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ABSTRACT: A subset S of a graph G is called a dominating set of G if every vertex in V−S is adjacent to atleast one vertex in S.  

The domination number 𝛾(𝐺) is the minimal cardinality of a dominating set. A dominating set S in a graph G is said to be a 

complementary 3-dominating set of G if any vertex in S has atleast three neighbours in V−S. The complementary 3-domination 

number 𝛾3
′ (𝐺) of a graph G is the minimum cardinality of a complementary 3-dominating set. We determine complementary 3-

domination number for some special graphs and proved some theorem in cubic graphs. 
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1.Introduction 

By a graph we mean a simple, connected, finite and undirected graph G = (V,E) where V is the vertex set whose 

elements are vertices or nodes and E is the edge set.  Unless otherwise stated the graph G with |𝑉| = 𝑛 𝑎𝑛𝑑  |𝐸| = 𝑞. 

Degree of a vertex 𝑣 is denoted by 𝑑(𝑣).  Let ∆(𝐺) and 𝛿(𝐺) denotes the maximum and minimum degree of a graph 

respectively.  A subset S of V is called a dominating set of G if every vertex In V-S is adjacent to atleast one vertex 

in S.  The domination number 𝛾(𝐺) is the minimum cardinality of a dominating set. The chromatic number χ(G) of  a 

graph G is the smallest number of colors for V(G) so that adjacent vertices are colored differently. In this paper we 

introduce the concept of complementary 3-domination number and we present some results related to this parameter. 

Definition:1.1 A dominating set of a graph 𝐺 is called a complementary 3-dominating set of 𝐺 if for every vertex in 

S has atleast three neighbors in 𝑉 − 𝑆. The complementary 3-domination number 𝛾3
′ (𝐺) is the minimum cardinality 

taken over all complementary 3-dominating sets. 

Theorem: 1.3 If G is any connected graph then 1 ≤ 𝛾3
′ (𝐺) ≤ 𝑛 

Remark: 1.4 For any graph G with ∆(𝐺) ≤ 2 then 𝛾3
′ (𝐺) = 𝑛. 

2. 𝜸𝟑
′  value for some special graphs: 

Definition: 2.1 A diamond graph 𝐺 is a planar, undirected graph with 4 vertices and 5 edges as shown in figure 2.1. 

It consists of a complete graph 𝐾4minus one edge. 

For any diamond graph 𝐺 of order 4, 𝛾3
′ (𝐺) = 1. 
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In the above figure 2.1 the set {𝑣1} forms a complementary 3-dominating set and hence  𝛾3
′ (𝐺) = 1. 

Definition: 2.2 The Hajos graph 𝐺 is an undirected graph with seven vertices and eleven edges as shown in figure 2.2   

For a Hajos graph G, 𝛾3
′ (𝐺) = 2. 

 

In figure 2.2, the set 𝑆 = {𝑣6, 𝑣7} forms a complementary 3-dominating set and hence     𝛾3
′ (𝐺) = 2. 

Definition: 2.3 The Bidiakis cube 𝐺 is a 3-regular graph with 12 vertices and 18 edges as shown in figure 2.3 

For a Bidiakis cube 𝐺, 𝛾3
′ (𝐺) = 3. 

 

In figure 2.3 the set 𝑆 = {𝑣1, 𝑣6, 𝑣11} forms a complementary 3-dominating set. 

Definition: 2.4 A Frucht graph 𝐺 is a cucic graph with 12 vertices, 18 edges and no non trivial symmetries as shown 

in figure 2.4 

For a Frucht graph 𝐺, 𝛾3
′ (𝐺) = 4. 
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In figure 2.4, th set 𝑆 = {𝑣1, 𝑣8, 𝑣3, 𝑣2} forms a complementary 3-dominating set . 

Definition: 2.5 A Soifer graph 𝐺 is an undirected planar graph with 9 vertices and 20 edges as shown in figure 2.5 

For a Soifer graph G 𝛾3
′ (𝐺) = 2. 

 

In figure 2.5, the set 𝑆 = {𝑣1, 𝑣3} forms a complementary 3-dominating set. 

Definition: 2.6 The Franklin graph 𝐺 is a 3-regular graph with 12 vertices and 18 edges. 

For a Franklin graph 𝐺 𝛾3
′ (𝐺) = 4. 

 

In the above figure 2.6, the set S={𝑣2,𝑣4,𝑣8,𝑣11} forms a complementary 3-dominating set. 

Definition: 2.7 The Wagner graph 𝐺 is a 3-regular graph with 8 vertices and 12 edges as shown in figure 2.7 

For a Wagner graph 𝐺, 𝛾3
′ (𝐺) = 3. 
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In figure 2.7, the set 𝑆 = {𝑣1, 𝑣3, 𝑣6} forms  a complementary 3-dominating set. 

Definition: 2.8 The Herschel graph 𝐺 is a bipartite undirected graph with eleven vertices and eighteen edges. It is a 

smaller polyhedral graph that does not have a Hamiltonian cycle, a cycle passing through all its vertices. It is named 

after a British Astronomer Alexander Stewart Herschel. 

For a Herschel graph 𝐺, 𝛾3
′ (𝐺) = 3. 

 

In Fig 2.8 the set 𝑆 = {𝑣1, 𝑣3, 𝑣11} forms a complementary 3-dominating set. 

Definition: 2.9 The Golomb graph 𝐺 is a polyhedral graph with 10 vertices and eighteen edges. It is named after 

Solomon W.Golomb. 

For a Golomb graph 𝐺, 𝛾3
′ (𝐺) = 2. 
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In figure 2.9 the set 𝑆 = {𝑣3, 𝑣10} forms a complementary 3-dominating set. 

                                     𝟑. 𝜸𝟑
′ - number for cubic graph with 10 vertices 

Theorem: 3.1 For a cubic graph G with 10 vertices, 𝐺 ≅ 𝐺𝑖  where 1 ≤ 𝑖 ≤ 20 then 𝛾3
′ (𝐺) = 𝜒(𝐺) = 3. 

Proof: To prove this theorem we will discuss the following cases. 

 Let G be a cubic graph wuth 10 vertices. Let 𝐷 =  {𝑥, 𝑦, 𝑧} and 𝐻1 = {𝑣1, 𝑣2, 𝑣3} = 𝑁(𝑥) 

 Now, < 𝑆 >≠ 𝑃3 𝑜𝑟 𝐾3. Therefore <S>= 𝑃2 ∪ 𝑃1 or 𝐾3. 

 Now we consider the graphs with < 𝑆 > = 𝑃2 ∪ 𝑃1. Let 𝑣4 and 𝑣5 be the remaining two vertices which is 

adjacent to z, and 𝑣6 and 𝑣7 be the two remaining other vertices which is adjacent to y. Now, let us assume that 𝐻2 =
{𝑣4, 𝑣5} and 𝐻3 = {𝑣6, 𝑣7}. 

 Now let us consider the following cases. 

Case (1): < 𝑆 > = 𝑃2 ∪ 𝑃1 𝑎𝑛𝑑 < 𝐻1 > = 𝑃3 

 

                                                                              
          𝐺1                                  𝐺2                                  𝐺3                                   𝐺4 

                           
   

                              𝐺5                                              𝐺6   𝐺7 

 

                        



Turkish Journal of Computer and Mathematics Education   Vol.11 No.3(2020),2747-2757 

 

2752 
 

 
 

Research Article  

                       𝐺8     𝐺9                 𝐺10 

 

   

              𝐺11                          𝐺12                            𝐺13                   𝐺14 

 

 

            𝐺15                              𝐺16      𝐺17                       𝐺18 

                                                              

                                                    𝐺19                                                         𝐺20 

       Fig:3.1 

Let <𝐻1> = 𝑃3 = 𝑣1𝑣2𝑣3 

To prove this case we consider the following subcases. 

Subcase(1a): < 𝐻1 > = < 𝐻2 > =  𝑃2 

 Without loss of generality, let us assume that 𝑣1 adjacent to 𝑣6. Since G is a cubic graph 𝑣3 non adjacent to 

𝑣5. Therefore 𝑣3 adjacent to 𝑣6(or equivalently 𝑣7) and then 𝑣5 adjacent to 𝑣7 which implies G≅ 𝐺4. 

Subcase(1b): <𝐻2 > = < 𝐻3 > =  𝑃̅2 

 Without loss of generality, let us assume that 𝑣1 adjacent to 𝑣4. Since G is cubic 𝑣6 non adjacent to 𝑣3. 
Therefore 𝑣4 adjacent to 𝑣6( or equivalently 𝑣7) and so 𝑣7 adjacent to 𝑣3 and 𝑣5 and since G is a cubic graph 𝑣5 

adjacent to 𝑣6 which implies G≅ 𝐺3. 
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Subcase(1c): < 𝐻2 > =  𝑃2 𝑎𝑛𝑑 < 𝐻3 > =  𝑃̅2 

 Now 𝑣5 adjacent to 𝑣1 and 𝑣3 or 𝑣4 and 𝑣5 or 𝑣4 ( or equivalently 𝑣5) and 𝑣1 ( or equivalently 𝑣3). 

 Suppose if 𝑣7 adjacent to 𝑣4 and 𝑣5 then 𝑣6 adjacent to 𝑣1 and 𝑣3 and so 𝐺 ≅ 𝐺1. Suppose if 𝑣7 adjacent to 

𝑣1 and 𝑣3 then 𝑣6 adjacent to 𝑣4 and 𝑣5 and so G≅ 𝐺1. Suppose if 𝑣7 adjacent to 𝑣1 and 𝑣4 then 𝑣6 adjacent to 𝑣3 and 

𝑣5 and so 𝐺 ≅ 𝐺2. 

Case: (2) < 𝐷 >= 𝑃2 ∪ 𝑃1 𝑎𝑛𝑑 < 𝐻1 >= 𝐾3 

  To prove this case we consider the following subcases. 

Subcase (2a): < 𝐻2 > = < 𝐻3 > =  𝑃2 

 Since G is cubic in 𝐻1 three vertices has to be incident with six edges. But in 𝐻2 and 𝐻3 four vertices can be 

incident with four edges which is a contradiction and hence in this subcase no graph exists. 

Subcase (2b): < 𝐻2 > =  𝑃2 𝑎𝑛𝑑 < 𝐻3 > =  𝑃̅2 

 Now, 𝑣1 adjacent to 𝑣6 and 𝑣5 or 𝑣4 and 𝑣5 or 𝑣4 (or equivalently 𝑣5) and 𝑣6 (or equivalently 𝑣7). If 𝑣1 

adjacent to 𝑣4 and 𝑣5 then 𝑣2 adjacent to 𝑣6 and 𝑣7 and then 𝑣3 adjacent to 𝑣6 and 𝑣7. 

 Suppose if 𝑣1 adjacent to 𝑣4 and 𝑣7, then 𝑣2 adjacent to 𝑣6 and 𝑣7 or 𝑣4 and 𝑣5 or 𝑣6 (or equivalently 𝑣5). If 
𝑣2 adjacent to 𝑣4 and 𝑣5 then 𝑣3 adjacent to 𝑣6 and 𝑣7. Suppose if 𝑣2 adjacent to 𝑣6 and 𝑣7 then 𝑣3 adjacent to 𝑣4 and 

𝑣5. If 𝑣2 adjacent to 𝑣6 and 𝑣4 then 𝑣3 adjacent to 𝑣7 and 𝑣5 and so 𝐺 ≅ 𝐺7. 

 Suppose if 𝑣1 adjacent to 𝑣4 and 𝑣6, G is cubic then 𝑣2 non adjacent to 𝑣6 and 𝑣5 and so 𝑣2 must be adjacent 

to 𝑣7 and 𝑣5 or 𝑣6 and 𝑣7. Suppose if 𝑣2 adjacent to 𝑣7 and 𝑣5 then 𝑣3 adjacent to 𝑣6 and 𝑣7 and so G≅ 𝐺7. Suppose 

if 𝑣2 adjacent to 𝑣6 and 𝑣7 then 𝑣3 adjacent to 𝑣7 and 𝑣5 and hence G≅ 𝐺7. 

Subcase (2c):  <𝐻2> = <𝐻3> = 𝑃̅2 

 Now suppose if 𝑣1 adjacent to 𝑣4 and 𝑣5 (or equivalently 𝑣6 and 𝑣7) or 𝑣4 (or equivalently 𝑣5) and 𝑣6 (or 

equivalently 𝑣5) and 𝑣6 (or equivalently 𝑣7). 

 Suppose 𝑣1 adjacent to 𝑣4 and 𝑣5. G is cubic then 𝑣2 non adjacent to 𝑣4 and 𝑣5 and so 𝑣2 adjacent to 𝑣6 and 

𝑣7 or 𝑣4 ( or equivalently 𝑣5) and 𝑣6 ( or equivalently 𝑣7). If 𝑣2 adjacent to 𝑣6 and 𝑣7 then 𝑣3 non adjacent to 𝑣4 and 

𝑣5 and so 𝑣3 is non adjacent to 𝑣6 and 𝑣7. Therefore 𝑣3 is adjacent to 𝑣4 (or equivalently 𝑣5) and 𝑣6(or equivalently 

𝑣7) and so 𝑣7 is adjacent to 𝑣4 and hence 𝐺 ≅ 𝐺8. If 𝑣2 adjacent to 𝑣4 and 𝑣6 then 𝑣7 adjacent to 𝑣5 and 𝑣3 and so 𝑣3 

adjacent to 𝑣6 hence 𝐺 ≅ 𝐺8. If 𝑣1 adjacent to 𝑣6 and 𝑣4 then 𝑣2 adjacent to 𝑣6 and 𝑣4 or 𝑣7 and 𝑣5 or 𝑣6 and 𝑣7 (or 

equivalently 𝑣4 and 𝑣5) or 𝑣6 and 𝑣5 (or equivalently 𝑣7 and 𝑣4). 

 Suppose 𝑣2 adjacent to 𝑣6 and 𝑣4 then 𝑣3 adjacent to 𝑣7 and 𝑣5 and so 𝑣5 adjacent to 𝑣7 hence G≅ 𝐺6. If 𝑣2 

adjacent to 𝑣7 and 𝑣5 and so 𝑣3 is non adjacent to 𝑣4 and 𝑣5( or equivalently 𝑣6 or 𝑣7). Therefore 𝑣3 adjacent to 𝑣4 

and 𝑣6 or 𝑣5 and 𝑣7 or 𝑣4 and 𝑣7 or equivalently 𝑣6 and 𝑣7. If 𝑣3 adjacent to 𝑣4 and 𝑣6 and so 𝑣7 adjacent to 𝑣5 and 

hence G≅ 𝐺6. Suppose if 𝑣3 adjacent to 𝑣5 and 𝑣7 then 𝑣6 adjacent to 𝑣4 and hence G≅ 𝐺6, if 𝑣3 adjacent to 𝑣3 and 

𝑣5 then 𝑣6 adjacent to 𝑣5 and hence G≅ 𝐺9. 

 Suppose 𝑣2 adjacent to 𝑣6 and 𝑣5 then 𝑣3 is non adjacent to 𝑣4 and 𝑣5. Therefore 𝑣3 adjacent to 𝑣4 and 𝑣7 or 

𝑣7 and 𝑣5. If 𝑣3 adjacent to 𝑣7 and 𝑣4 then 𝑣7 adjacent to 𝑣5 and hence G≅ 𝐺5. Suppose 𝑣3 adjacent to 𝑣5 and 𝑣7 then 

𝑣7 adjacent to 𝑣4 and hence G≅ 𝐺5. Suppose 𝑣2 adjacent to 𝑣6 and 𝑣7 then 𝑣3 is non adjacent to 𝑣7 and 𝑣4. Also 𝑣3 

non adjacent to 𝑣7 and 𝑣5. Therefore 𝑣3 adjacent to 𝑣4 and 𝑣5, then 𝑣5 adjacent to 𝑣7 and hence G≅ 𝐺8. 

Case (3): < 𝐷 > =  𝑃2 ∪ 𝑃1 𝑎𝑛𝑑 < 𝐻1 > =  𝑃2 ∪ 𝑃1 
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               To prove this case we discuss the following cases. 

Subcase (3a): <  𝐻2 > =  𝑃2 and < 𝐻3 > =  𝑃̅2 

 Let 𝑣1𝑣2 be an edge in < 𝐻1 >. Now, 𝑣3 will not be adjacent to 𝑣4 and 𝑣5 because G is cubic. Therefore 𝑣3 

adjacent to 𝑣6 and 𝑣7 or 𝑣4 (or equivalently 𝑣5) and 𝑣6 ( or equivalently 𝑣7). 

 Suppose 𝑣3 adjacent to 𝑣6 and 𝑣7, then 𝑣6 adjacent to 𝑣1( or equivalently 𝑣2) or 𝑣4(or equivalently 𝑣5). If 

𝑣6 adjacent to 𝑣1 then 𝑣7 non adjacent to 𝑣2 and so 𝑣7 adjacent to 𝑣4( or equivalently 𝑣5) and hence 𝑣5 adjacent to 𝑣2 

and so G≅ 𝐺1. Suppose 𝑣6 adjacent to 𝑣4 then 𝑣7 non adjacent to 𝑣5. Therefore 𝑣7 adjacent to 𝑣1( or equivalently 𝑣2) 

and so 𝑣2  adjacent to 𝑣5. Hence G≅ 𝐺10. 

 Suppose 𝑣3 adjacent to 𝑣4 and 𝑣5, then 𝑣7 adjacent to 𝑣1 and 𝑣2 or 𝑣1( or equivalently 𝑣2) and 𝑣5. If 𝑣7 

adjacent to 𝑣1 and 𝑣2 then 𝑣6 adjacent to 𝑣5. Suppose 𝑣7 adjacent to 𝑣1 and 𝑣5 then 𝑣2 adjacent to 𝑣6 and hence 𝐺 ≅
𝐺13. 

Subcase (3b): < 𝐻2 > = < 𝐻3 > =  𝑃̅2 

 Let 𝑣1𝑣2 be an edge in < 𝐻1 >. Here 𝑣3 adjacent to 𝑣6 and 𝑣7 (or equivalently 𝑣4 and 𝑣5) or 𝑣6 and 𝑣4 (or 

equivalently 𝑣7 and 𝑣5 ). 

 Now 𝑣3 adjacent to 𝑣6 and 𝑣7. If 𝑣3 adjacent to 𝑣6 and 𝑣4 then 𝑣7 non adjacent to 𝑣1 and 𝑣2. Hence 𝑣7 

adjacent to 𝑣4 and 𝑣5 or 𝑣1 and 𝑣4 or 𝑣1 and 𝑣5. 

 If 𝑣7 adjacent to 𝑣4 and 𝑣5 then 𝑣5 non adjacent to 𝑣6. Therefore 𝑣5 adjacent to 𝑣1 (or equivalently 𝑣2) and 

so 𝑣2 adjacent to 𝑣6 . If 𝑣7 adjacent to 𝑣1 and 𝑣4 then 𝑣5 adjacent to 𝑣2 and 𝑣6 and hence {𝑣7, 𝑥, 𝑧} is a 𝛾3
′ - set and 

𝐺 ≅ 𝐺12. Suppose 𝑣5 adjacent to 𝑣1 and 𝑣7 then 𝑣2 non adjacent to 𝑣4. Therefore 𝑣2 adjacent to 𝑣6 or 𝑣7. If 𝑣2 adjacent 

to 𝑣4 then 𝑣5 adjacent to 𝑣6. Suppose 𝑣2 adjacent to 𝑣5  then 𝑣4  adjacent to 𝑣6 and so {𝑣7, 𝑧, 𝑥} is a 𝛾3
′ -set. Therefore 

𝐺 ≅ 𝐺12. 

Subcase (3c): < 𝐻2 > = < 𝐻3 > =  𝑃2 

 Here 𝑣3 adjacent to 𝑣4 and 𝑣5 (or equivalently 𝑣6 and 𝑣7) or 𝑣6 and 𝑣4 (or equivalently 𝑣7 and 𝑣5). Suppose 

𝑣3 adjacent to 𝑣4 and 𝑣5 then 𝑣2 adjacent to 𝑣6 (or equivalently 𝑣7) and so 𝑣1 adjacent to 𝑣7. If 𝑣3 adjacent to 𝑣6 and 

𝑣4 then 𝑣1 adjacent to 𝑣7 (or equivalently 𝑣5) and so 𝑣2 adjacent to 𝑣5 and hence {𝑣7, 𝑥, 𝑧} is a 𝛾3
′ - set. Therefore 𝐺 ≅

𝐺12. 

Now let us consider the graphs with < 𝐷 > =  𝐾3 

 Now, y will be adjacent to two points which are not in 𝑁[𝑥]. Suppose x adjacent to 𝑣6 and 𝑣7 . Let 𝐷2 = 

{𝑣6, 𝑣7}. Then z adjacent to other two points 𝑣4 and 𝑣5. Let 𝐷3 = {𝑣4, 𝑣5}. Now we consider the following cases. 

   

Case (4): < 𝐷 > =  𝐾3 𝑎𝑛𝑑 <  𝐻1 > =  𝑃3  

 Let < 𝐷1 > = {𝑣1, 𝑣2, 𝑣3} . To prove this we discuss the following subcases. 

Subcase (4a): < 𝐻2 > = < 𝐻3 > =  𝑃2 

 Now let us assume that 𝑈 =  𝐻2 ∪ {𝑦} and 𝑉 =  𝐻3 ∪ {𝑧} so that < 𝑈 > = < 𝑉 > = 𝐶3. Since G is a cubic 

graph for some 𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑉 then 𝐷 =  {𝑥, 𝑢, 𝑣} such that < 𝐷 > =  𝑃2 ∪ 𝑃1 which comes under the case < 𝐷 >
 =  𝑃2 ∪ 𝑃1. 
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Subcase (4b): < 𝐻2 > = < 𝐻3 > =  𝑃̅2 

 Now y adjacent to 𝑣1 (or equivalently 𝑣3) or 𝑣4 (or equivalently 𝑣5). In this cases no  

graph exists. 

Subcase (4c): < 𝐻2 > =  𝑃2 and < 𝐻3 > =  𝑃̅2 

 Assume that 𝑣6 and 𝑣7 be an edge in 𝐻2. y is non adjacent to 𝑣1( or equivalently 𝑣3) because G is cubic. 

Therefore y adjacent to 𝑣4(or equivalently 𝑣5). Suppose y adjacent to 𝑣4(or equivalently 𝑣5) then 𝑣5 adjacent to 𝑣1 

and 𝑣3 or 𝑣7 and 𝑣6 or 𝑣6 (or equivalently 𝑣7) and 𝑣1 ( or equivalently 𝑣3). 

 Suppose v5 adjacent to v1 and v3, then v4 adjacent to v6 (or equivalently v7) and  so z adjacent to v7 and hence 

{v5,z,x} is a 𝛾3
′ − 𝑠𝑒𝑡. Suppose v5 adjacent to v1 and v6 then v7 not adjacent to v3. Therefore  v7  adjacent to v4 or z. If 

𝑣7 adjacent to 𝑣4 then z adjacent to 𝑣3 and so 𝐺 ≅ 𝐺17. Suppose 𝑣7 adjacent to z then 𝑣3 adjacent to 𝑣4 and so {𝑣5,z,x} 

is a 𝛾3
′ − 𝑠𝑒𝑡. Suppose 𝑣5 adjacent to 𝑣7 and 𝑣6 so that 𝑣4 adjacent to 𝑣1 (or equivalently 𝑣3 and hence z adjacent to 

𝑣3. Therefore 𝐺 ≅ 𝐺17. 

Case (5): < 𝐷 > =  𝐾3, < 𝐻1 > =  𝑃2 ∪ 𝑃1   

To prove this case we discuss the following subcases. 

Subcase (5a): < 𝐻2 > =  𝑃2 𝑎𝑛𝑑 < 𝐻3 > =  𝑃̅2 

 Let us assume that 𝑣1𝑣2 be an edge in < 𝐻1 >. Now 𝑣  adjacent to any one of {𝑣6, 𝑣7, 𝑦} or z or 𝑣4 (or 

equivalently 𝑣5). Suppose 𝑣1 adjacent to y then z adjacent to 𝑣3 or 𝑣6 (or equivalently 𝑣7) or 𝑣2. 

 Suppose z adjacent to 𝑣3. If z adjacent to 𝑣6 and 𝑣2 then 𝑣7 adjacent to 𝑣3 or 𝑣4 (or equivalently 𝑣5). If 𝑣7 

adjacent to 𝑣4 then 𝑣5 adjacent to 𝑣3 and 𝑣6 and so 𝑣3 adjacent to 𝑣4. Hence {u,w, 𝑣5} is a 𝛾3
′ − 𝑠𝑒𝑡 and therefore 𝐺 ≅

𝐺16. 

 Suppose 𝑣1 adjacent to z then no graph exists. If 𝑣1 adjacent to 𝑣4 then 𝑣4 adjacent to any one vertices of 

{𝑣6, 𝑣7, 𝑦} or 𝑣3 or 𝑣2. Suppose 𝑣4 adjacent to y then z adjacent to 𝑣3 or 𝑣6 or 𝑣2 (or equivalently 𝑣7). 

 Suppose z adjacent to 𝑣3, then 𝑣2 adjacent to 𝑣6(or equivalently 𝑣7) or 𝑣5. If 𝑣2 adjacent to 𝑣6 then 𝑣5 adjacent 

to 𝑣3 and 𝑣7. If 𝑣2 adjacent to 𝑣5 and G is cubic, 𝑣5 will not be adjacent to 𝑣3. Therefore 𝑣5 adjacent to 𝑣6 (or 

equivalently 𝑣7) and so 𝑣3 adjacent to 𝑣7 and hence {x,y,z} is a 𝛾3
′ -set. Therefore 𝐺 ≅ 𝐺14. If z adjacent to 𝑣2 or 𝑣6 

and 𝑣4 adjacent to 𝑣2 or 𝑣3 no other new graph exists. 

Subcase (5b): < 𝐻2 > = < 𝐻3 > =  𝑃̅2 

 Let 𝑣1𝑣2 be an edge in <  𝐷1 >. Now let 𝑣1 adjacent to y (or equivalently z) or 𝑣6 (or equivalently 𝑣7) or 

(equivalently 𝑣4) or equivalently 𝑣5. In these cases no other new graph exists. 

Subcase (5c): < 𝐻2 > = < 𝐻3 > =  𝑃2 

 Let 𝑣1𝑣2 be an edge in <  𝐷1 > and 𝑣1 adjacent to one of the vertices {y, 𝑣6𝑣7} ( or equivalently any one of 

{z, 𝑣4, 𝑣5}. Let 𝑣1 adjacent to 𝑣6 and hence no other new graphs exists. 

Case (6): < 𝐷 > =  𝐾3 and < 𝐻1 > =  𝐾3 

To prove this case we consider the following subcases. 
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Subcase (6a): < 𝐻2 > = < 𝐻3 > =  𝑃̅2 

 Suppose 𝑣1 adjacent to 𝑣6 (or equivalently 𝑣7) or 𝑣1 adjacent to y (or equivalently z). 

 Now 𝑣1 adjacent to 𝑣6 then y adjacent to 𝑣1 or 𝑣2 (or equivalently 𝑣3) or 𝑣4 (or equivalently 𝑣5). 

 Suppose if y adjacent to 𝑣1 then {x,y,z} is a 𝛾3
′ -set. If y adjacent to 𝑣2then y adjacent to 𝑣1 or 𝑣2 (or 

equivalently 𝑣6) or 𝑣3 (or equivalently 𝑣7). If z adjacent to 𝑣2 then 𝑣4 adjacent to 𝑣3 and 𝑣7 or 𝑣1 and 𝑣6 or 𝑣3 (or 

equivalently 𝑣7) and 𝑣1 (or equivalently 𝑣6). If 𝑣4 adjacent to 𝑣3 and 𝑣7 then 𝑣6 adjacent to 𝑣3 or 𝑣5. If 𝑣6 adjacent to 

𝑣3 then 𝑣5 adjacent to 𝑣1 and 𝑣7 and so 𝐺 ≅ 𝐺19. Hence {𝑥, 𝑦, 𝑧} is a 𝛾3
′ -set. 

 Suppose 𝑣6 adjacent to 𝑣5 then 𝑣1 adjacent to 𝑣7 or 𝑣5. If 𝑣1 adjacent to 𝑣7 then 𝑣3 adjacent to 𝑣5. If 𝑣1 

adjacent to 𝑣7 then 𝑣3 adjacent to 𝑣5. If 𝑣1 adjacent to 𝑣5 then 𝑣3 adjacent to 𝑣7 . If 𝑣4 adjacent to 𝑣1 and 𝑣6 then 

𝑣7 adjacent to 𝑣3 and 𝑣5 and so 𝑣3 adjacent to 𝑣5. If 𝑣4 adjacent to 𝑣1 and 𝑣3 then 𝑣7 adjacent to 𝑣3 and 𝑣5 and so 𝑣5 

adjacent to 𝑣6 and hence G≅ 𝐺20. Therefore {𝑥, 𝑦, 𝑧} is a 𝛾3
′ -set. 

 Suppose z adjacent to 𝑣1 or 𝑣3 and hence no other new graph exists. If y adjacent to 𝑣4 then z adjacent to 𝑣1 

or 𝑣6 or 𝑣7 or 𝑣2(or equivalently 𝑣3). If z adjacent to 𝑣1 then no other new graph exists. If z adjacent to 𝑣6 then 𝑣4 

adjacent to 𝑣1 or 𝑣2 (or equivalently 𝑣3). Suppose 𝑣4 adjacent to 𝑣1 then 𝑣2 adjacent to 𝑣7 and 𝑣5 and so 𝑣3 adjacent 

to 𝑣7 and 𝑣5. Hence G≅ 𝐺15. Therefore {𝑥, 𝑦, 𝑧} is a 𝛾3
′ -set. 

 If 𝑣4 adjacent to 𝑣2 then 𝑣1 adjacent to 𝑣7 or 𝑣5. Suppose 𝑣1 adjacent to 𝑣7 then 𝑣3 adjacent to 𝑣7 and 𝑣5 and 

so 𝑣2 adjacent to 𝑣5. If 𝑣1 adjacent to 𝑣5 then 𝑣3 adjacent to 𝑣7 and 𝑣5 and so 𝑣2 adjacent to 𝑣7. Hence G is isomorphic 

to 𝐺18. Therefore {𝑥, 𝑦, 𝑧} is a 𝛾3
′ -set. If 𝑣1 adjacent to y then no other graph exists. 

Subcase (6b): < 𝐻2 > =  𝑃2 𝑎𝑛𝑑 < 𝐻3 > =  𝑃̅2 

 Suppose z adjacent to one of the three vertices {𝑣1, 𝑣2, 𝑣3}. Now let z adjacent to 𝑣1 and so y adjacent to 𝑣1 

or non adjacent to 𝑣1. In these cases no other new graph exists. 

Subcase (6c): < 𝐻2 > = < 𝐻3 > =  𝑃2 

 Assume that 𝑣6𝑣7 and 𝑣4𝑣5 be the edge in < 𝐻2 > and assume that < 𝐷3 > respectively. If suppose 𝑣1 

adjacent to two vertices of {y, 𝑣6, 𝑣7} (or equivalently any two vertices of {z, 𝑣4, 𝑣5} or one vertex of {𝑣6, 𝑣7, 𝑧} and 

any one of {𝑣4, 𝑣5, 𝑧}. In these cases no such new graph exists. 

Conclusion:  In this paper we successfully described the complementary 3-domination number of some special 

graphs, bounds and proved a theorem in cubic graphs. 
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