark Streaming, which 
integrates both batch and stream processing capabilities. 

 

Figure 1: hybrid architecture 
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PERFORMANCE TRADE-OFFS AND LATENCY MANAGEMENT 
Integrating Hadoop with real-time streaming engines introduces certain performance trade-
offs, particularly when it comes to latency, throughput, and resource utilization. 

LATENCY MANAGEMENT 

 

Figure 2: Performance Trade-offs and Latency Management in Hybrid Architecture 

Latency is a critical concern when processing real-time data. The combination of batch 
processing in Hadoop and real-time stream processing can result in increased latency, 
especially when large-scale batch jobs are running concurrently with real-time analytics. 
Optimizing for low latency in real-time stream processing engines requires minimizing the time 
between data ingestion and computation. 

● Stream Processing Latency: Apache Storm provides millisecond-level latency, 
making it suitable for use cases requiring low-latency processing. Apache Flink also 
provides low-latency processing but introduces event-time handling, which can slightly 
increase processing time in certain cases. 

● Batch Processing Delays: Hadoop’s batch processing is inherently less suited to real-
time needs due to its large-scale data processing approach. However, by optimizing 
batch job execution and prioritizing real-time stream processing, it is possible to reduce 
the impact of Hadoop’s batch processing delays. 

THROUGHPUT AND RESOURCE UTILIZATION 
Throughput refers to the amount of data processed per unit of time. In a hybrid architecture, 
balancing throughput between batch and stream processing is essential to ensuring that both 
types of workloads are handled efficiently. 
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● Throughput in Streaming Engines: Both Apache Storm and Apache Flink are 
designed for high throughput, but their performance depends on the system 
configuration and workload characteristics. Apache Flink, with its native support for 
stateful processing, provides higher throughput for complex event processing tasks. 

● Resource Utilization in Hadoop: When Hadoop is integrated with streaming engines, 
careful resource allocation is required to prevent resource contention. Hadoop's 
resource management layer, YARN, can be used to allocate resources dynamically to 
both batch and real-time jobs, ensuring that neither type of processing monopolizes 
system resources. 

FAULT TOLERANCE MECHANISMS 

 

Figure 3: Ensuring Reliability in Big Data Systems 

Fault tolerance is crucial in any big data system, especially when dealing with real-time stream 
processing. Both Apache Storm and Apache Flink provide mechanisms for ensuring reliability 
in the face of node failures or other disruptions. 

● Fault Tolerance in Streaming Engines: Apache Storm uses a mechanism called 
“tuple anchoring,” which ensures that in-flight data can be reprocessed in the event of 
a failure. Flink, on the other hand, uses checkpointing and state snapshots to provide 
fault tolerance and recovery for long-running stream jobs. 

● Fault Tolerance in Hadoop: Hadoop’s fault tolerance is built around HDFS, which 

ensures data replication across multiple nodes. MapReduce jobs are designed to be re-
executed in case of failure, and YARN handles resource allocation and job recovery in 
the event of node or task failures. 

The integration of Hadoop with streaming engines requires seamless coordination between 
these fault-tolerant mechanisms to ensure that data integrity is maintained across both batch 
and stream processing components. 
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REAL-WORLD APPLICATIONS: IOT AND TELECOM 
INTERNET OF THINGS (IOT) 
IoT applications generate vast amounts of real-time data from sensors, devices, and equipment. 
These applications require the ability to process data in real-time to detect anomalies, optimize 
operations, and enable predictive maintenance. By combining Hadoop with real-time stream 
processing engines like Apache Flink, IoT systems can achieve the benefits of both batch 
processing for historical analysis and real-time analytics for immediate decision-making. 

For instance, a smart city infrastructure can use real-time stream processing to monitor traffic 
patterns, air quality, and utility consumption, while leveraging Hadoop for large-scale storage 
and analysis of historical data to improve decision-making over time. 

TELECOMMUNICATIONS 
In the telecommunications industry, real-time stream processing is essential for monitoring 
network performance, detecting faults, and ensuring quality of service. Telecom companies 
can integrate Hadoop with real-time stream processing to analyze both real-time network data 
and historical customer behavior data. This allows for faster fault detection, real-time traffic 
management, and predictive maintenance, all while benefiting from Hadoop’s scalability and 

storage capabilities. 
 

RESULTS AND ANALYSIS 
The results section presents an in-depth evaluation of the hybrid big data architecture that 
integrates Hadoop with real-time stream processing engines such as Apache Flink and Apache 
Storm. These case studies explore the performance improvements brought about by combining 
Hadoop’s batch processing capabilities with real-time stream processing, providing valuable 
insights into the system’s efficiency, scalability, and practicality for real-world applications. 
The performance benchmarks for both IoT and telecommunications systems are analyzed, 
focusing on critical aspects such as latency, throughput, and resource utilization. 

CASE STUDY - INTERNET OF THINGS (IOT) 
The Internet of Things (IoT) represents a rapidly growing field where massive amounts of real-
time data are generated from sensors, devices, and equipment in connected environments. In 
this case study, we examine how the hybrid architecture leverages Hadoop’s robust batch 

processing abilities in combination with Apache Flink’s real-time stream processing to meet 
the needs of IoT systems, particularly in smart cities, predictive maintenance, and real-time 
anomaly detection. 
 
ARCHITECTURE AND IMPLEMENTATION 
IoT applications typically involve the processing of continuous streams of data from millions 
of devices. With traditional approaches, processing and analyzing this data can be slow due to 
the high volume and velocity at which the data is produced. The hybrid architecture integrates 
Apache Flink for real-time stream processing, where data from IoT sensors is ingested and 
processed for immediate insights. Meanwhile, Hadoop processes large volumes of historical 
data stored in HDFS, providing context and enriching the real-time data streams with historical 
patterns and predictive models. 
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For instance, in smart city infrastructures, real-time data from traffic sensors, air quality 
monitors, and utility meters can be processed by Apache Flink to provide immediate insights 
into traffic flow, pollution levels, and energy usage. At the same time, Hadoop processes 
historical traffic data to help forecast future trends and optimize traffic light systems, providing 
more accurate predictions of traffic congestion. 

BENCHMARKS AND RESULTS 
Performance benchmarks indicate that the integration of real-time data processing with 
historical batch data results in a significant reduction in processing time. The hybrid system 
reduces the time required to detect anomalies and respond to them in real-time, facilitating 
faster decision-making. For example, in predictive maintenance for IoT-connected equipment, 
real-time anomaly detection can identify equipment failures as they occur, while batch 
processing in Hadoop helps train predictive models based on past failure data. 

The integration of Hadoop and Flink improves the system’s scalability and responsiveness, as 

Flink handles low-latency processing of real-time streams, while Hadoop provides deep 
insights from large-scale historical datasets. As a result, the hybrid architecture enables a more 
timely response to critical situations, reducing downtime, and enhancing the decision-making 
process. 

CASE STUDY - TELECOMMUNICATIONS 
Telecommunications systems generate vast amounts of data from network traffic, customer 
behavior, and performance monitoring. These systems require real-time analytics for various 
tasks such as network monitoring, fault detection, and customer experience analysis. This case 
study investigates how Hadoop and Apache Storm are integrated to provide a high-throughput, 
low-latency solution for telecommunications data processing. 
 
ARCHITECTURE AND IMPLEMENTATION 
Telecommunications companies often deal with unstructured data from various sources, 
including call detail records (CDRs), network logs, and customer activity. The hybrid system 
uses Apache Storm for real-time stream processing of network traffic, which allows the system 
to monitor performance, detect faults, and provide insights into customer behavior in real-time. 
Meanwhile, Hadoop processes historical data, such as long-term customer behavior analytics 
and large-scale network performance reports. 

For example, Apache Storm processes data in real time from network devices, identifying 
issues such as network congestion or outages, and triggers immediate corrective actions. 
Meanwhile, batch processing in Hadoop handles long-term performance analysis, such as 
identifying trends in call drops or customer churn over months or years. 

BENCHMARKS AND RESULTS 
Benchmarks show that the combination of real-time and batch processing in this case study 
allows for faster fault detection and more efficient resource allocation. By processing network 
traffic and customer activity in real time, telecommunications companies can identify and 
address performance issues more quickly, ensuring a better quality of service for users. 
Additionally, historical analysis through Hadoop enables predictive maintenance and resource 
optimization, helping to reduce future issues and optimize the overall network infrastructure. 
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The results indicate that integrating Apache Storm with Hadoop for real-time analytics 
provides substantial performance gains. Throughput increases significantly as network events 
are processed in real time, while Hadoop’s batch processing capabilities enable the system to 
maintain historical context, ensuring more accurate long-term analysis and forecasting. 

 

Figure 4: Performance Comparison of Hybrid Big Data Architectures 

DISCUSSION 
The hybrid big data architecture combining Hadoop with real-time stream processing engines 
like Apache Storm and Apache Flink presents several significant advantages, including 
improved performance, scalability, and reliability in data processing. However, as evidenced 
by the case studies in IoT and telecommunications, there are several factors that need to be 
carefully managed to ensure optimal performance. 
 
PERFORMANCE TRADE-OFFS 
One of the key trade-offs that arise from integrating real-time stream processing with batch 
processing is the balance between throughput and latency. Real-time stream processing 
systems such as Apache Storm and Apache Flink are designed for low-latency, high-throughput 
processing, which is crucial for applications such as IoT anomaly detection and 
telecommunications fault detection. However, when combined with Hadoop’s batch 

processing, which inherently introduces latency due to the need for large-scale data processing, 
there can be delays in achieving a seamless integration between the two. 

The hybrid approach addresses this challenge by allowing the streaming engine to handle real-
time data while Hadoop processes historical data. The result is a system that maintains low-
latency processing for immediate insights while also benefiting from Hadoop’s ability to store 

and process large datasets for deeper analysis. However, careful attention needs to be given to 
resource allocation and management to prevent bottlenecks, particularly when both systems 
are running concurrently and competing for computational resources. 

RESOURCE MANAGEMENT AND FAULT TOLERANCE 
Resource management is another challenge in hybrid systems. Hadoop’s resource manager, 

YARN, can handle both batch and real-time workloads, but its performance may degrade if not 
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configured correctly, especially in large-scale systems where real-time data streams and batch 
jobs are processed simultaneously. Resource contention can lead to slower processing times 
and decreased throughput, undermining the performance gains provided by the hybrid 
architecture. 

To mitigate these issues, hybrid systems need to implement robust fault tolerance and resource 
management mechanisms that ensure the reliability of both batch and stream processing 
components. Both Apache Flink and Apache Storm offer built-in fault tolerance mechanisms, 
such as checkpointing and state snapshots, to recover from node failures without losing data. 
Similarly, Hadoop’s HDFS provides fault tolerance by replicating data across nodes. Ensuring 

seamless coordination between these fault tolerance mechanisms is critical to maintaining 
system reliability in the face of potential failures. 

COMPARISON TABLE 

Feature IoT Case Study (Apache 
Flink) 

Telecommunications Case Study 
(Apache Storm) 

Real-time 
Processing 

Yes (Low-latency stream 
processing) 

Yes (High-throughput, low-latency) 

Batch 
Processing 

Yes (Hadoop for historical 
analysis) 

Yes (Hadoop for customer behavior 
insights) 

Throughput High (Real-time analysis of 
IoT data) 

High (Real-time traffic analysis) 

Latency Low (Real-time insights and 
decisions) 

Low (Immediate fault detection) 

Fault Tolerance Yes (Flink checkpointing) Yes (Storm tuple anchoring) 

Scalability High (Supports large-scale 
IoT data) 

High (Handles large volumes of 
network traffic) 

Resource 
Utilization 

Optimized for both batch and 
stream data 

Optimized for high-throughput 
streaming 

 

CONCLUSION 
This research highlights the growing importance of hybrid big data architectures that integrate 
Hadoop with real-time stream processing engines like Apache Storm and Apache Flink. 
Through an evaluation of performance trade-offs, latency management, and fault tolerance, we 
have shown that integrating Hadoop with streaming engines can enable the effective processing 
of both batch and real-time data within the same ecosystem. The real-world applications in IoT 
and telecommunications underscore the potential of these hybrid solutions to deliver actionable 
insights in a timely manner. Future work should focus on further optimizing data pipelines, 
improving fault tolerance mechanisms, and exploring new use cases for hybrid big data 
solutions across industries. 
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