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ABSTRACT

A  Differential-Algebraic  Equations  (DAE)  system  is  a  system  of  equations  that  either  contains  differential

equations  and  algebraic  equations,  or  is  equivalent  to  such  a  system.  In  mathematics  these  are  examples  of

differential algebraic varieties and correspond to ideals in differential polynomial rings. It is used to control the

method to simulate the system, while satisfying the algebraic constraints which is formulated. Because of the large

amount of computation and communication associated with large scale matrix inversion problems in the existing

centralized approaches, this new distributed method is much more efficient. Therefore, by using this novel method

for distributed simulation of Differential Algebraic Equation systems is developed based on purely decentralized

sliding mode is controlled for applying simulation of a multiple-  pendulum system. Hence, this method performs

better results interms of performance and stability.
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INTRODUCTION

Various applications involve mixed systems of Differential and Algebraic Equations (DAE's). For instance, Gear's

basic article was stimulated by problems from network analysis and continuous system simulation. A different

example occurs in the mathematical  modeling of electrophoretic separation processes and further DAE's are found

in connection with certain problems in nonlinear mechanics. nonlinear  mechanics [1]. In many cases, DAE's can

be solved efficiently by means of standard numerical methods for Ordinary Differential Equations (ODE's). But

DAE's also have properties which may cause such ODE-solvers to run into difficulties or failures. Some interesting

results are presented about the causes o f such difficulties in the case of a class of linear DAE's.

The techniques used in these studies are algebraic in nature and do not provide complete information about the

existence and uniqueness of  solutions [2].

Differential Algebraic Equation (DAE) systems provide a more general description of dynamical systems than

Ordinary Differential Equations (ODEs).  However,  DAE systems present a number of difficulties in simulation

and  control [3]. The main problem is that most methods require an explicit state variable model. One method to

address this problem is to reformulate the DAE system into an equivalent nonlinear control problem, in which the

algebraic constraints are satisfied by sliding manifolds. This approach results in a state space approximation to the

DAE [4]. A robust sliding mode controller can be designed to achieve a reasonable approximation error. However,

when the order of the system is very large, it is computationally too expensive to control the system on a single

computer. The  sliding  mode  simulation  method  is  inherently  centralized  due  to  the  input  decoupling  Jacobian

matrix which must be inverted at each time step. This can cause significant problems since the matrix inversion

problem is difficult to divide onto multiple processors. In this paper, the problem mentioned above is investigated,

and a method based on decentralized sliding mode is proposed to apply to the state space approximation of the

DAE. The system is decoupled into many subsystems, and a separate sliding mode controller is designed for each

subsystem  on  a  separate  computer.  Since  these  subsystems  have  some  common  states,  linear  controllers  are

designed to make the errors between the common states in different subsystems zero. Because the internal dynamic

of the system is stable, the decentralized sliding controller makes the whole system stable [5].

This  method  makes  the  distributed  control  possible,  while  eliminating  the  interconnection  between  the

decentralized computers, which in turn substantially decreases the information flow rate. Application to simulation

of a double pendulum system confirms the validity of the proposed method [6]. Sliding-Mode Control (SMC) is

one  of  the  robust  and  nonlinear  control  methods.  Systematic  design  procedure  of  the  method  provides  a
straightforward  solution  for  the  control  input.  The  method  has  several  advantages  such  as  robustness  against

matched external disturbances and unpredictable parameter variations.
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Xuehui Chen, Liang Wei, Jizhe Sui, Xiaoliang Zhang and Liancun Zheng, et.al [7] generalized differential 

transform method is implemented for solving several linear fractional partial differential equations arising in fluid 

mechanics. This method is based on the two-dimensional Differential Transform Method (DTM) and generalized 

Taylor's formula. Numerical illustrations of the time-fractional diffusion equation and the time-fractional wave 

equation are investigated to demonstrate the effectiveness of this method. Results obtained by using the scheme 

presented here agree well with the analytical solutions and the numerical results presented elsewhere. The results 

reveal the method is feasible and convenient for handling approximate solutions of linear or nonlinear fractional 

partial differential equations. 

 

N. Kumaresan, K. Ratnavelu and B. R. Wong, et.al [8] optimal control for Fuzzy linear Partial Differential 

Algebraic Equations (FPDAE) with quadratic performance is obtained using Simulink. By using the method of 

lines, the FPDAE is transformed into a Fuzzy Differential Algebraic Equations (FDAE). Hence, the optimal 

control of FPDAE can be found out by finding the optimal control of the corresponding FDAE. The goal is to 

provide optimal control with reduced calculus effort by the solutions of the Matrix Riccati Differential Equation 

(MRDE) obtained from Simulink. Accuracy of the solution of the Simulink approach to the problem is 

qualitatively better. The advantage of the proposed approach is that, once the Simulink model is constructed, it 

allows to evaluate the solution at any desired number of points spending negligible computing time and memory 

and the solution curves can be obtained from the model without writing any code. An illustrative numerical 

example is presented for the proposed method. 

 

K. Kittipeerachon, N. Hori and Y. Tomita, et.al [9] exact method is presented for discretizing a constant-

coefficient, non-square, matrix differential Riccati equation, whose solution is assumed to exist. The resulting 

discrete-time equation gives the values that have no error at discrete-time instants for any discrete-time interval. 

The method is based on a matrix fractional transformation, which is more general than existing ones, for 

linearizing the differential Riccati equation. A numerical example is presented to compare the proposed method 

with that based on gage invariance and bilinearization, which has better performances than the conventional 

forward-difference method. 

 

X. Mao, X. Zhang and H. Zhou, et.al [10] well-known R0 implication is developed to pseudo-De Morgan algebras, 

which is called generalized pseudo-R0 implication. The notion of strong pseudo-De Morgan algebras is 

introduced, and its elementary properties are discussed. Secondly, two necessary and sufficient conditions are 

proved as follows: (1) A pseudo-De Morgan algebra A with generalized pseudo-R0 implication becomes a pseudo-

involutive pseudo-BCK algebra if and only if A is a strong pseudo-De Morgan algebra. (2) A pseudo-De Morgan 

algebra A with generalized pseudo-R0 implication and corresponding operator becomes a pseudo-regular 

residuated lattice if and only if A is a strong pseudo-De Morgan algebra. Finally, all pseudo-De Morgan algebras, 

strong pseudo-De Morgan algebras and proper pseudo-involutive pseudo-BCK algebras are obtained by 

MATLAB software when the order number is smaller than or equal to 8. Furthermore, starting with bounded 

distributive lattices, we discussed the classification problem of lower-order pseudo-involutive pseudo-BCK 

algebras. 

 

F. -a. Deng, T. Chen and S. Ren, et.al [11] aim of this study is Wd -fuzzy implication algebras which are subalgebra 

of fuzzy implication algebras. We showed that Wd -fuzzy implication algebras are regular fuzzy implication 

algebras, but the inverse is not true. The relations between Wd -fuzzy implication algebras and other fuzzy 

algebras are discussed. Properties and axiomatic systems for Wd -fuzzy implication algebras are investigated. 

Furthermore, a few new results on Wd -fuzzy implication algebras has been added. 

 

J. Liu and W. Chen,et.al [12] introduce and investigate a non-commutative generalization of quasi-MV algebras, 

called pseudo-quasi-MV algebras (pseudo-qMV algebras for short). And then we characterize the bijective 

relation between ideal congruences and normal ideals of a pseudo-qMV algebra. Finally, we prove that pseudo-

qMV algebras are categorically equivalent to pseudo-quasi-Wajsberg algebras which are the non-commutative 

generalization of quasi-Wajsberg algebras. 

A. Pedram., et.al [13] show the design of specialized compute fabrics that maintain the efficiency of full custom 

hardware while providing enough flexibility to execute a whole class of coarse-grain linear algebra operations. 

The broad vision of this project is to develop integrated and specialized hardware/software solutions that are co-

optimized and co-designed across all layers ranging from the basic hardware foundations all the way to the 

application through standard linear algebra packages. We have designed a specialized Linear Algebra Processor 

(LAP) that can perform level-3 BLAS and more complex LAPACK level operations like Cholesky, LU (with 

partial pivoting), and QR factorizations. We present a power performance model that compares state of the art 

CPUs and GPUs with our design. Our power model reveals sources of inefficiencies in CPUs and GPUs, and our 
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LAP design demonstrates how to overcome them. When compared to other conventional architectures for linear 

algebra applications, LAP is over orders of magnitude more power efficient. Based on our estimations up to 55 

and 25 GFLOPS/W single- and double-precision efficiencies are achievable on a single chip in standard 45nm 

technology. 

 

X. Wu, X. Liu, Li Zhou and J. Zhang, et.al [14] define a lower approximate operation and an upper approximate 

operation based on a Boolean partition on R 0 -algebras and discuss their properties. We then introduce a pair of 

belief measure and plausibility measure on R 0 -algebras and investigate the relationship between rough operations 

and belief measure and plausibility measure. 

 

P. S. Budyakov, N. I. Chernov, V. Y. Yugai and N. N. Prokopenko,et.al [15] mathematical basics of the non-

classical approach to the logical synthesis of k-valued digital structures based on the replacement of the classic 

mathematical apparatus of logic synthesis (Boolean algebra) to the proposed mathematical apparatus - linear 

algebra are considered. The logic synthesis process of two valued and multi-valued digital structures in linear 

algebra including the formation of bases of a linear space and original representation of the implemented logical 

function are discussed. Mathematical advantages of the proposed approach, which could be the basis for designing 

of high-speed digital logic structures for various applications are considered. 

 

3. METHODOLGY 

In this section, a design approach is proposed. Distributed Formulation of the System is Consider the DAE system. 

Assuming that the index of the system (with respect to each input) is three, the overall Js matrix of this system is 

obtained by. 

 

𝑱ₛ =  µ².
ꝺ

ꝺ𝒙 
(
ꝺ𝒈

ꝺ𝒙
. 𝒇)

ꝺ𝒇

ꝺ𝒛 
 

                                                                                                                                                       ---- (1) 

 

 

When the dimension of the system increases considerably, it is a significant problem to calculate the inverse of 

matrix Js on a single computer according to the timing restrictions of the real-time simulation. In this case, it is 

beneficial to decompose the system into some subsystems, and the Js matrix of each subsystem, which has a lower 

dimension compared with the overall system, is calculated on a separate computer. In order to decompose the 

overall system, the set of boundary algebraic equations is introduced. 

 

The set of boundary algebraic equations is the set of algebraic equations that by eliminating them, the DAE system 

{(1),(2)} would be decomposed into two DAE subsystems which are independent from each other. 

 

The schematic of a set of boundary algebraic equations is shown in Fig.1. 

 
 

Figure 1: The Schematic of A Set Of Boundary Algebraic Equations. 

 

In this figure, xij and wij ’s are the states and algebraic equations, respectively. The set of boundary algebraic 

equations Wb = {w b1,w b2 ,w b3}  decomposes the whole system into the two subsystems  X1 = [ x11 x12 x13]T  and 

X2 = [x 21 x 22 x 23]T , with the corresponding algebraic equations  W1 = [w11 w12 w13]T  and W2 = [ w21 w 22 w 

23]T , respectively. 

 

Proposition.1: The DAE system can be reformulated as: 
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X1= f1 (X1, Z1, Zb) 

 

Ẋ2= f1 (X1, Z1, Zb) 

 

Ẑ1 =    V1 

 

Ẑ2 =    V2 

 

Ẑb =    Vb 

 

W1= g1 (X1) 

 

W1= g1 (X1) 

 

W2= g2 (X2) 

 

Wb= gb (X1, X2)        ---- (2) 

 

where xi , vi and wi ’s are the state, input and output vectors, respectively. f i ’s and gi ’s are the vector functions 

with appropriate dimensions. Also, the dimensions of all the vectors and matrices are well defined. In equations 

(2), the set of equations wb are the boundary algebraic equations. Eliminating these equations leads to the two 

subsets of DAE systems: 

 

Ẋ2= f1 (X1, Z1, Z3) 

 

Ẑ1 =    V1 

 

W1 =  g1 (X1) --- (3) 

 

and 

 

Ẋ2= f2 (X1, Z1, Z3) 

 

Ẑ2 =    V2 

 

W2 =  g2 (X2)---- (4) 

 

For the boundary algebraic equations, instead of one integrator, two integrators are applied to the corresponding 

input v3 to make the parameter z 3: 

ẑb = vb 

 

𝐰b =  𝐠b (𝐱1, 𝐱2 )  --- (5) 

 

The set of equations {(3),(4),(5)} is the distributed realization of the DAE system. Assuming that the index of 

each subsystem (3) and (4) (with respect to each input - excluding the ones corresponding to the set of boundary 

algebraic equations) is three, the corresponding matrix Js for each of the subsystems (3) and (4) is calculated. 

𝑱ₛ𝟏 =  µ².
ꝺ

ꝺ𝒙𝟐 
(
ꝺ𝒈¹

ꝺ𝒙₁
. 𝒇₁)

ꝺ𝒇₁

ꝺ𝒛₁ 
 

                

𝑱ₛ𝟐 =  µ².
ꝺ

ꝺ𝒙𝟐 
(
ꝺ𝒈₂

ꝺ𝒙₂
. 𝒇₂)

ꝺ𝒇₂

ꝺ𝒛₂ 
 

                           

                                    -------- (6) 

 

And assuming that the index of the set of boundary algebraic equations (5) (with respect to each corresponding 

input) is four (because of the extra integrator in the corresponding input), the Js for the boundary algebraic 

equations is calculated individually. 
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Jₛb= µ3. ꝺ

ꝺ𝒙𝟐 
(ꝺ𝒈¹
ꝺ𝒙₁

. 𝒇₁)
ꝺ𝒇₁

ꝺ𝒛ɓ 
+ 

ꝺ

ꝺ𝒙𝟐 
(ꝺ𝒈₂
ꝺ𝒙₂

. 𝒇₂)
ꝺ𝒇₂

ꝺ𝒛ɓ 
 

 

                                           --- (7) 

 

Decentralized sliding mode approach is useful in a variety of control fields. Because of the simplicity of the 

controller, it has been applied to many control applications. In order to control the distributed formulation of the 

system, decentralized sliding control is applicable. 

 

4. RESULT ANALYSIS 

In this section, the decentralized (distributed realization) and centralized sliding control 

approaches are applied in order to compare the performances. 

 

Table.1: Performance Analysis 

Parameters Centralized Decentralized 

Performance 85 97 

Stability 91 99 

 

 

Figure 2: Performance Comparison Graph 

 

In Fig.2 performance comparison graph is seen between centralized and decentralized. 
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In Fig.3 stability comparison graph is seen between centralized and decentralized. 

 

5. CONCLUSIONS 

A Differential-Algebraic Equations (DAE) system is a system of equations that either contains 

differential equations and algebraic equations, or is equivalent to such a system. In mathematics 

these are examples of differential algebraic varieties and correspond to ideals in differential 

polynomial rings. It is used to control the method to simulate the system, while satisfying the 

algebraic constraints which is formulated. This method divided the main system into numerous 

subsystems, and a sliding mode controller was designed for each subsystem individually. The 

necessary conditions for stability were developed. The new method was applied to a mutliple 

pendulum problem which demonstrated good performance and stability. 
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