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Abstract 

The notions of fuzzy mean e -open and e -closed sets is established. Moreover, some comparative study of these 

with other fuzzy mappings are investigated. Finally, we extend fuzzy mean e -open to fuzzy para e -open sets 

in fuzzy topology. 
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1. Introduction 

Fuzzy sets were established by Zadeh [10] and the perception of fuzzy topology instigated by Chang [2] in 1968. 

The ideas of fuzzy minimal (resp. maximal open) [3] sets explored in [3]. Subsequently the concepts of fuzzy mean 

open set investigated by Swaminathan [9]. On combining fuzzy mean open [9] and fuzzy paraopen open [4] sets, 

we extend the perception of fuzzy mean open (resp. closed) sets and from which we investigate some results. 

The following terminologies “fuzzy e-open (resp.closed), fuzzy e-mean open(resp.closed), fuzzy minimal e-

open(resp.maximal), fuzzyminimal e-closed set, (resp.maximal), fuzzy  

e-paraopen(resp.paraclosed) and fuzzy e-connected topological space respectively abbreviated as Fe-O, Fe-C, 

FMEe-O, FMEe-C, FMIe-O, FMAe-O, FMIe-C, FMAe-C,  

Fe-PO, Fe-PC and Fe-CTS. Entire paper F stands for fuzzy topology (F, τ)”. 

2. Preliminaries 

Definition 2.1. A fuzzy subset β ∈ ϝ is said to be fuzzy regular open [1] if β = Int [Cl(β)] 

The union of all fuzzy regular open sets contained in fuzzy subset β ∈ ϝ is F e -interior of β .If β = Intδ(β) then 

fuzzy subset β is called F e -O [8] such that its complement is called F e -C (i.e, β = Clδ(β) ). 

Definition 2.2. [5] A proper nonzero F e -O set β ∈ ϝ is called (i) FMI e -O if 

only F e -O sets contained in β. are β and 0 (ii)FMA e -O if only F e -O sets 

containing β are 1 and β . 

Definition 2.3. A FO set µ ∈ ϝ is said to be a FPO [4]set if it is neither FMIO nor FMAO set. 

3. Fuzzy e-Paraopen and e-Paraclosed Sets 

Definition 3.1. A F e -O set ζ ⊂ ϝ which is neither FMI e -O nor FMA e -O set is said to be F e -PO set . 

Definition 3.2. A F e -C set α ⊂ ϝ is said to be a F e -PC set iff its complement 1 − α is  

F e -PO set. 

Remark 3.1. The converse of the statement: Every F e -PO set (resp.F e -PC ) is a FO set(resp.FC set). Need not 

to be true proven by following example. 

Example 3.2. 

Remark 3.3. Union (resp.intersection) of F e -PO (resp. F e -PC) sets need not be F e -PO 

(resp. F e -PC) set. 

Theorem 3.4. Let ϝ be a FTS and α be a nonempty proper F e -PO subset of ϝ , then ∃a FMI e -O set ζ with ζ < 

α . 

Proof. Clearly ζ < α as per the FMI e -O set definition. 

Theorem 3.5. Let α be a nonempty proper F e -PO subset of a FTS ϝ, then ∃ a ψ  

FMA e -O set with α < ψ . 

Proof. Clearly α < ψ as per the FMA e -O set definition. 
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Theorem 3.6. Suppose that ϝ is a FTS, then 

(i) ς ∧ ζ = 0 or ζ < ς for any F e -PO ς and a FMI e -O set ζ . (ii) ς ∨ λ = 1 or ς 

< λ for any F e -PO ς and a FMA e -O set λ . (iii)Intersection of F e -PO sets 

is either F e -PO or FMI e -O set. 

Proof. (i) For any F e -PO set ς and a FMI e -O open set ζ in ϝ . Then ς ∧ ζ = 0 or ς ∧ ζ ≠ 0 . If ς ∧ ζ = 0 , then 

proof could be over. Assume ς ∧ ζ ≠ 0 . Then we write  

ς ∧ ζ is a FO set and ς ∧ ζ < ζ . Hence ζ < ς . 

(ii) For any F e -PO set ς and a FMA e -O set ξ in ϝ. Then ς ∨ ξ = 1 or ς ∨ ξ ≠ 1.  

If ς ∨ ξ = 1 , then proof could be over. Assume ς ∨ ξ ≠ 1. Clearly, ς ∨ γ is a FO set and γ < ς ∨ γ . Hence γ is a 

FMA e -O set, ς ∨ γ = γ implies ς < γ . 

(iii)Let ς and ξ be a F e -PO sets in ϝ . If ς ∧ ξ is a F e -PO set, then proof could be over. Suppose ς ∧ ξ is not a 

F e -PO set. By definition, ς ∧ ξ is a FMI e -O or FMA e -O set. If ς ∧ ξ is a FMI e -O set, then proof could be 

over. Suppose ς ∧ ξ is a FMA e -O set.  

Now ς ∧ ξ < ς and ς ∧ ξ < ξ contradicting the fact that ς and ξ are F e -PO sets.  

Hence, ς ∧ ξ is not a FMA e -O set. (i.e.) ς ∧ ξ is a FMI e -O set. 

Theorem 3.7. A subset λ of a FTS ϝ is F e -PC iff it is neither FMA e -C nor FMI e –C set. 

Proof. The complement of FMI e -O set and FMA e -O set are FMA e -C set and FMI e - 

C set respectively. 

Theorem 3.8. Let λ be a nonempty F e -PC subset of a FTS ϝ . Then ∃ a FMI e -C set ψ with ψ < λ . 

Proof. Clearly by FMI e -C set definition , it follows that ψ < λ. 

Theorem 3.9. Suppose that λ is a nonempty F e -PC subset of FTS ϝ then ∃ a FMA e -C set κ such that λ < κ . 

Proof. Clearly by FMA e -C set definition, it follows that λ < κ . 

Theorem 3.10. Suppose that ϝ is a FTS then 

(i) κ ∧ η = 0 or η < κ for any F e -PC set κ and FMI e -C set η . (ii) κ ∨ ζ = 1 or 

κ < ζ for any F e -PC set κ and FMA e -C set ζ . 

(iii) Intersection of F e -PC sets is either F e -PC or FMI e -C set. 

Proof. (i) Suppose that κ is a F e -PC and η is a FMI e -C set in ϝ. Then (1 − κ) is F e -PO and (1 − η) is FMA 

e -O set in ϝ. Then by Theorem 3.6 (ii) (1 − κ) ∨ (1 − η) = ϝ or (1 − κ) < (1 − η) implying 1 − (κ ∧ η) = 1 or η < 

κ . Hence, κ ∧ η = 0 or η < κ . 

(ii) Suppose that κ is a F e -PC and ζ is a FMA e -C set in ϝ. Then (1 − κ) is  

F e -PO and (1 − ζ) is FMI e -O sets in ϝ . Then by Theorem 3.6(i) (1 − κ) ∧ (1 − ζ) = 0 or 1 − ζ < 1 − κ implying 

1 − (κ ∨ ζ) = 0 or κ < ζ . Hence, κ ∨ ζ = 1 or κ < ζ . 

(iii)Suppose that κ and ξ is a F e -PC sets in ϝ . If κ ∧ ξ is a F e -PC set, then proof could be over. Suppose κ ∧ 

ξ is not a F e -PC set. Then clearly, κ ∧ ξ is FMI e -C or FMA e -C set. Suppose κ ∧ ξ is a FMI e -C set, then 

proof could be over. Suppose κ ∧ ξ is a FMA e -C set. Now κ < κ ∧ ξ and ξ < κ ∧ ξ a contradiction for κ and ξ 

are F e -PC sets. Hence,  

κ ∧ ξ is not a FMA e -C set. (i.e.) κ ∧ ξ is a FMI e -C set. 

4. Fuzzy Mean e-Open and e-Closed Sets 

Definition 4.1. A F e -O set ψ ⊂ ϝ is said to be a FME e -O set if ∃ ω1, ω1(≠ ψ) two distinct proper F e -O sets 

such that ω1 < ψ < ω2 . 

Remark 4.1. It could be understood from the succeding example that the union and 

intersection of  FME e -O need not be FME e -O sets. 

Example 4.2.  Let ϝ =  {x, y, z, w} .  Then  fuzzy sets 

ω1 = {(0.5, x), (0.4, y), (0.4, z), (0.5, w)} ;  

ω2 = {(0.5, x), (0.4, y), (0.6, z), (0.5, w)} ;  

ω3 = {(0.5, x), (0.6, y), (0.4, z), (0.5, w)}  
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and  ω4  =  {(0.5, x), (0.6, y), (0.6, z), (0.5, w)}  of  the  fuzzy  topology  τ = {0, 

ω1, ω2, ω3, ω4, 1} . Hence ω2 and ω3 are FME e -O sets but their union ω2 ∨ ω3 = ω4 and intersection 

ω2 ∧ ω3 = ω1 are not FME e -O sets. 

Definition 4.2.  A F e -C set υ ⊂ ϝ is said to be a FME e -C set if two F e -C sets 

 ξ1 ≠ ξ1(≠ υ) such that ξ1 < υ < ξ2 . 

Definition 4.3. A F e -O set ζ ⊂ ϝ which is neither FMI e -O nor FMA e -O set is said to be F e -PO set where 

its complement is known to be F e -PC set. 

Theorem 4.3. A F e -O set of a fts is a FME e -O set iff its complement is a FME e -C set. 

Proof. By deploying definition 4.1 for any FME e -O set ψ in ϝ we have ω1 < ψ < ω2  

implying that 1 − ω2 < 1 − ψ < 1 − ω1 . Clearly 1 − ω2 ≠ 0, 1 − ψ and 1 − ω1 ≠ 1 − ψ, 1 . Hence 1 − ψ is a FME 

e -C set. 

Conversly, Let 1 − ψ is a FME e -C set for any FME e -O set ψ in ϝ . By definition 4.2, F e -C sets ξ1≠ ≠ 0, 1 − 

ψ and ξ2 ≠ 1, 1 − ψ such that ξ1 < 1 − ψ < ξ2 implying that  

1 − ξ2  < ψ < 1 − ξ1 . As ξ2 ≠0, ψ and 1 − ξ1 ≠ ψ, 1 ; ψ is a FME e -O set. 

Theorem 4.4. A proper F e -PO set is a FME e -O set and vice-e-versa. 

Proof. The proof of necessary part is obvious by theorem 1.7 [9]. 

Conversely, let ψ be a proper FME e -O set in ϝ . Then two F e -O sets ζ1 ≠ ζ2 such that  

ζ1 < ψ < ζ2 . Clearly ψ is neither FMI e -O nor FMA e -O set as ζ1 ≠ 0, ψ and ζ2 ≠ ψ, 1 .  

As ψ ≠ 0, 1 , ψ is a proper F e -PO set. 

Theorem 4.5. A proper F e -PC set is a FME e -C set and vice-e-versa. 

Proof. The proof of necessary part is obvious by theorem 1.10 [9]. 

Conversely, let ϑ be a proper FME e -C set in ϝ . Then two F e -C sets υ1 ≠ υ2 ≠ ϑ such that υ1 < ϑ < υ2 . Clearly ϑ 

is neither a FMI e -C nor a FMA e -C set as υ1 ≠ 0, ϑ and υ2 ≠1, ϑ . As ϑ ≠ 0, 1 , ϑ is a proper F e -PC set. 

Theorem 4.6. ([5]) Let ϝ be a fts. 

(i) If ζ is a FMI e -O and ξ is a F e -O sets in ϝ , then ζ ∧ ξ = 0 or ζ < ξ . (ii)If ζ and κ are FMI 

e -O sets, then ζ ∧ ξ = 0 or ζ = ξ . 

Theorem 4.7. ([5]) Let ϝ be a fts. 

(i) If ζ is a FMA e -O and ξ is a F e -O sets in ϝ , then ζ ∨ ξ = 1 or ξ < ζ . (ii)If  ζ and κ are FMA 

e -O set, then ζ ∨ κ = 1 or ζ = κ . 

Theorem 4.8. If ξ1 is a FMA e -O set and ξ2 is a FMI e -O set of a fts ϝ , then either ξ2 < ξ1 or ϝ is fuzzy e –

disconnected. 

Theorem 4.9. Let a F e -CTS ϝ contain a FMA e -O set ζ2 , a FMI e -O set ζ1 ≠ ζ2 and a proper F e -O set ξ ≠ ζ1, ζ2 

. Then exactly one of the succeeding could be true on ϝ : 

(i) ξ is a FME e -O set with ζ1 < ξ < ζ2 . 

(ii) ζ1 < 1 − ξ < ζ2 . 

(iii) ζ1 < ξ, ζ1 ∨ ξ = 1 and ζ2 ∧ ξ ≠ 0 .  

(iv) ξ < ζ2, ζ1 ∧ ζ2 = 0 and ζ1 ∨ ζ2 ≠ 1 . 

Proof. By deploying theorem 4.8, a FMI e -O set ζ1 < ζ2 a FMA e -O set. This implies either ζ1 < ξ or ζ1 ∧ ξ = 0 

and ξ < ζ2 or ζ2 ∨ ξ = 1 . Hence the feasible combinations are (i) ζ1 < ξ < ζ2 , (ii) ζ1 ∧ ξ = 0 ; ζ2 ∨ ξ = 1 , (iii) ζ1 < 

ξ ; ζ2 ∨ ξ = 1 , (iv) ζ1 ∧ ξ = 0 and ξ < ζ2 . 

Clearly ζ1 < 1 − ξ < ζ2 if (ii) is true. Also, 0 ≠ ζ1 < ζ1 ∧ ξ as ζ1 < ζ2 and (iii) is true. Again ζ1 ∨ ξ < ζ2 ≠ 1 as ζ1 

< ζ2 and (iv) is true. 

Case(I): As (i) and (ii) are true, then ζ1 < ξ ∨ (1 − ξ) < ζ2 and ζ1 < ξ ∧ (1 − ξ) < ζ2 . As ζ1 < ξ ∨ (1 − ξ) < ζ2 ζ1 

< 1 < ζ2 then ζ2 = 1, an absurd result.  

Similarly, for ζ1 < ξ ∧ (1 − ξ) < ζ2 we get ζ1 = 0, an absurd result. 
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Case(II): As both (i),(iii) are true, then ξ < ζ2 and ζ2 ∨ ξ = 1 gives ζ2 = 1, an absurd result. 

Case(III): As both (i),(iv) are true, then ζ1 < ξ and ζ1 ∧ ξ = 0 gives ζ1 = 0, an absurd result. 

Case(IV): As both (ii),(iii) are true, then ζ1 < 1 − ξ and ζ1 < ξ gives ζ1 = 0, an absurd result. 

Case(V): As both (ii),(iv) are true, then 1 − ξ < ζ2 and ξ < ζ2 gives ζ2 = 1, an absurd result. 

Case(VI): As both (iii),(iv) are true, then ζ1 < ξ < ζ2, ζ2 ∨ ξ = 1 and ζ1 ∧ ξ = 0 . Clearly  

ζ2 = 1 as ξ < ζ2 and ζ2 ∨ ξ = 1 a contradiction. Simlilarly, we get ζ1 = 0 as ζ1 < ξ and  

ζ1 ∧ ξ = 0 a contradiction. 

Theorem 4.10. Let a F e -CTS ϝ contain a FMA e -C set υ2 , a FMI e -C set υ1 with υ1 ≠ υ2 and a proper F e -C set 

β ≠ υ1, υ2 .Then any one of them could be true on ϝ : 

(i) β is a FME e -C set such that υ1 < β < υ2 . 

(ii) υ1 < 1 − β < υ2 . 

(iii) β < υ2, υ1 ∧ β = 0 and υ1 ∨ β ≠ 1  

(iv) υ1 < β, υ2 ∨ β = 1 and υ2 ∧ β ≠0 . 

Proof. Let ϝ be a F e -CTS containing 1 − υ1 , a FMA e -O set; 1 − υ2 a FMI e -O set and 1 − β a proper F e -O set 

such that 1 − υ1 ≠ 1 − υ2 and 1 − β ≠ 1 − υ1, 1 − υ2 . By deploying Theorem 4.9, any one of them could be true: 

(i) For any FME e -O set 1−β we get υ1 < β < υ2 as 1−υ2 < 1−β < 1−υ1 , Hence, β is a  

FME e -C set.  

(ii) Clearly, υ1 < 1 − β < υ2. as 1 − υ2 < 1 − (1 − β) < 1 − υ1  

(iii) If 1−υ2 < 1−β; (1−υ1) ∨ (1−β) = 1 and (1−υ1) ∧ (1−β) ≠ 0 then β < υ2; υ1∧β = 0 and υ1 ∨ β ≠ 1.  

(iv)   If 1−β < 1−υ1; (1−υ2)∧(1−β) = 0 and (1−υ2) ∨ (1−β) ≠1 then υ1 < β; υ2∨β = 1 and υ2 ∧ β ≠ 0 . 

Theorem 4.11. Let two distinct FMA e -O and FME e -O sets in ϝ. Then intersection of 

the two FMA e -O sets is nonzero. 

Proof. By deploying theorem 4.7, κ1 ∨ κ2 = 1 for any two distinct FMA e -O sets κ1 and κ1 in ϝ. Let σ be a FME 

e -O set in a fts ϝ then σ is neither FMA e -O nor FMI e –O such that, σ ≠ κ1, κ2 and σ ≠ 1 . By Theorem 4.7, we 

get σ ≨ κ1 or σ ∨ κ1 = 1 and σ ≨ κ2 or  

σ ∨ κ2 = 1. The feasible combinations are (i) σ ≨ κ1 and σ ≨ κ2 , (ii) σ ≨ κ1 and σ ∨ κ2 = 1, (iii) σ ≨ κ2 and σ 

∨ κ1 = 1 and (iv) σ ∨ κ1 = 1 and σ ∨ κ2 = 1. Case (I): Obviously true. 

Case (II): By assuming σ ∧ κ2 ≠ 0 ,we have to prove that κ1 ∧ κ2 ≠ 0 . As σ ∧ κ2 ≠ 0 and σ ≨ κ1 , then there 

exists xα ∈ κ1 such that xα ≠ κ2 . Since σ ∨ κ2 = 1, xα ∈ κ2.  

So, κ1 ∧ κ2 ≠ 0. 

Case (III): Similar to previous case. 

Case (IV): As σ ∨ κ1 = 1; σ ∨ κ2 = 1 imply that σ ∨ (κ1 ∧ κ2) = 1 then σ = 1 if κ1 ∧ κ2 = 0 . Again κ1 ∧ κ2 ≠ 0 

as σ ≠ 1 . 

Theorem 4.12. Let two distinct FMI e -O and FME e -O sets in ϝ. Then union of the two 

FMI e -O sets is not equal to 1. 

Proof. By deploying theorem 4.6,we have κ1 ∨ κ2 = 0 for any two distinct FMI e -O sets 

 κ1 , κ2 in a fts ϝ. Let σ being a FME e -O set in ϝ, then it is neither FMA e -O nor  

FMI e -O. Hence, σ ≠ κ1, κ2 and σ ≠0, 1 . By theorem 4.6, we get κ1 ≨ σ or σ ∧ κ1 = 0 and κ2 ≨ σ or σ ∧ κ2 = 

0. The possible combinations are (I) κ1 ≨ σ and κ2 ≨ σ , (II) κ1 ≨ σ and σ ∧ κ2 = 0 , (III) κ2 ≨ σ and σ ∧ κ1 = 

0 and (IV) σ ∧ κ1 = 0 and σ ∧ κ2 = 0 as σ ≠ 1. 

Case I: Obviously, if κ1 ≨ σ and κ2 ≨ σ then κ1 ∨ κ2 ≠ 1. 

Case II: Suppose that σ ∨ κ2 ≠ 1. Since κ1 ≨ σ , then there exists xα ∈ σ such that xα ≠ κ1.  

As σ ∧ κ2 = 0 ; clearly xα ≠ κ2 . Hence, xα ≠ κ1, κ2 imply that κ1 ∨ κ2 ≠ 1.  

Case III: Similar to previous case. 

Case IV: As σ ∧ κ1 = 0; σ ∧ κ2 = 0 imply that σ ∧ (κ1 ∨ κ2) = 0 then σ = 0 if κ1 ∨ κ2 =  . 



Turkish Journal of Computer and Mathematics Education   Vol.11 No.3(2020),2921-2925 

 

2925 
 

 
 

Research Article  

Clearly κ1 ∨ κ2 ≠ 1 as σ ≠ 0 . 

“On combining theorems 4.11 and 4.12, we get theorems 4.13 and 4.14 and the proofs succeeded by theorems 

4.11 and 4.12.“ 

Theorem 4.13. Let κ and ϱ be distinct FMA e -C and FME e -C sets in a FTS respectively. Then the intersection 

of two FMA e -O sets is nonzero. 

Theorem 4.14. Let ζ and ξ be distinct FMI e -C and FME e -C sets in a FTS respectively. Then the union of two 

FMI e -C sets is not equal to 1. 
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