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_____________________________________________________________________________________________________ 
Abstract   

In this research work we study about the outline of graph structures algorithms required for the recognition of chemical graphs by a 

computer automatic encoding of organic chemical structures into the line formula notation. During the study we will first classify 

chemical graph then find a planar projection and fundamental cycles of a chemical graph with its characterization. Then we draw that 

for automatic construction code from the connection table for this we need some algorithms. Thus a graph structure language like 

GRAAL should prove useful for chemical coding systems. Further development along these lines should be helpful in coding knotted 

chemical structures. 

_____________________________________________________________________________________ 

1-INTRODUCTION 

In this study we outline the graph structures algorithms required for the recognition of chemical graphs by a computer 

automatic encoding of organic chemical structures into the line formula notation such as ALWIN (Algorithmic 

Wiswesser Notation) [1]. ALWIN is a new chemical coding system which retains all the salient features of the well-

known WIN [2]. The logical and information structure of ALWIN has been designed to algorithmic efficiently the 

encoding and decoding procedures. Infect the procedures for encoding into ALWIN is very strongly dependent on the 

availability of many new graph algorithms and parsing algorithms developed during recent years. Since the chemical 

graphs vary widely in type and complexity, a programming language for graph algorithms, such as GRAAL [3, 4, 5] 

night turn out to be efficient for encoding into ALWIN. 

The purpose here is to indicate the type of graph structure algorithms needed for automatic encoding of chemical graphs 

and also provide a good bibliography of the available algorithms. It is also expected that this report will stimulate 

interest in related areas such as Graph Grammars [6 – 9], and also the study of automata [10] for the solution of 

chemical graph problems [10 – 12]. 

In view of the enormous complexities involved in the coding of chemical graphs we will deal the graph structure 

algorithms qualitatively, omitting the additional precedence rules derived from chemistry [1] to obtain a unique notation. 

The actual algorithms and their practical implementation for chemical coding are available elsewhere [39, 40]. 

For convenience, important graph theoretic definitions are given in the Appendix. Other important definitions used in 

chemical coding are, however, included in the text. 

2-CLASSFICATION OF CHEMICAL GRAPHS 

It is well known that [1, 2] chemical graphs can be classified as..... 

A. Acyclic graphs 

B. Cyclic graphs 

Beside these two major classification chemists have subdivided these into further categories. 

The acyclic graphs are subdivided thus: 

A. Unbalanced structure (trees without branches). 

B. Branched structure (trees). 

The cycle graphs are subdivided thus: 

a. Monocycles: A system of rings which consist of single cycles which are connected through a cycle structures (as 

substituents). 

b. Fused rings systems: A system of rings in which two or more rings share a common node or edge is called a fused 

rings system; the common edge is called the fusion edge and common node is called the fusion edge the fusion 

lucent or node. 
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A multicycle point is defined as a node which is common to at least rings 

Example 

 

 

Multicyclic point 

 

The fused rings systems are further subdivided as follows: 

I. The bicycle fused system consisting of only two rings sharing one common edge. 

II. The polycyclic fused system consisting of more than two rings, every pair of rings sharing only one common edge, 

but having no multi-cyclic point. 

III. The perfuse ring system consisting of a minimum of three rings with at least one multicylic point. 

IV. The Spiro ring system in which a fused system has a Spiro atom – an atom connected to four other ring atoms. 

Accordingly, three different kinds of Spiro atoms can occur. 

Kind 1: Spiro atom shared by two rings: 

 

Kind 2 : Spiro atom shared by three rings: 

 

Kind 3 : Spiro atom shared by four rings: 

 

 

V. The poly-edge shared ring system in which at least a pair of rings shared two or more edges. There are three kinds 

of this system: 

Kind 1 : Bridged ring system in which two or more rings share more than a single edge. In such a case we define as the 

bridge (not in the graph theoretic sense) the shortest acyclic segment of the ring sharing more than one edge. 

Example                       1         2         3        6        7 

 

          5                                            8 

                                                         4 

In this case the ring 1 – 5 – 4 – 8 shares more than one edge with the ring 1 – 2 -3 – 4 – 5. The segment 1 – 8 is treated 

as the bridge. 

Kind 2: Connected ring of ring systems: 

A ring system which is connected back to itself through one or several other substituent’s ring systems. 
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Kind 3: Fused ring of ring systems: 

A ring system where may rings are fused together in such a way as to enclose completely another ring which shares two 

or more edges with at least one of the outer rings. 

3-AUTOMATIC PROCEDURES FOR CLASSIFICATION 

For classification and coding we need to  

i) Partition the graph into blocks. 

ii) Obtain a planar projection of each block to choose a set of chemically significant rings. 

iii) Differentiate the various categories of ring systems. 

3.1. Partitioning into blocks 

The problem of partitioning a graph into blocks in relatively easier than the other problems. 

We know that a graph is singly connected if the removal of any single node disconnects the graph; such a point is called 

a cut point [13-16]. A graph is doubly connected if it can be disconnected only by removing a minimum of two nodes in 

it. A doubly connected graph is known as a book. 

The chemical ring systems such as monocycles, bicycle, polycyclic and perfuse ring systems as well as Spiro fused 

systems of kind 2 and 3 are all blocks; however, the Spiro fused ring system of kind 1 is not a block, since it contains a 

cut-point. 

Among the available algorithms for detecting blocks [14-16], Paton’s algorithm [16] seems efficient. This algorithm 

uses the theorem that a graph G (nodes≥ 3) is a block if every two nodes of G lie on a common cycle of G. Accordingly 

this procedure consists in growing a rooted tree [17] and a set of chords. Then for each chord the corresponding 

fundamental circuit is formed. The edges of this circuit are labelled. Then a new circuit is found which shares at least 

one edge with an already labelled circuit; the edges of the new circuit are now given the same label. This procedure is 

iterated until no other ring is found to share an edge with an already labelled ring. 

If there are no more rings, then the given system is a single block. However, if there are still many rings with a different 

label, we continue as before until all the rings are labelled. Then there are as many blocks as the number of distinct 

labels.  

Detection and partitioning into blocks is a first step in chemical coding.  

3.2- Finding a planar projection and fundamental cycles 

This problem is easily explained with an example: 

Consider the chemical graph 

        7    2  

 3 

       6                                    4 

      5 

By the problem of finding a planner projection and fundamental cycles we mean that above graph is redrawn in a plane 

thus: 

        8       9  2 

         7                                             3  

 

1 

      8 

1 

      8 
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     6 5     4 

Note here that the graph is a redrawn to find the fundamental rings 1 – 2 – 3 – 4 – 5, 1 – 5 – 6 – 7 – 9, 7 – 8 – 9, 1 – 9 – 

8 – 4 – 3 – 2 and no two edges cross anywhere. 

 

The problem of finding a planar projection is one of the celebrated problems in graph theory [ 13 – 15, 18 – 29]. 

There is a well known criterion due to Kurotowski [22] which says that a graph is planar if and only if it does not 

contain as a sub-graph a homographic of one of the two Kuratowski graph, viz. the complete graph 𝐾5 and the complete 

bipartite graph 𝐾3,3. A homeomorph of a graph is one that can be obtained from it by inserting nodes of degree or 

valence 2 into its edges. This criterion does not provide a practical algorithm to determine planarity. 

Another interesting feature is that there always exists a realization of a planar graph in the plane such that each edge is a 

straight line segment [Fary [25], Wagner [ 26]]. An interesting algorithm for obtaining a straight-line representation of a 

planar, imbedded graph has been given by Davis [38]; however, no good algorithm exists still to project or imbed a 

planar graph. 

Yet another criterion for planarity is Maclane’s criterion which says that a planner graph is a graph whose edges are 

shared only by two circuits. This criterion can be used for developing a trial and error procedure for projecting a graph. 

There are other algorithms developed by Tuttle [27], Weinberg [15], Fisher and Wing [28], Nicholson [29], Dunn and 

Cahn [30]. It is not clear whether these algorithms can give a maximally planar projection of a non-planar graph.  

The problem of finding chemically significant rings has been extensively studied by Corey and Peterson [31], Gotlieb 

and Corneil [32], Paton [33], Weinblatt [34], Fugman, et. Al. [35]. These algorithms can tell what the chemically 

significant rings are; however, these are also still complex and demand a large computer memory and time. 

In any case, there are no automatic procedures which can help us redraw a graph on the plane so that no two edges 

intersect or to get a maximally planar projection.  

3.3- Characterization 

For the purpose of characterization we introduce the following concepts. Consider the fundamental rings in a planar 

projection of the chemical graph. From this graph G we construct another graph, called the weighted reduced graph R 

(G) as follows: 

a. Represent each fundamental ring by a node. 

b. Join each of these nodes by an edge if their corresponding rings; assign a weight equal to the number of edges 

shared; however, if only nodes are shared then assign a zero weight. 

Examples 1 

        R1  1 R2 

     1 1 

 

        R3           1      R4 

 

 

          1 

2.  R1   R2 

 1 1 

 

R1 R2 

R3 R4 

R1 R2 

R3 
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 R3 

 

 

 

3.  

 

 

From the nature of the reduced graph it is possible to identify the ring system using the characterization chart (Table I). 

No. Nature of the   Further comments  the system to which 

 Reduced graph      Which it belongs 

1 A single node    -   Monocycle 

2 A null graph    -   A system of k monocycles 

 With k nodes       connected to eachother 

3  An edge (unit weight)   -   Bicyclic ring system 

4 A tree (all edges of    -   Polyfused ring system. 

 of unit weight) 

5 A cyclic graph with  No ring atom of   Perifused ring 

 All edges of unit  degree 4   system 

 weight   A ring atom of   Spiro rings system II kind. 

     degree 4 shared by 3   Spiro ring system III kind. 

     fundamental rings  

6 A single ledge of    -   Spiro ring system 

 or more with zero      I kind. 

 weight and the rest  

 of unit weight 

7 At least one edge  The WRG is a tree  Polyedge shared type I 

 with weight two or      Polyedge shared type II. 
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 more. 

8  A graph with many   -   A set of independent ring 

 Components       systems (blocks) connected  

         With each other. 

Table I. CHARACTERIZATION CHART 

For differentiating ring of ring and bridged ring systems, we cannot arrive at a definite algorithm unless the chemical 

documentation lists agree upon the basic definitions of these types of systems. Therefore, we use the categorization as in 

Case 7, Table I. 

It is possible to categorize the ring system further as multi-angular, branched or un-branched respectively, according as 

the WRG is cyclic, branched or un-branched tree. These algorithms are straightforward and simple [39]. 

We call an un-branched WRG as a linear tree when we consider in addition to topology, the geometric property that the 

WRG is a straight line passing through all the nodes. This implies that in a totally fused system all the fusion edges are 

parallel; in a totally Spiro system all the Spiro-nodes life in a straight line; in a mixed Spiro-fused system the middle 

points of fusion edges and Spiro nodes lie along a straight line. 

The above definition implies that for the WRG to be linear it is necessary that  

a. A totally fused or Spiro linear system consists only of even node rings (excepting the end-rings). 

b. A mixed-Spiro-fused linear system (excepting the end-rings) consists of odd node rings between Spiro nodes and 

fusion edges/ or fusion edges and Spiro nodes/ and node rings between fusion edges or Spiro-nodes. 

c. If condition a its satisfied then if we count the nodes starting from one of the Spiro nodes (or the fusion nodes) of 

any particular sing, the next Spiro node (or the closest fusion node) is exactly the n+2/2th (
𝑛

2
th) node where n is the 

number of nodes in that ring. 

d. If condition b is satisfied, then if we count the nodes starting from one of the Spiro (fusion) nodes of any particular 

ring, the next fusion (Spiro) node is exactly the 
𝑛+1

2
 th node where n is the number of nodes in that ring. If we count 

the nodes starting from one of the Spiro (fusion) node of any particular ring to the next Spiro (fusion) node in the 

same ring, the same condition c holds. 

4-CODING OF THE GRAPHS 

The format of the ALWIN Code [1] depends on the chemical nature of the molecule. However, for convenience we will 

mention the graph theoretical algorithm used for coding acyclic and cyclic structures. 

4.1-Acyclic structures 

The coding for acyclic structures involves finding the longest path in the tree [1] such that the path contains a maximum 

number of branching nodes and uses a polish notation for representing the various side a branches. This in turn involves 

finding the centre or bi-centre of the tree for selecting the longest path. Although one could think of other coding 

scheme such as [36] for acyclic structures, in ALWIN we follow the logic of WLN [2] and polish notation of obtain a 

code [1]. Ina more recent approach we use the Morgan labelling scheme to reduce the complexity [39]. 

Example  

Consider 
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 The structural formula is first translated into the symbolic form [1] 

 

and the main chain (one longest path) is G X X Y 2 Y A (using precedence given in [1]). 

The ALWIN code is G X E A X G 1 A Y A 2 Y A A including the branches in the polish notation. 

4.2-Cyclic structures 

For obtaining ALWIN code to planar projection of the given chemical structure consisting of rings is treated as a 

tessellation or tile-filling problem. The order sequence of such tile-filling operations completely describes the fused 

cyclic structures. This coding system uses many of the concepts used by the well-known international notations – in 

particular it agrees with WLN except for the description of the topology. As already mentioned in [1] WLN [2] makes 

use of a Hamiltonian path passing through the chemical graph, whenever it exists, or a minimal spanning tree. For large 

chemical graphs such a description is not desirable, since the existence and the choice of a Hamiltonian path in these 

graphs appear to be Very difficult problems in graph theory. 

The construction of ALWIN code is best explained by means of an example. 

Consider the following chemical graph (Fig. 1a) 
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Choose any particular ring and label its nodes (locants) clockwise (Fig.1a). the choice of the first ring and the sense of 

labelling are governed by certain rules, if one wants to obtain an unique code; this aspect will be treated later. By 

convention we name each edge by its cyclically preceding node label. Then, we choose a ring which shares a common 

edge with the first ring and label its nodes (continuing, from the previous ring), clockwise, starting from that node which 

has not been labelled and which would permit us to give a consecutive clock-wise assignment of the locants (the sense 

of labelling is totally clockwise or anticlockwise so as to obtain an unique code). We reiterate this process until all the 

rings in the given structure are exhausted.  

The topology is now described by first specifying the ring numerals in the order in which the Locants have been assign 

to them, and then the common edges (when a ring shares only one common edge with any other ring) and connectivity – 

called knit (when two or more edges are shared by other rings); this can be implemented easily by drawing the reduced 

graph. 

The reduced graph is an edge or node relational graph in which the rings in the original ring system are thought of as the 

nodes and the sharing or common edges and nodes between the rings as connections between the corresponding set of 

node. In obtaining this reduced graph, priority is given to the edge relationship over the node relationship, when both 

these relationships coexist; this eliminates redundancy in the description.  

The reduced graph for Fig. 1a is shown in Fig. 1b. here the nodes 1, 2 and 3 correspond to the three rings in the order in 

which they were assigned locants; the arcs 1 – 2, 2 – 3 and 3 – 1 in the reduced graph correspond to the common edge 

AB, JB and CB respectively. The code, in general, consists of the following parts. 

The tessellation part. Here each common edge is represented by a single locant; this corresponds to the description of 

the edges of elementary trees – maximal sub-trees derived from the spanning tree such that the nodes specified in the 

sub-trees do not constitute cycles in the reduced graph. This gives the tessellation code. 

The knit part. After describing the tessellation corresponding to the elementary tree, the remaining rings in the structure 

can be described by citing ring segments which complete the new rings. It will be observed that in some cases a single 

connected segment suffices to complete a ring, while in other cases two or more independent segments are required to 

complete a new ring. The completion of a ring by a single, connected segment is denoted by citing the beginning and 

ending locants of the particular segment; these new locants which lie in between this pair of locants are easily labelled 

by continuing from the shared edges of the previous rings, using the new ring numeral. The completion of a ring by two 

or more segments is a little more involved. In this case, there is no simple algorithm to obtain the number of locants that 

are included in each one of these segments; hence, we cite the number of included locants that lie between the beginning 

and the ending locants of each segment. 

The process of completing a ring by a single segment is called a “knit” and that which involves more than a single 

segment is called a “multi-knit”. The “knit” is separated from the tessellation by a colon (:) and the multi-knit is 

separated from the knit by a semi-colon (;). 

Both the knit and multi-knit correspond to those edges of a spanning tree (of the reduced graph) which are not realized 

in tessellation; using this the given structure is encoded 
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In fig 1b one spanning tree is 1 – 2 – 3 – and the corresponding elementary tree is 1 – 2, since 3 is connected to 1. Thus, 

the edge 1 – 2 of the reduced graph corresponds to the tessellation in which the rings 1 and 2 share the common edge 

AB (this is denoted in the notation by A) while the edge 2 – 3 corresponds to the knit; this corresponds to the segment 

JKLMC of rig 3 (Fig. 1a) and hence is indicated by the pair JC. The code for this graph is 666A:JC 

 

 
 

In fig. 2b one spanning tree of the reduced graph of Fig. 2a is 1 – 2 – 3 – 4 – 5 – 6 – 7 – 8 – 9 – 10. The elementary tree 

is 1 – 2 – 3 – 4 – 5 – 6 – 7; this corresponds to a tessellation code A, I, M, Q, T, AB. The remaining edges of the 

spanning tree 7 – 8 – 9 – 10 correspond to knit or multi-knit as explained below. The edges 7 – 8 and 9 – 9 correspond 

to the two ring segments (AF-AH-AI-E) and (D-AG) which close the ring 8 in Fig. 2a. this gives the multi-knit part of 

the code AF2E, D, AG. The edge 9 – 10 however, stands for the single connected segment (C-V) which closes rings 9 

and 10 simultaneously in the original graph. This gives the knit part (C-V). Thus, the code is 666666666A, I, M, Q, AB; 

AF2E, D, AG: C,V 

Since the algorithm we use is sequential in nature, it is a possible that tessellation, knit and multi-knit occur many times 

in any order. This will be seen from the repeated occurrence of “:” and “;” in the appropriate places which indicate that 

the succeeding set of symbols correspond to the knit or multiunit respectively. 

Also, note that although corresponding to every tessellation there is an elementary tree, the converse need not be true, 

since it is possible that some of the other edges in the reduced graph might have been realized by knit or multi-knit 

during the intermediate steps in the sequential algorithm and would only permit us to knit or multi-knit rather than 

tessellate. Thus, during the intermediate steps it is necessary to check which of the edges in the reduced graph have 

already been realized. 

During the reverse process of decoding the entire code is fully read and tessellation, knit or multi-knit are performed in 

the required order. 

It is clear that for automatic construction of the code from the connection table we need the following algorithms: 

i. Finding blocks. 

ii. Finding planar projection and fundamental rings. 

iii. Formation of reduced graph. 

iv. Finding spanning tree. 

v. Finding longest path in a tree. 
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vi. Formation of elementary tree. 

vii. Formation the tessellation – knit code. 

Thus a graph structure language like GRAAL should prove useful for chemical coding systems. Further development 

along these lines should be helpful in coding knotted chemical structures such as globular proteins [37]. 

For those interested, references [39] to [42] will be very useful. 

APPENDIX 

The following are some of the important terms used from graph theory: 

Nodes or vertices : Points of connections (atoms) 

Edges or aces : Line segment connecting two nodes- (bonds). 

Graph : A collection of nodes connected through arcs. 

Chemical graph : A structural diagram or a molecule represented as an abstract graph.  

Degree of a node :The total number of arcs connected to a node. 

Tree : A connected graph having at least two nodes, that has no circuits; there is a unique are connecting any pair of 

nodes. 

Spanning tree : A tree which spans all the nodes of a given graph. 

Elementary path : A path which visits each of the nodes contained in it only once-a tree in which there are no branches. 

Minimal spanning tree: Any tree can be though of as the union of a set of spanning tree is a spanning tree composed of 

the least number of elementary paths. 

Hamiltonian path: An elementary path which passes through all the nodes of the given graph.  

Reduced graph: The reduced graph is an edge or node relational graph in which the rings in the original chemical graph 

(consisting of only rings) are represented as nodes and the sharing edges or nodes between them as edges in the reduced 

graph.  

Elementary tree: A maximal sub-tree derived from a spanning tree of the reduced graph, such that the nodes specified in 

this sub-tree, do not constitute a cycle in the reduced graph. 

Cut point: A node, the removal of which increases the number of connected components in the original graph. 

Singly connected graph: A graph in which the removal of any single node disconnects the graph. 

Doubly connected: A graph in which the removal of any two nodes disconnects the graph. 

Block: A doubly connected graph or a graph with no cut point. 

Planar graph: A graph which can be embedded in a two-dimensional plane with no two edges intersecting except at 

nodes.  

Plane graph: A planar graph embedded in the plane. 

Non-planar graph: A graph which cannot be embedded in the plane. 

Maximal planar graph: A group in which the addition of an edge between any two non-adjacent vertices makes it non-

planar. 
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