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Abstract  

Hybrid models of chemotaxis combine agent-based models of cells with partial differential 

equation models of extracellular chemical signals. In this paper, travelling wave properties of 

hybrid models of bacterial chemotaxis are investigated. Bacteria are modelled using an agent-

based (individualbased) approach with internal dynamics describing signal transduction. In 

addition to the chemotactic behaviour of the bacteria, the individual-based model also 

includes cell proliferation and death. Cells consume the extracellular nutrient field 

(chemoattractant) which is modelled using a partial differential equation. Mesoscopic and 

macroscopic equations representing the behaviour of the hybrid model are derived and the 

existence of travelling wave solutions for these models is established. It is shown that cell 

proliferation is necessary for the existence of non-transient (stationary) travelling waves in 

hybrid models. Additionally, a numerical comparison between the wave speeds of the 

continuum models and the hybrid models shows good agreement in the case of weak 

chemotaxis and qualitative agreement for the strong chemotaxis case. In the case of slow cell 

adaptation, we detect oscillating behaviour of the wave, which cannot be explained by mean-

field approximations.  

Keywords hybrid model · travelling wave · bacterial chemotaxis 

1 Introduction  

The wavelike spread of cell populations 

plays a fundamental role in many 

biological processes, including 

development [24], wound healing [38] and 

tumour invasion [16]. Bacterial 

populations show similar phenomena, with 

the pioneering studies of Adler [1] 

confirming the capacity of an E. coli 

population to form travelling bands via 

chemotaxis to extracellular signals. 

Mathematically, the extent to which 

chemotaxis can generate and sustain 

stationary travelling bands has motivated a 

number of studies, including the Keller-

Segel model of Adler’s experiments which 

is written in the form of coupled partial 

differential equations (PDEs) [20]. This 

early model necessitated a biologically 

unrealistic singularity in the chemotactic 

sensitivity to generate stationary travelling 

waves: a requirement that allows bacteria 

behind the wave to acquire infinite speeds 

and to avoid “dropping-out”, an effect that 

leads to gradual dispersal of the band [40, 

15].  

This singularity requirement can be 

circumvented by incorporating other 

processes. The well known Fisher’s 

equation [14] demonstrates travelling 

waves in systems coupling diffusion with 

logistic growth terms [14]. Parabolic 

chemotaxis models with non-singular 

sensitivities but incorporating either 

logistic [22, 23, 30] or non-logistic [21, 

36] growth terms also admit travelling 

wave solutions. Other studies have shown 

that introduction of more complex nutrient 
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terms can give rise to travelling waves, 

even when growth is absent [34, 35]. An 

experimental system which also included 

two chemicals – a chemoattractant and a 

nutrient source – was presented in [6, 7], 

with stationary or transient travelling 

waves obtained according to t he 

formulation of the model [5, 40]. 

Travelling waves in chemotaxis models 

have also been recently studied in [26, 25]; 

we also note the articles [19] and [37] for a 

review and analysis of travelling waves in 

PDE-based models. A comparison between 

mesoscopic (hyperbolic) and macroscopic 

(parabolic) PDEs has been presented in 

[27]. 

 Relatively little exploration has been 

conducted into travelling wave formation 

for chemotactic models extending beyond 

PDE systems, in particular those 

introducing terms to account for the 

inherent noise of biological systems. One 

exception is the study of [9], in which a 

multiplicative noise term was introduced 

into the Keller-Segel model and the 

existence of travelling waves has been 

demonstrated within this setting. Hybrid 

models, in which an individualbased 

model for bacterial behaviour is coupled to 

a continuum description of extracellular 

signals, naturally introduce stochastic 

effects and will be the focus of the present 

paper. Such a hybrid model was 

formulated in [15] where it was shown that 

under finite cell speeds only transient 

travelling waves formed, even with 

singular chemotactic sensitivity. The 

individual-based model was formulated in 

terms of the velocity-jump model with 

internal dynamics [12, 13, 41] and, in this 

paper, we extend the model in [15] to 

incorporate proliferation and death of 

bacteria. We analyse this system 

numerically and analytically with respect 

to its travelling wave properties, 

employing the biologically inspired 

chemotactic sensitivity presented in [40] 

and a linear growth term. We show that 

stationary travelling waves can be 

observed even in the absence of 

chemotaxis, although wave speeds are 

substantially increased in its presence. The 

organisation of the paper is as follows: the 

full hybrid model is presented in Section 2 

along with illustrative simulation results, 

while the corresponding continuum 

equations are derived under certain 

assumptions in Section 3; in Section 4 

these continuum equations are analysed 

with respect to travelling wave properties; 

in Section 5 where a computational 

analysis and comparison of the models is 

presented; finally, we discuss our 

observations in Section 6. 

2 Hybrid model of bacterial chemotaxis 

 In this section we formulate the hybrid 

model of bacterial chemotaxis which will 

be investigated in this paper. The model is 

motivated by the behaviour of the 

bacterium E.coli and, in its most general 

form, includes cell movement, sensing and 

response to a chemical signal, 

consumption of the chemoattractant, cell 

proliferation and death. However, for 

analytical tractability, we will also explore 

simplified hybrid models which exclude 

some of these processes. Bacteria are 

modelled as agents with internal dynamics 

that represent the signal processing and 

response of each individual while the 

extracellular chemical is modelled using a 

PDE to describe its spatio-temporal 

concentration. The mathematical 

framework and simulation techniques are 

reviewed in [15]. We consider the model in 

an effectively one-dimensional domain 

representing a long but narrow tube, 

similar to the experimental set up 

considered in [1]. 
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The motion of E. coli bacteria is controlled 

through the coordinated rotation of flagella 

distributed over the cell surface [2]. 

Counterclockwise rotation generates a 

propulsive bundle that results in straight 

line motion of the bacterium – a so-called 

“run” [3]. Alternatively, clockwise rotation 

results in the outward flaying of flagella 

and a “tumble” – rotation with 

insignificant displacement. At the end of 

each tumble the bacterium chooses a new 

direction of movement, seemingly at 

random, and returns to the run phase. The 

lengths of the individual phases are 

independent from each other and 

distributed exponentially, yet they can be 

influenced by internal dynamics [2]. 

Internal dynamics of the E. coli bacteria 

possess two principal features [4]: a quick 

excitation phase followed by slower 

adaptation. Specifically, changes in the 

extracellular signal concentration lead to 

quick excitation of the internal 

metabolism, signified through altered 

chemical concentrations inside the cell. 

Following excitation the internal 

concentrations revert slowly to normal in 

an adaptation process, even when the 

external signal remains at the raised level. 

2.1 Velocity jump model with internal 

dynamics  

Run-and-tumble dynamics are aptly 

modelled as a velocity-jump process [31, 

12]. We denote by Na(t) the number of 

bacteria (agents) in the system at time t. 

The current state of the i-th individual, i = 

1, 2, . . . , Na(t), will be described using its 

position xi ∈ R, its velocity vi = ±s ∈ R 

and a set of internal state variables yi ∈ R 

m that represent the states of components 

in the intracellular signal transduction 

network. Here we concentrate on a cartoon 

version of the internal dynamics of 

bacteria written in terms of two internal 

variables [32, 12], i.e m = 2. Internal 

variables y (1) and y (2) are governed by 

the equations 

 

where te is the excitation time, ta is the 

adaptation time, te ≪ ta and S(x(t), t) is the 

concentration of chemoattractant at the 

position of the bacterium x(t) at time t. 

Furthermore, bacteria move with the 

velocity vi = ±s governed through a 

velocity jump process with a turning 

frequency λ = λ(y) that depends on the 

internal dynamics. In this paper, we will 

use the biologically motivated nonlinear 

turning kernel developed in [40]. Hence, 

the full model of one individual over (a 

small) time step ∆t can be written as: 

 

where λ0 and κ are positive constants. In 

addition to the behaviour of an individual 

bacterium we define a signaldependent 

proliferation function h(S) : R + 7→ R. We 

thereby interpret a positive value of h(S) as 

a proliferation rate, meaning that in the 

infinitesimal interval [t, t + ∆t) a bacterium 

at position x generates an exact copy of 

itself with probability h(S(x(t), t)) ∆t. 

Similarly, a negative value of h(S) means 

that the bacterium disappears (dies) with 

the probability −h(S(x(t), t)) ∆t. In this 

paper, we will use the following form for 

the proliferation rate h(S): 

 

where α and Sc are positive constants. 
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2.2 Evolution of the extracellular 

chemoattractant 

 For the extracellular signal S(x, t) we 

formulate a PDE that incorporates 

diffusion (with diffusion constant DS ≥ 0) 

and signal consumption by bacteria, the 

latter with signal dependent rate k(S) : R + 

→ R +. The equation for S therefore takes 

the form 

 

For the remainder of the paper we employ 

a linear form for the consumption function 

k(S): 

 

where β is a positive constant. 

2.3 Illustrative example  

The hybrid model framework presented in 

Sections 2.1 and 2.2 includes essential 

features of the more complicated hybrid 

chemotaxis models formulated in [10, 39]. 

In this section we numerically show that 

these processes can give rise to travelling 

waves. For the numerical simulation we 

employ techniques described in [15]. In 

particular, for the extracellular signal S(x, 

t), this means that the simulation is 

performed on the one-dimensional domain 

[0, L] with initial condition S(x, 0) = S∞ > 

0 and zero-flux boundary conditions. We 

consider M + 1 regularly spaced grid 

points rj = j ∆x, j = 0, . . . , M, where ∆x = 

L/M and the values of S(xi , t) are 

advanced by a small time step ∆t and a 

forward Euler update rule: 

 

In the above K : R → R + is the 

symmetric, normalised and non-negative 

kernel 

 

where the kernel width σ is a positive real 

number. Here, K(rj −xi) represents the 

influence a bacterium at position xi has on 

grid point j. The simulation of the 

individual bacterium is given in the full 

system (2.2)– (2.6) and complemented by 

the birth and death processes described in 

Section 2.1, where we use the same time 

step ∆t as in (2.10). To calculate the 

necessary off-grid values of extracellular 

signal, we linearly interpolate from the two 

nearest grid points. We further simplify the 

system (2.2)–(2.6) by exploiting the 

separate time scales for excitation and 

adaptation (i.e. te ≪ ta): specifically, we 

assume the update equation (2.5) for y (1) 

is in a quasi-equilibrium, which is identical 

to the assumption te = 0. The value for y 

(1) can therefore be calculated by 

 

Illustrative results are presented in Figure 

1. For this simulation, Na(0) = 104 

bacteria were initialised at positions xi(0), 

randomly generated as the absolute value 

of a Gaussian random variable with 

variance much smaller than the domain 

length L. The initial velocity (direction of 

movement) is generated uniformly at 

random and initial values of the 

extracellular signal and internal variables 

are taken as 

 

where S∞ = 1. We simulate the system 

until time Tfinal = 100 and plot both the 

distribution of bacteria and concentration 

of chemoattractant S in Figure 1(a). We 
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also estimate the wave speed as a function 

of time in Figure 1(b). We clearly see 

formation of a travelling band of bacteria, 

moving rightwards with average speed v = 

0.51 (plotted as the dashed line in Figure 

1(b)). 

Influence of the growth term  

To investigate the influence of the growth 

term on the existence of travelling waves, 

we simulate the full hybrid model (2.2)–

(2.6) and (2.10) including (α = 1) and 

excluding (α = 0) growth and death 

processes. We use identical parameters to 

those described above and present the 

results in Figure 2. In Figure 2(a) the 

position of the wave front (defined as the 

right-most position for which S(x) < 0.9) is 

compared. The full hybrid system (dashed 

line) generates a straight line, indicating a 

wave moving with constant speed. While 

the system excluding growth and death 

(solid line) moves with a similar initial 

speed, speed is gradually lost over time: 

the shape of n(x, t) at different times for 

this case is shown in Figure 2(b). We 

clearly see that no true travelling wave 

forms, with many agents being left far 

behind the wave front, leading to its 

slowing down. Thus, we can interpret 

growth and death terms in terms of a 

stabilising role on the wave profile: 

although not all agents can keep up with 

the wave, new agents are constantly 

created at the front and the agents that drop 

out eventually die, resulting in a travelling 

band of agents. 

3 From hybrid models to macroscopic 

PDEs  

In this section we derive macroscopic 

PDEs for the spatio-temporal density of 

bacteria n(x, t) at given position x ∈ R and 

time t ≥ 0. An implicit assumption of the 

derivation is spatial independence of 

bacteria, which allows formulation 

 

Fig. 1 Numerical solutions of the hybrid 

chemotaxis model (2.2)–(2.6) and (2.10) 

and PDE System A (3.1)–(3.3).  

(a) Wave form for the hybrid model after 

time t = 100. Solid line: estimated density 

of bacteria, dashed line: extracellular 

chemical signal S.  

(b) Measured speed of travelling wave 

(solid line). Dashed line denotes the 

average speed. (c) Wave form for PDE 

system A after time t = 100. Solid line: 

estimated density of bacteria, dashed line: 

extracellular chemical signal S.  

(d) Measured speed of travelling wave 

(solid line) for PDE System A. Note that 

the spike near t = 0 is a product of the 

wave speed calculation method. The 

dimensionless parameters are: α = β = s = 

1, Sc = 0.5, S∞ = 1, ∆t = 10−3 , ∆x = 0.25, 

L = 100, λ0 = 10, κ = 0.01, DS = 0, ta = 

0.1, σ = 0.5. 

of a continuous mesoscopic system. We 

then use results from [12] to obtain the 

macroscopic equations. To illustrate the 

successive formulation of models we 

construct two systems of PDEs – denoted 

System (A) and System (B) – to be 

referred to in the remainder of the paper. 

3.1 System (A)  

We define the mesoscopic densities p ±(x, 

y(2), t) for left and right-moving bacteria, 

depending on their position x ∈ R, their 
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internal variable y (2) ∈ R and t ≥ 0. If the 

signal profile S ≡ S(x, t) was uninfluenced 

by bacteria, densities 

 

80 Fig. 2 Numerical solutions of the 

hybrid chemotaxis model (2.2)–(2.6) and 

(2.10) without growth and death terms. (a) 

Comparison of position of wave front over 

time. Solid line: without growth/death (α = 

0), dashed line: with growth/death (α = 1). 

(b) Wave form at different times during 

simulation with α = 0. From left to right: t 

= 20, 40, 60, 80. Remaining parameters as 

in Figure2. 

p ± would satisfy the following system of 

hyperbolic P 

 

where λ is defined in (2.4) which, under 

(2.11), can be simplified to  

The signal dynamics is described by 

(2.8) which can be rewritten in terms 

of p 

 

3) We denote the system of equations 

(3.1)–(3.3) as System (A). The system 

(3.1) (for the one-particle distribution) 

can be derived by integrating the 

probability distribution function p(x1, 

v1, y1; x2, v2, y2; . . . | S(x, t)) for the 

many particle system, utilizing the fact 

that the movement of individuals are 

biased by the signal function S(x, t), 

but independent to each other. 

However, for the hybrid chemotaxis 

models described in Sections 2.1 and 

2.2, individual bacteria interact via the 

extracellular signal S which 

complicates the derivation of (3.1). In 

[11], a kinetic description has been 

derived for a model of interacting 

locusts, using a modified version of the 

BBGKY hierarchy from the classical 

kinetic theory of gases [8]. The system 

we consider here is much more 

complicated to analyse than the locust 

model studied in [11], due to the 

variable number of bacteria and 

internal variables. Thus kinetic 

description (3.1) can only be 

considered as an approximation to the 

one particle distributions of the 

interacting system. The capacity of the 

above mesoscopic system to generate 

travelling bands analogous to those 

observed in the hybrid model is 

illustrated in Figure 1(c)- (d). For 

details of the numerical method 

employed for this and other 

simulations of the continuous model, 

we refer to [40]. The qualitatively and 

quantitatively close correspondence in 

solutions under equivalent parameters 

and initial conditions corroborates the 

use of the above approximation. 

3.2 System (B) 

 We consider a macroscopic model in 

this section. Define the macroscopic 

densities 

 

and let them satisfy the following 

system 
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where the turning rates λ ± are given 

by 

 

Using (3.4), equation (3.3) can be 

written as 

 

We will denote (3.5) and (3.7) along 

with the definition of λ ± in (3.6) as 

System (B). According to the analysis 

in [12, 41], System (B) is 

quantitatively consistent with System 

(A) when the external signal S(x) 

changes slow enough such that cells 

are close to their fully adapted state, in 

which case cell movement is only 

moderately modified by the signal.  

In the rest of the paper, we assume 

diffusion of extracellular signal to 

occur on a much slower time scale than 

the active motion of the bacteria, hence 

DS = 0. The number of parameters of 

the above models can be reduced by 

setting s, S∞, α, β to one through 

rescaling. We show this in detail for 

System (B) as follows. Rescaling the 

variables S = SSˆ ∞, p ± = ˆp ±αS∞/β, t 

= t/ˆ (αS∞), x = ˆxs/(αS∞) and the 

parameters Sc = Sˆ cS∞, λ0 = λˆ 

0αS∞,taking (2.7) and substituting into 

System (B) we obtain, after dropping 

hats for notational simplicity, 

 

We are interested in travelling wave 

solutions that develop from a pointwise 

inoculation of cells into a domain 

containing uniformly distributed 

nutrient S. In this scenario, p ± 

(defined as in each system) should 

form travelling pulses while S forms a 

travelling front and relevant boundary 

conditions will be 

 

Note that S− is currently unknown; we 

determine its value in the travelling 

wave analysis of Section 4. Since p ± 

and S are physical quantities, we 

search for nonnegative travelling wave 

solutions, i.e. 

It is clear that a 

travelling wave of this form cannot 

exist for Sc ≥ 1 (extinction of bacteria) 

or for Sc ≤ 0 (infinite growth) and we 

will therefore only consider systems 

that satisfy Sc ∈ (0, 1). In the next 

section we analyse System (B) with 

respect to travelling wave solutions in 

order to obtain further insight. To do 

that, we use the rescaled system (3.8). 

4 Travelling wave analysis  

In this section we first apply the 

standard travelling wave ansatz to 

system (3.8) and derive a necessary 

condition for the existence of non-

negative travelling wave solutions. We 

then reduce the resulting ODE system 

to two components through a change 

of variables and utilizing an invariant 

manifold identified for the problem. 

Finally we use phase plane methods to 

analyse the existence and properties of 

travelling wave solutions. 

4.1 A necessary condition for the 

existence of travelling wave solutions  

Let us apply the travelling wave ansatz 

p ±(x, t) = p ±(ξ) = p ±(x − ct) and S(x, 

t) = S(ξ) = S(x − ct), where c is the 
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unknown wave speed [29]. System 

(3.8) becomes 

 

where the primes denote derivatives 

with respect to the travelling wave 

variable ξ. Note that any point on the 

S-axis is a steady state of the system 

(4.1) and that linear stability of such a 

steady state, (p +, p−, S) = (0, 0, S∗), is 

governed by the eigenvalues of the 

matrix A−1B, where 

 

The eigenvalues of A−1B are 

 

Where 

 

Given 2λ0 > (1 − Sc) it is easy to show 

that c ∗ ∈ [0, 1]. 

Theorem 1 A necessary condition for 

the existence of nonnegative travelling 

wave solutions of the system (3.8) is 

 

The above condition is reasonable, as 

we expect the run duration to occur on 

a much faster time scale than 

proliferation processes. 

4.2 Dimension reduction  

Let us now perform a change of 

variables by introducing the cell 

density n = p + + p − and the cell flux j 

= p + − p −. The travelling wave 

system (4.1) can then be written as 

 

where the boundary conditions for this 

system are 

 

From (4.8), we have Sn = cS′ and, 

hence, n = c(ln S) ′ . Substituting into 

(4.6) we obtain 

 

Integrating and applying the boundary 

conditions at ξ → +∞, an invariant 

manifold of the problem is given by 

 

With the definition f(S) ≡ S − 1 − Sc ln 

S, we obtain j = cn + cf(S), which can 

be used to eliminate j from the system 

(4.6)–(4.8). For c 6= 1 we can solve for 

n ′ and obtain the reduced system 

 

For c = 1, we obtain 

 

where we chose the solution to the 

quadratic equation for n that satisfies 

the boundary conditions n → 0 as ξ → 

±∞. It can be easily shown that f(S) = 0 

has two solutions in the region (0, 1] 

for all Sc ∈ (0, 1) as follows. Since f ′ 

(S) = 1 − Sc/S, f(S) is monotonically 

decreasing for S ∈ (0, Sc) and 

monotonically increasing for S ∈ (Sc, 

1]. With f(1) = 0, this implies f(Sc) < 0 

and, using f(S) → ∞ for S → 0, we 

obtain the existence and uniqueness of 

the second root of f(S) = 0: we call it 
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S1 ∈ (0, Sc). The existence of S1 and 

the negativity of f(S) for S ∈ (S1, 1), 

together with the condition 2λ0 > 

1−Sc, implies that n as given in (4.11) 

is positive everywhere, and that the 

given solution therefore satisfies the 

nonnegativity condition. 

4.3 Steady states and their linear 

stability  

Using the two roots of f(S) = 0 and 

under the condition (4.5), it is clear 

that there are two steady states of the 

system (4.9)-(4.10): (n, S) = (0, 1) and 

(n, S) = (0, S1). Linearising the system 

(4.9)-(4.10) about its steady states 

generates a system of the form 

 

where, for the general steady state S∗ ∈ 

{S1, 1}, we have 

 

With 

 

The eigenvalues of A are identical to 

µ2,3 as given in (4.2). The steady state 

(0, 1) is therefore a stable node for all c 

∈ (c ∗ , 1) with c ∗ as defined in (4.4). 

Similarly, it can be seen that the steady 

steady (0, S1) is a saddle point. The 

eigenvectors corresponding to the 

eigenvalues µ2,3 take the form 

 

In the n − S plane, the slopes of the 

eigenvectors are given by 

 

For the steady state (n, S) = (0, 1) this 

slope can be written in the form 

 

where we define ∆ = c 2λ 2 0 + (1 − Sc 

− 2λ0)(1 − Sc) similarly to (4.3). 

Theorem 2  

For the case χ = 0 (which is equivalent 

to κ = ∞), a unique travelling wave 

solution for the system (3.8) exists for 

all c ∈ (c ∗ , 1).  

Proof For any c ∈ (c ∗ , 1) we can 

define a region Ω (see Figure 3(a)), 

enclosed by the line n = k2(S − 1) 

(with k2 defined in (4.14)), the S-

nullcline n = 0 and the line S = S1. We 

will first show that Ω is an invariant 

region of the system (3.8). Since S is 

non-decreasing everywhere in Ω and n 

′ is non-negative for n = 0 and S ∈ [S1, 

1], we need only to show that the 

direction field on the segment Γ1 = 

{(n, S) : n = k2(S − 1), S ∈ [S1, 1)} 

points from the top half of the plane 

above this segment towards the 

bottom. Since S is strictly increasing 

we require 

 

Indeed, 

 

where we used (4.14) in the first step 

and the relation f(S)/(S − 1) ≤ 1 − Sc 

for all S ∈ [S1, 1]. Using the fact that 
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k2 and (S − Sc − 2λ0) are negative, we 

can use the definition of c ∗ and the 

fact that S ≤ 1 to obtain 

 

where we used S ≤ 1 throughout the 

derivation. We can therefore conclude 

that Ω is an invariant region of the 

system (3.8). Noting that at the steady 

state (n, S) = (0, S1) the unstable 

manifold has a positive slope (k1,2 = 

µ2,3c/S∗), i.e. it points into the region 

Ω, and using the fact that S is strictly 

increasing inside Ω for n > 0 we can 

conclude that, for each c ≥ c ∗ , there is 

a heteroclinic orbit starting from (0, 

S1) and finishing at (0, 1), 

corresponding to a travelling wave 

solution of the PDE system (3.8). 

4.4 Case II: Increasing chemotaxis (0 

< κ < ∞)  

Decreasing κ corresponds to an 

increase in the chemotactic sensitivity 

χ in the ODE system (4.9)–(4.10) and 

the slope of trajectories in the n − S 

plane is determined by 

 

It is noted that the above slope is larger 

than that for the non-chemotaxis case 

within the region of interest n > 0. Due 

to this increase the region Ω for the 

proof of Theorem 1 is no longer 

invariant for this system and a 

travelling wave solution to (3.8) does 

not necessarily exist for all c ∈ (c ∗ , 

1). The n-nullcline for the full ODE 

system (4.9)–(4.10) is given as the 

solution of the quadratic equation 

 

For a given wave speed c, the n-

nullcline can therefore be calculated as 

 

With 

 

We can see that ∆2(S) → −∞ as S → ∞ 

due to its leading order term −2λ0χ S3 

. Therefore, as S becomes large, no n-

nullcline exists and n ′ is positive 

everywhere. Additionally, ∆2(S) might 

have further roots and, in particular, 

∆2(S) might be negative in parts (or 

the whole) of region S ∈ [S1, 1]. This 

again means that n is strictly growing 

in these parts of the domain. We detect 

three different types of behaviours of 

trajectories starting close to (n, S) = (0, 

S1), plotted in Figure 4. In particular, 

we can see each of these behavioural 

types for different values of χ and 

despite different configurations of the 

nullclines. In the top two plots of 

Figure 4 we present the case of a 

diverging solution. Examining ODE 

(4.9), we observe that for large n, n 

grows quicker than O(n 2 ) and the 

divergence can be identified as a finite-

time blowup. In the second case, 

depicted in the two plots in the middle 

of Figure 4, the trajectory converges to 

the steady state (0, 1), but does so after 

entering the region S > 1 and thereafter 

the region n < 0. Note that the steady 

state (0, 1) is still a stable node in this 

case and that this overshoot is therefore 
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not a spiralling effect. Since these 

trajectories do not correspond to a non-

negative solution of the ODE system 

(4.9)–(4.10), they do not represent 

travelling wave solutions to the 

original problem. The last case, 

presented in the plots on the bottom of 

Figure 4, corresponds to an acceptable 

solution and is characterised by the 

convergence to (0, 1) without crossing 

the line S = 1. 

 

Fig. 4 Trajectories of the ODE system 

(4.9)–(4.10) that highlight the three 

different cases. Parameters in all plots 

are λ0 = 10, Sc = 0.5. Solid line: 

trajectory, dashed line: n-nullcline, 

dotted lines: n = 0 and S = 1. 

4.5 Case III: Infinite chemotactic 

sensitivity (κ = 0)  

As κ decreases further we observe that 

the minimal wave speed necessary to 

allow a non-negative travelling wave 

solution of (3.8) increases. In the limit 

κ → 0, the ODE system (4.9)–(4.10) 

no longer has convergent solutions. 

However, in this limit the linearisation 

assumption leading to these ODEs and 

the system (3.8) is no longer valid and 

we must consider the original turning 

kernel as defined in (3.2). In the limit κ 

→ 0 the turning rate in the hybrid 

model therefore becomes 

 

Hence, bacteria moving in a favourable 

direction do not turn, indicating that 

the wave speed achieved in this limit 

should evolve to c = s = 1. In [40] it 

was shown, for a slightly different 

turning kernel, that travelling waves 

can exist even without growth terms 

and that their wave speed satisfies c = 

s. 

5 Computational analysis of the 

wave speed  

In this section we computationally 

compare wave speeds from the hybrid 

model with those of the fully 

continuous models. Specifically, we 

investigate the regimes in which the 

latter provide an acceptable insight into 

the travelling wave behaviour of the 

hybrid model, and where they differ. 

We begin by investigating the non-

chemotaxis case, where the minimum 

wave speed c ∗ for the continuum 

systems was determined in (4.4). In 

Section 5.2 we show how the wave 

speed depends on the value of κ, and 

correspondingly the chemotactic 

sensitivity χ in the macroscopic model. 

A comparison with hybrid models 

without cell proliferation is given in 

Section 2.3. We conclude this section 

with a discussion into the effect and 

origin of oscillations observed under 

increasing the adaptation time ta. 

5.1 Case I: No chemotaxis (κ = ∞) 

In Section 4.4 we analysed the 

macroscopic PDEs in the absence of 
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chemotaxis. Travelling wave solutions 

were shown to exist for all wave 

speeds c ∈ (c ∗ , 1), with c ∗ 
determined by (4.4). In Figure 5(a), 

variation of (4.4) as a function of λ0 is 

illustrated; we note that wave speeds 

determined through simulation of the 

PDE systems correspond exactly (to 

accuracy of the numerical 

approximation) with the analytical 

wave speeds. We now numerically 

investigate the wave speed for the case 

χ = 0 in the hybrid model. For our 

simulations we consider the same 

parameters and methods as described 

in Section 2.3: specifically, we set the 

system parameters Sc = 0.5, s = 1 and 

DS = 0. For the computations we 

consider a time step ∆t = 10−3 , a 

spatial resolution of ∆x = 0.25 on a 

domain with length L = 100, and 

simulate the system until the value of S 

at x = 60 falls below 0.5. The profiles 

at this time, together with the time 

when S at x = 20 falls below 0.5, are 

used to estimate the wave speed. The 

measured wave speed for varying λ0 is 

illustrated in Figure 5(a), along with c 

∗ as predicted from the travelling wave 

analysis. While the relationship is 

similar in shape, we note that at all 

values of λ0 tested the measured wave 

speed lies below the analytical value c 

∗ . In the literature it has been observed 

 

Fig. 5 Measured wave speed in the 

hybrid model. Crosses: individual 

simulations, dots: ensemble averages. 

Parameters are as described in the text. 

(a) Wave speed in dependence of λ0 

for N0 = 10, 000. Dashed line: c ∗ 

given by (4.4). (b) Wave speed as a 

function of N0 with λ0 = 10. Dashed 

line: c ∗ computed by (4.4). 

that inaccuracies in numerical schemes 

can lead to an increase in wave speeds 

[33], therefore rendering the lower 

wave speed seen in Figure 5(a) as 

counter intuitive. Nevertheless, we can 

provide the following explanation for 

the distinct values in the continuum 

and hybrid models. For the zero-

chemotaxis case, wave generation and 

movement is solely determined by 

growth ahead and death behind the 

wave. In the continuum model an 

outermost “fractional bacteria 

population” can extend significantly 

beyond the wave front, since some 

proportion of the initial population 

never turns left, and hence far into the 

region where S is very close to its 

initial value of 1. Yet this fractional 

population still grows exponentially 

(∂p±/∂t ≈ (1−Sc)p ±), seeding the 

growth and expansion of the 

population. The finite/discrete nature 

of the hybrid model precludes any 

fractional bacterium: the forward “tail” 

is necessarily finite and growth will 

not occur beyond the outermost 

individual. For the above explanation 

to hold we would expect a dependence 

of the measured wave speed on the 

initial number of bacteria N0: 

continuous densities provide a closer 

approximation under larger numbers of 

bacteria and we would expect 

convergence in the wave speed to c ∗ . 

Simulations in Figure 5(b) demonstrate 

this property, corroborating our 

interpretation. 

5.2 Case II: Increasing chemotaxis (0 < 

κ < ∞) 
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 In the second set of numerical 

experiments we measure the 

dependency of the wave speed on the 

critical parameter κ, i.e. we determine 

the effect of increasing chemotaxis as κ 

decreases. We compare the results 

measured for the hybrid system with 

the continuous Systems (A) and (B). 

We use the same parameters as in 

Section 5.1 and results are shown in 

Figure 6. The results demonstrate the 

regimes where correspondence across 

the varying modelling levels occurs: 

while the hybrid model (dotted line) 

cor- 

 

Fig. 6 Comparison between wave 

speeds of the various models in 

dependence of κ. Dotted line: hybrid 

model, red solid line: mesoscopic 

System (A), dashed line: linearised 

System (B). Parameters are as 

described in the text. 

responds well with its closest 

continuous version (mesoscopic 

System (A), red solid line) over a wide 

range of κ, it only corresponds with 

System (B) (black dashed line) for 

larger κ, diverging as κ decreases. Note 

that the turning rate (3.6) used for 

System (B) becomes negative at small 

values of κ and we limit the range of κ 

studied accordingly. At larger κ all 

three models converge to a value close 

to c ∗ as κ grows: in this regime the 

main assumption proposed for the 

linearisation (|S(x)−y (2)| ≪ κ) holds 

and we obtain good quantitative 

agreement. While this assumption 

becomes less acceptable as we 

decrease κ, leading to the divergent 

behaviour described above, we note 

that all models show the same 

qualitative agreement: increasing 

chemotactic responses leads to an 

increase in the wave speed. Note that 

the results for System (B) can be 

identically replicated using the ODE 

system (4.9)–(4.10) and a search 

algorithm for the smallest value of c 

that admits a nonnegative solution to 

the system. These numerical 

experiments demonstrate that 

chemotaxis has a significant effect on 

the speed of movement and that the 

waves cannot solely be explained by 

growth and death terms. Rather, we 

interpret birth and death processes as 

stabilisers to what would otherwise be 

transient waves [15, 40]. This 

interpretation is in agreement with the 

results presented in Figure 2, as the 

initial wave speed for the system 

without growth seems to be similar to 

the wave speed of the system including 

growth and death terms. 

5.3 Oscillations in the wave speed  

An additional observation we made 

during the numerical experiments of 

the hybrid model is that for increasing 

values of the adaptation time ta, the 

wave speed starts to differ strongly 

from the mesoscopic System (A), an 

effect that we identified to be due to 

oscillations in the behaviour of the 

wave. In Figure 7(a) we present an 

example of strongly oscillating wave 

speeds (where the wave speed is 

measured as rate of change of the 

average position of bacteria). This 

example occurred for the parameters 
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Sc = 0.5, λ0 = 10, κ = 0.001 and ta = 4. 

We can also clearly see that the wave 

speed is correlated to the current 

number of agents in the system. In the 

literature similar effects of oscillating 

waves in stochastic models have been 

observed [28, 32]. In Figure 7(b), we 

present the form of the wave at 

different times throughout the 

simulation. It is clearly visible that the 

shape differs significantly at different 

times. One reason these oscillations 

occur when ta is very high is that a 

bacterium that happens to be in front of 

the wave experiences a very high value 

of S, whilst its internal dynamics only 

adapt very slowly. This, in 

combination with the low value of κ, 

leads to a bacterium that does not 

switch direction for a long time and 

will proliferate at a high rate. This 

implies that a spike of bacteria forms 

in front of the wave that moves faster 

than the rest of the wave. We can 

clearly see such a spike in the left-most 

waveform in Figure 7(b). Once the 

frontrunning bacterium and its copies 

have turned, the wave goes into a 

reordering phase (second and third 

waveform), until, eventually, a new 

spike emerges (4th waveform). In 

Figure 7(c) we plot the wave speed 

over time for a smaller value of ta. We 

can see that the oscillations are less 

severe and more frequent than in 

Figure 7(a), which is in agreement with 

the explanation above. As we decrease 

ta the frontrunning bacteria will adapt 

quicker to their surroundings and are 

thereby more likely to turn. We show 

the influence of changing N0 on the 

oscillating behaviour in Figure 7(d). 

The oscillations seem to occur with a 

similar frequency but more regular to 

those before, which can be explained 

by the increased likelihood of 

frontrunning bacteria with a higher 

number of agents and reduced noise in 

the system. 

6 Discussion 

 In this paper we presented a hybrid 

model of chemotaxis, incorporating a 

biologically realistic turning kernel 

introduced in [40]. We analysed the 

travelling wave behaviour of this 

hybrid system using mesoscopic and 

macroscopic equations, deriving an 

analytical value for the expected wave 

speed in the case of no chemotaxis. As 

chemotaxis increases we demonstrated 

(analytically and numerically) that the 

expected wave speed increases, 

indicating that the wave that forms is 

not solely driven by growth and death 

processes. In contrast to the transient 

waves observed for the hybrid model 

in the absence of growth and death 

terms [15], the (numerical) waves 

observed here in their presence are 

stable, indicating the stabilising effect 

of birth and death. The numerical 

analysis reveals that the macroscopic 

equations derived through linearisation 

of the turning kernel can qualitatively 

describe the change in wave speed as 

chemotaxis increases, but that there are 

significant quantitative differences 

 

Fig. 7 Oscillations in the wave speed 

of the hybrid model (2.2)–(2.6) and 
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(2.10). (a) Wave speed in comparison 

to current number of particles for N0 = 

10, 000, ta = 4. Solid line: wave speed, 

dashed line: number of particles, dotted 

lines: times of wave forms shown in 

panel (b). (b) Waveform at 4 distinct 

times marked in panel (a) from left to 

right. (c) As in (a) with N0 = 10, 000, 

ta = 2. (d) As in (a) with N0 = 50, 000, 

ta = 4. Other parameters are given in 

Section 5.3. 

between the two systems. Additionally, 

we observed oscillations in the wave 

movement, an effect that had been seen 

in similar systems in the literature [32] 

and that cannot be explained using 

mean-field approximations. To date, 

travelling waves in chemotaxis models 

have mainly been analysed from the 

perspective of macroscopic PDE 

models of chemotaxis [19, 18]. The 

existence of travelling waves for 

continuum models with growth terms 

is well established [36, 30, 22]. While 

hybrid models have been used to study 

pattern formation in bacterial 

chemotaxis [17, 39], these studies have 

not analysed the travelling wave 

patterns observed in bacterial cell 

populations. Recently, experimental 

studies using microfluidic techniques 

tracked cell trajectories within a 

traveling pulse, and revealed that 

persistence of direction in cell 

movement accounts for 30% of the 

macroscopic speed of the traveling 

pulse [35]. The hybrid model 

framework studied here provides a 

natural method for direct comparison 

of model predictions with experimental 

measurements of cell trajectory, and 

this is left as future work. 

References  

1. J. Adler. Chemotaxis in bacteria. 

Science, 153:708–716, 1966.  

2. H. Berg. How bacteria swim. 

Scientific American, 233:36–44, 1975.  

3. H. Berg and D. Brown. Chemotaxis 

in Esterichia coli analysed by three-

dimensional tracking. Nature, 

239:500–504, 1972.  

4. R. Bourret, K. Borkovich, and M. 

Simon. Signal transduction pathways 

involving protein phosphorylation in 

prokaryotes. Annual Review of 

Biochemistry, 60:401–441, 1991.  

5. M. Brenner, L. Levitov, and E. 

Budrene. Physical mechanisms for 

chemotactic pattern formation by 

bacteria. Biophysical Journal, 

74(4):1677–1693, 1998. 

 6. E. Budrene and H. Berg. Complex 

patterns formed by motile cells of 

Esterichia coli. Nature, 349:630–633, 

February 1991.  

7. E. Budrene and H. Berg. Dynamics 

of formation of symmetrical patterns 

by chemotactic bacteria. Nature, 

376:49–53, July 1995.  

8. C. Cercignani, R. Illner, and M. 

Pulvirenti. The Mathematical Theory 

of Dilute Gases. Applied Mathematical 

Sciences, 106, Springer-Verlag, 1994.  

9. P. Chavanis. A stochastic Keller-

Segel model of chemotaxis. 

Communications in nonlinear science 

and numerical simulations, 15:60–70, 

2010.  

10. R. Erban. From individual to 

collective behaviour in biological 

systems. PhD thesis, University of 

Minnesota, 2005.  

11. R. Erban and J. Haskovec. From 

individual to collective behaviour of 



Turkish Journal of Computer and Mathematics Education   Vol 11 No.03 (2020),2723- 2738 

 
 

2738 
 

 
 

Research Article  

coupled velocity jump processes: A 

locust example. Kinetic and Related 

Models, 5(4):817–842, 2012.  

12. R. Erban and H. Othmer. From 

individual to collective behaviour in 

bacterial chemotaxis. SIAM Journal on 

Applied Mathematics, 65(2):361–391, 

2004.  

13. R. Erban and H. Othmer. From 

signal transduction to spatial pattern 

formation in E. coli: A paradigm for 

multi-scale modeling in biology. 

Multiscale Modeling and Simulation, 

3(2):362–394, 2005.  

14. R. Fisher. The wave of advance of 

advantageous genes. Annals of 

Eugenics, 7:355–369, 1937.  

15. B. Franz and R. Erban. Hybrid 

modelling of individual movement and 

collective behaviour. In M. Lewis, P. 

Maini, and S. Petrovskii, editors, 

Dispersal, individual movement and 

spatial ecology: A mathematical 

perspective. Springer, 2013.  

16. A. Gerisch and K. Painter. 

Mathematical modelling of cell 

adhesion and its applications to 

developmental biology and cancer 

invasion. In A. Chauviere and L. 

Preziosi, editors, Cell Mechanics: 

From Single Scale-Based Models to 

Multiscale Modeling, Chapter 12, 

pages 319–350. CRC Press, 2010.  

17. Z. Guo, P. Sloot, and J. Tay. A 

hybrid agent-based approach for 

modeling microbiological systems. 

Journal of Theoretical Biology, 

255:163–175, 2008.  

18. T. Hillen and K. Painter. A user’s 

guide to pde models for chemotaxis. 

Journal of Mathematical Biology, 

58:183–217, 2009. 


