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ABSTRACT 
The convergence of Electric Vehicles (EVs) and the Internet of Things (IoT) has emerged as a transformative force in the 

development of smart cities. This paper explores the integration of EVs and IoT technologies, examining their synergies and 

the potential impact on urban sustainability, transportation efficiency, and overall city management. In the context of smart 

cities, EVs play a pivotal role in reducing carbon emissions and enhancing energy efficiency. The adoption of IoT in conjunction 

with EVs introduces a dynamic layer of connectivity, enabling real-time data exchange and smart decision-making. This paper 

delves into the various facets of this integration, emphasizing the benefits and challenges associated with the fusion of these 

two technologies. 
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1.INTRODUCTION 

 
The ubiquity of electric vehicles (EVs) in future smart cities demands efficient and intelligent charge scheduling techniques. 

Smart grids, on the other hand, are equipped with sensors and meters that significantly assist in the supervision and control of 

the charge scheduling process. Thus, integrating both EVs and smart grids in a larger IoT entity can facilitate the vast deployment 

of EVs towards a green and intelligent transportation era. Conventional motor vehicles mostly depend on the energy of fossil 

fuels. At the present time, fossil fuels are considered as the worlds’ primary energy resources. All technological advancements 

in the fields of agriculture, transportation, industry, etc., depend heavily on fossil fuels. Global transportation is one of the major 

sources of fossil fuel consumption such as gasoline, petrol, diesel, etc. Moreover, fossil fuels are considered as non-renewable 

energy resources which may eventually run out in the near future. Therefore, it is necessary to take serious steps to reserve fossil 

fuel resources for a stable energy future. Due to the aforementioned reasons, people are now moving towards the diversification 

of energy resources, particularly for daily transportation needs. According to the US Climate Action Report in 2010 [29], 

approximately 28% of the total greenhouse gas (GHG) emissions in the USA comes from the transportation sector that includes 

cars, buses, motorcycles, aircrafts, ships, trains, etc. Burning fossil fuels is the largest source of GHG due to the emission of 

carbon dioxide, CO2. Moreover, it negatively affects global warming that is impacting the entire ecosystem on the planet. For 

instance, there has been a phenomenal increase in the observed temperature during the second half of the twentieth century, 

solely because of the GHG emissions. Furthermore, carbon monoxide, nitrogen oxide, and hydrocarbons are released when fuel 

is burned by the internal combustion engine (ICE) inside vehicles and emitted into the atmosphere through the vehicle’s tailpipe. 

In addition to the detrimental impact on health, motor vehicle pollution also contributes to the formation of acid rains. Figure 1 

depicts the GHG emission in Delhi, India, and shows that the transportation sector accounts for 62% of GHG emissions. 

 

 
Fig. 1 Greenhouse gas emissions in Delhi, India 
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One way to significantly reduce the pollution incurred by motor vehicles is the usage of green EVs instead of conventional 

ICE vehicles. On the other hand, electricity is a clean form of energy that can be easily and effectively transformed from one 

energy form to another. Nowadays, most researchers focus their intensions and objectives towards the vehicles driven by electric 

motors instead of ICEs. An EV is basically driven by electric energy that is stored in a rechargeable battery (or series of batteries). 

Currently, EVs are gaining considerable popularity in many developed countries. However, EVs are still used in small scale due 

to the challenges related to charging efficiency and cost. These challenges can be considerably resolved by the careful scheduling 

of EV charging and placing charging stations along the service areas. The advantages of using EVs can be summarized as 

follows: 

• CLEAN ENVIRONMENT: EVs are environmentally friendly and operate without emitting GHGs that impact the 

health of humans and other living organisms. 

• ECONOMIC PERFORMANCE: EVs, which use electricity for propulsion instead of fossil fuels, are considered as 

more economical since the price of electricity is less than that of fossil fuels. 

• QUIET VEHICLES: EVs produce less noise and help reduce the noise pollution. 

 

There are many pros and cons to be considered about EVs. For instance, EVs have faster acceleration but less capability for long 

distances. Moreover, they produce no exhaust but, however, require long charging times. Moreover, EVs can offer more time 

flexibility in charging and discharging by introducing the concept of vehicle-to- Grid (V2G). V2G is defined as the capability of 

returning stored electric energy to the grid from the vehicle’s battery. In other words, an EV acts as both a controllable load and 

distributed storage device. By connecting unused EVs to the electric grid, the batteries of these EVs can provide energy during 

peak load times, and thus increase the reliability of the grid [57]. 

 

2.EV CHARGE SCHEDULING AND CHARGING TECHNIQUES 
 

Charge scheduling (charging and discharging strategies) is essential to avoid grid congestion. Efficient scheduling ensures proper 

operation of the distribution system. The goal of scheduling is to allocate energy from available resources to where the energy 

is needed while maintaining the optimal operation of the system without overloading or congesting the main grid [28]. 

Therefore, scheduling in smart distribution systems helps minimize the operational costs by reducing the electricity bills. 

Furthermore, smart scheduling plays a significant role in establishing the intelligent transportation system (ITS), where both 

communication and computing meet in vehicles and charge stations to maintain efficient and reliable performance regarding 

energy and cost [19]. The central cloud in the Internet of Vehicles (IoV) paradigm will have a holistic view about energy 

availability and charging demands to optimize the charging process in stations and vehicles. 

Different types of EVs are available such as the Plug-in EV (PEV), Plug-in Hybrid EV (PHEV), Hybrid EV (HEV), Sensor 

Vehicle (SV), Battery EV (BEV), and Plug-in Electric Train (PET). PHVs and PHEVs are EVs with rechargeable batteries that 

provide power to operate the vehicle. These batteries can be fully recharged by connecting to an external power supply. 

However, PHEVs have both ICE and electric motors for propulsion. 

The research area of EVs has been extensively studied recently. In [10], a scheduling scheme is presented to decrease the peak 

electricity demand and reduce the electricity bill using SVs and PHEVs. In [11–15], the authors developed tech- niques for 

minimizing the peak hour electricity demand by allowing communication between PEVs and the electric grid. The authors in [16, 

17] considered that existing power infrastructure will be affected by the increase in the number of the EVs. In [68], the authors 

introduced a method for achieving maximum fuel economy and minimizing the environmental pollution using HEVs. 

Charging and discharging techniques can be classified as vehicle-to-grid (V2G), grid-to-vehicle (G2V), vehicle-to-vehicle 

(V2V), vehicle-to-home (V2H), and home-to-vehicle (H2V). V2G describes a system in which plug-in EVs such as BEVs 

and PHEVs communicate with the electric grid to exchange services such as buying or selling electricity from/to the grid 

with variable charging rates. Research in this field of study involves several categories of objective functions regarding charging 

and discharging. The major categories include maximizing profit and generating revenue, minimizing cost and power loss, 

charging station placement, scheduling of EV charging, minimizing pollution, peak clipping and valley filling, and V2G power 

flow. In [17, 18, 19–24], the authors proposed V2G for discharging EVs through the main grid. Using this technique, customers 

can generate revenue by selling power to the grid, and help provide power duringpeak hours. In [25], a system architecture 

is designed for efficient control of load balancing in EVs at charging stations using V2G technology. In [26], a method for the 

optimal placement of charging stations in smart cities using V2V is proposed. Furthermore, combining wind power generation 

with V2G technology helps reduce the intermittency of wind power and lead to more sustainable development [24]. The EVs 

in a parking garage can be utilized as a dynamic energy storage facility to compensate for the variability of renewable energy 

resources [27]. 

Integrating the massive number of vehicles into the power grid might incur other issues and challenges. A stochastic model 

based on queuing theory for PEV and PHEV charging demands is studied in [28]. This study highlighted the impact of the 

large-scale integration of EVs on the power grid. An integrated rapid charging strategy that considers both traffic conditions and 

status of the power grid is introduced in [29]. However, rapid charging could degrade the power system performance especially 

during peak hours. 

Minimizing the operational cost of EV charging has been considered by several researchers using different approaches such as 
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scheduling [27] and shifting the peak load to valley areas where the real-time pricing is low [30]. Moreover, selling electricity 

to the power grid using V2G can bring profit to vehicle owners. However, this requires efficient energy management in regard with 

available renewable energy resources [20], operational costs and energy losses [22], and parking lot allocation [21]. In [20, 22], 

load management approaches are presented using peak clipping (i.e., avoiding EV charging during peak hours) and valley filling 

(i.e., incentives on charging during off-peak hours). In this manner, customers can generate revenue by selling power to the 

grid through discharging their EVs and using renewable energy during peak hours. Similarly, during off-peak hours customers 

get incentives for charging EVs within a prescribed time limit. 

Scheduling algorithms have been proposed to minimize costs and peak electricity demands by considering the factors of fuel 

pricing, electricity demand, and vehicle characteristics [30]. In addition, the accurate placement of charging stations plays a 

significant role in improving the performance of EV charging by serving more EVs in less amount of time [23–25]. 

 

3.RENEWABLE ENERGY FOR EV CHARGING 
 

The most common renewable energy resources are the wind and solar energy. However, other energy resources such as the 

motion of water, the carbohydrates in plants, and the warmth of the earth can also be exploited to satisfy the energy demands 

in a sustainable manner. Future EVs need to be fast in both speed and charging time. Current technologies allow EVs to be 

recharged within a couple of hours. Although this time seems to be short for an EV, it is still very long compared to traditional 

vehicles. A fast-charging mechanism can be envisioned as follows: when a car comes to recharge, a robotic system removes 

the discharged battery from the car and places it on a conveyer belt. This belt takes the battery to an underground battery 

recharging unit and replaces it with a fully charged battery. The whole process is done in a couple of minutes which seems very 

promising. 

Scheduling can be achieved either in a centralized or decentralized manner. The centralized model for EV scheduling is effective 

in reducing the total cost and peak- to-average ratio of load. A decentralized system is the one in which the entry of peers is not 

regulated, i.e., any peer can enter or leave the system at any time. However, in a decentralized system, there is no centralized 

authority that makes decisions on behalf of all parties. Instead, each party, also called a peer, makes local and autonomous 

decisions towards its individual benefits which may possibly conflict with other peers. Moreover, peers can directly interact 

with each other and share information or provide services. 

 

 

3.1SMART DISTRIBUTION SYSTEMS 

 
In real life, a number of constraints are involved in the charging of EVs. Some of these constraints are listed below: 

• Maximum and minimum output power limits 

• Grid capacity 

• Charging limit in batteries 

• State-of-charge (SOC) of the battery and the charging rate 

• Intermittent supply of renewable energy resources 

 

To cope with the aforementioned constraints, developing smart scheduling schemes is essential to dynamically allocate power 

for EVs taking into account the charging duration, battery limit, grid conditions, and costs. Moreover, integrating these 

constraints in the IoT paradigm will make the entire charging process more efficient and reliable. In this section, the problem 

of EV scheduling in smart distribution systems is presented. 

 

 

3.2SMART EV SCHEDULING: A CASE STUDY 
 

The goal of using smart distribution systems is to optimize the scheduling of EV charging. There is different cost associated 

with different charging levels. For instance, the cost of slow charging is very low but, however, takes more time than other 

charging levels. Whereas the cost of very fast charging is higher than that of other charging levels but, however, requires 

much less time. The difference in charging times is due to the amount of charging power, i.e., the more the charging power, the 

less the time required to charge the vehicle. The system model for EV scheduling is shown in Fig. 2.  
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Figure. 2 Electric vehicles scheduling system model 

Different charging levels depending on the desired charging time are listed below: 

• Level 1 (L-1) charging is the slow charging and the vehicle battery is charged by applying 120VAC/16A for a 1.92-

kW charging power using the on-board battery charger. The charging time required for full capacity is about 10 h [76]. 

EV charging that takes place at homes can be considered as level 1 charging, where the charging process is completed 

during the night. 

• Level 2 (L-2) charging is called the standard charging. The vehicle battery is charged by applying 208V-240VAC, 

12A-80A for a 2.5–19.2-kW charging power using the on-board battery charger. In L-2 charging, the time required to 

fully charge an empty battery is 6–8 h. The best implementation of L-2 charging is at places where the user stays for a 

long time, e.g., at work. 

• Level 3 (L-3) is DC fast charging, where charging is done by applying up to 200A for a 75-kW charging power using off-

board chargers. The time required for fast charging is about 30 min, whereas the charging price is high [76]. 

• Level 4 (L-4) is DC very fast charging, where charging is done using up to 400A for a 240-kW charging power using 

off-board chargers. The very fast charging is required at places where the user cannot wait for a long time, e.g., at 

public charging stations. The time required for charging is about 15 min with very high pricing [76]. 

 

The time horizon T is divided into discrete time slots (15-min time slot), i.e., the time required for charging an EV with very 

fast charging is 15 min (one time slot) and the time required for the fast charging is 30 min (two time slots). Similarly, the time 

required to charge an EV using average charging is 45 min (three time slots) and the time required for slow charging is 60 min 

(four time slots). We always ensure that the number of time slots is greater than or equal to the number of EVs, otherwise the 

solution will not be feasible. The table provides an overview of the notations used in the problem formulation. 

The EV scheduling problem which is a binary integer linear programming problem aims at maximizing the total profit through 

the scheduling of slow, average,  

Notation overview 

 

Symbol Description 

T Total time 

Nv Number of electric vehicles 

cs Cost of slow charging 

ca Cost of average charging 

cf Cost of fast charging 

cvf Cost of very fast charging 

t s Time for slow charging 

ta Time for average charging 

tf Time for fast charging 

t vf Time for very fast charging 

wi, xi , yi , zi Decision variable wi, xi , yi , zi ∈ {0,1}, ∀ i ∈ {1,2,3,. Nv } 

L − 1 Level 1 Charging power 1.92 kW 

L − 2 Level 2 Charging power 2.5–19.2 kW 

L − 3 Level 3 Charging power 75 kW 

L − 4 Level 4 Charging power 240 kW 

 

 

fast, and very fast charging levels. This problem is quite similar to a knapsack problem and is an NP-hard (non-deterministic 

polynomial time hard). The binary integer variables wi,xi,yi,zi      {0,1},      i      {1, 2, 3, ...., Nv} are considered as the decision 
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variables for the slow, average, fast, and very fast charging levels, respectively. For instance, if wi is “1,” then the EV is 

under slow charging, and if zi is “1,” then the vehicle is charged using the very fast charging level, etc. The optimization 

problem is formulated as: 

 

min 

wi ,xi ,yi ,zi 

 

Subject to: 

Nv 

wics + xica + yicf + zicvf 

i=1 

C1 : wi + xi + yi + zi  = 1, ∀i ∈ {1, 2, 3,  , Nv} 

Nv 

 (1) C2 : 

wi t s + xi t a + yi tf  + zi t vf  ≤ T 

i=1 

C3 : wi, xi, yi, zi ∈ {0, 1}, 

 

where cs, ca, cf , and cvf represent the cost of slow, average, fast, and very fast charging, respectively. Nv denotes the total 

number of EVs available for charging. t s , t a , tf , and t vf  denote the time required for slow, average, fast, and very fast 

charging, respectively. It means that the service provider must ensure that all the EVs and batteries are charged before that time 

limit. The objective is to maximize the total profit as shown in (4.1) by optimally minimizing the cost of charging while 

 
 

Fig. 3 Slot occupancy versus maximum time slot for different charging systems 

 

 

satisfying all customers. The constraint C1 shows that only one charging level can take place. C2 ensures that the total charging 

time should be less than or equal to the total time T . C3 indicates that variables representing the charging levels can be either 0 

or 1. Assume that we have 10 EVs to be charged. The rates for different charging levels are as follows: 

• For slow charging, 4 time slots costs 1 $ 

• For average charging, 3 time slots costs 3 $ 

• For fast charging, 2 time slots costs 4 $ 

• For very fast charging, 1 time slot costs 5 $ 

 

Solving the optimization problem yields the optimal scheduling of slow, average, fast, and very fast charging for EVs at different 

time slots as shown in Fig. 3. It is noticed that slot occupancy is high in the case when the maximum number of available slots 

is large. On the other hand, slot occupancy is high when the maximum number of available slots is small. This is because slow 

charging needs more slots to complete charging. The result shows the optimal number of slot occupancy for different charging 

types for the given number of maximum available slots. 

 

4.CONCLUSION 
 

The world’s fossil fuel supply is diminishing rapidly, and the transportation sector is one of the major consumers. Further, to 

make our cities green and pollution-free, EVs must dominate the transportation sector in the future, and to successfully incor- 

: 
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porate EVs into the intelligent transportation and IoT systems, optimal scheduling paradigms need to be developed to ensure 

optimal charging performance with lower prices. This paper presented a scheduling approach to maximize total profit. 
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