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ABSTRACT 

An alarming rise in the number of fatal instances of chronic kidney disease (CKD) has made it a 

top public health priority in Cambodia. Future trends in CKD-related fatalities in Cambodia are 

projected using the Autoregressive Integrated Moving Average (ARIMA) model, which is the 

focus of this research. The Box-Jenkins procedure, the Autocorrelation Function (ACF), the 

Partial Autocorrelation Function (PACF), and the Augmented Dickey-Fuller (ADF) test were all 

used to guarantee the model's integrity. These investigations helped clarify whether or not the 

time series data were stationary and guided the selection of reasonable ARIMA model 

parameters. Incorporating these approaches led to the creation of a robust forecasting model that 

sheds light on the likely course of CKD-related mortality in Cambodia. The findings of this 

study aid in the creation of efficient preventative measures and focused therapies to lessen the 

national burden of CKD. 
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1. INTRODUCTION 

 

The prevalence of chronic kidney disease (CKD) in Cambodia is on the rise, making it an urgent public 

health issue that calls for in-depth research and forecasting tools. The rising rates of CKD and mortality 

have encouraged researchers to look more closely at the nature of the illness and use cutting-edge 

statistical methods to predict its progression. In order to foresee trends in mortality, we use the 

Autoregressive Integrated Moving Average (ARIMA) model in our investigation of CKD-related deaths 

in Cambodia. 

 

The study incorporates the Augmented Dickey-Fuller (ADF) test, the Autocorrelation Function (ACF), 

the Partial Autocorrelation Function (PACF), and the Box-Jenkins approach to guarantee the accuracy 

and precision of the ARIMA model. These analyses are essential for assessing the suitability of the 

ARIMA model for forecasting CKD-related fatalities in Cambodia, determining the correlation 

structures within the dataset, and determining whether or not the time series data are stationarity. 

 

Understanding the underlying patterns and dynamics of CKD is becoming increasingly important for 

healthcare authorities and policymakers as its effect grows. The ARIMA model and these statistical 

techniques allow us to extrapolate important information about the future course of CKD-related 

mortality in Cambodia. These findings can then be used to guide evidence-based strategies, aid in the 
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creation of focused therapies, and eventually aid in lessening the national burden of CKD. The purpose 

of this research is to better inform public health planning and policy development in Cambodia by 

illuminating the existing situation of mortality due to CKD. 

 

Objective: 
1. To analyze the historical trends of Chronic Kidney Disease (CKD)-related deaths in Cambodia, 

providing insights into the patterns and dynamics of CKD mortality over a specified period. 

2. To conduct the Augmented Dickey-Fuller (ADF) test, evaluating the stationarity of the time 

series data, ensuring the suitability of employing the ARIMA model for forecasting CKD-related 

deaths. 

3. To utilize the Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) 

analyses to identify the correlation structures within the CKD mortality time series data, 

facilitating the selection of appropriate parameters for the ARIMA model. 

4. To apply the Box-Jenkins methodology, assessing the effectiveness of the ARIMA model in 

forecasting CKD-related mortality in Cambodia, considering the specific characteristics of the 

time series data. 

5. To develop a reliable and accurate ARIMA model capable of forecasting future trends of CKD-

related deaths in Cambodia, providing valuable insights for healthcare authorities and 

policymakers to plan and implement targeted interventions. 

6. To assess the effectiveness of the ARIMA model in predicting the trajectory of CKD-related 

deaths, contributing to the existing knowledge on CKD epidemiology in Cambodia and guiding 

evidence-based decision-making for improved public health outcomes. 

Literature Review  

Malaria outbreaks can be predicted using data on the city of Delhi's weather from a time series analysis 

conducted by VarunKumar et al. (2014). The purpose of the research was to determine whether or not 

certain weather conditions may be used as indicators of future malaria cases in Delhi, India. Overall 

monthly malaria cases are decreasing. The information was gathered from January 2006 through 

December 2013 and was recorded at the malaria clinic at the Rural Health Training Centre (RHTC), 

Najafgrah, Delhi. Monthly mean rainfall, relative humidity, and average maximum temperature were all 

taken from reputable government sources. At the Delhi Meteorological Centre, the time series data was 

analyzed using an expert model of SPSS version 21. Analysis by means of integrated regression The 

moving average ARIMA (0,1,1,0) model fit the data well. There may be a connection between this and 

the 72.5% of randomness in the time series data. were found to be good predictors of malaria prevalence 

in the research area. The SAF for malaria cases in a given season. The months of August and September 

are often the busiest for the exhibitions. 

 

Malaria hospitalizations and mortality in Ethiopia from 2001 to 2011: a time series analysis of the 

impact of antimalarial therapy. Aregawi et al. Artemisinin-based combination treatments (ACT) and 

long-lasting insecticidal nets (LLINs) have been deployed in Ethiopia since 2004 by the government 

and its partners. From 2001 to 2011, hospitals in malaria hotspots assessed malaria interventions and 

monitored malaria case and fatality rates. As malaria interventions were ramped up, the number of 

malaria cases and deaths in Ethiopian hospitals dropped dramatically between 2006 and 2011. There 

was no explanation for the decline that could be attributed to variations in hospitalizations, malaria 

testing, or precipitation. Because of Ethiopia's history of erratic malaria transmission, more information 
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is required to determine whether or not the decline is attributable to chance. 

Based on the work of Abrignani et al. (2022). The impact of weather on cardiovascular issues was 

studied. Since fluctuations in the prevalence of cardiovascular disease cannot be fully explained by the 

known risk factors, it is possible that environmental factors, such as temperature, play a role. Climate 

change may pose direct and indirect threats to human health through a number of complex 

pathophysiological pathways, endogenous, and exogenous factors. More people are paying attention to 

this information because of growing concern over the impact of human activity on the planet's climate. 

In this article, we take a look at what we know about the short- and long-term implications of climate 

change on cardiovascular health. 

 

Methodology 

ARIMA Model (p,d,q): 
The ARIMA(p,d,q) equation for making forecasts: ARIMA models are, in theory, the most general class 

of models for forecasting a time series. These models can be made to be "stationary" by differencing (if 

necessary), possibly in conjunction with nonlinear transformations such as logging or deflating (if 

necessary), and they can also be used to predict the future. When all of a random variable's statistical 

qualities remain the same across time, we refer to that random variable's time series as being stationary.  

A stationary series does not have a trend, the variations around its mean have a constant amplitude, and 

it wiggles in a consistent manner. This means that the short-term random temporal patterns of a 

stationary series always look the same in a statistical sense.  This last criterion means that it has 

maintained its autocorrelations (correlations with its own prior deviations from the mean) through time, 

which is equal to saying that it has maintained its power spectrum over time.  The signal, if there is one, 

may be a pattern of fast or slow mean reversion, or sinusoidal oscillation, or rapid alternation in sign, 

and it could also include a seasonal component. A random variable of this kind can be considered (as is 

typical) as a combination of signal and noise, and the signal, if there is one, could be any of these 

patterns.  The signal is then projected into the future to get forecasts, and an ARIMA model can be 

thought of as a "filter" that attempts to separate the signal from the noise in the data. 

 

The ARIMA forecasting equation for a stationary time series is a linear (i.e., regression-type) equation 

in which the predictors consist of lags of the dependent variable and/or lags of the forecast errors.  That 

is: 

 
Predicted value of Y = a constant and/or a weighted sum of one or more recent values of Y and/or 

a weighted sum of one or more recent values of the errors. 

 

It is a pure autoregressive model (also known as a "self-regressed" model) if the only predictors are 

lagging values of Y. An autoregressive model is essentially a special example of a regression model, 

and it may be fitted using software designed specifically for regression modeling.  For instance, a first-

order autoregressive ("AR(1)") model for Y is an example of a straightforward regression model in 

which the independent variable is just Y with a one-period lag (referred to as LAG(Y,1) in Statgraphics 

and Y_LAG1 in RegressIt, respectively).  Because there is no method to designate "last period's error" 

as an independent variable, an ARIMA model is NOT the same as a linear regression model. When the 

model is fitted to the data, the errors have to be estimated on a period-to-period basis. If some of the 

predictors are lags of the errors, then an ARIMA model is NOT the same as a linear regression model.  

The fact that the model's predictions are not linear functions of the coefficients, despite the fact that the 

model's predictions are linear functions of the historical data, presents a challenge from a purely 

technical point of view when employing lagging errors as predictors.  Instead of simply solving a 

system of equations, it is necessary to use nonlinear optimization methods (sometimes known as "hill-

climbing") in order to estimate the coefficients used in ARIMA models that incorporate lagging errors. 
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Auto-Regressive Integrated Moving Average is the full name for this statistical method. Time series that 

must be differentiated to become stationary is a "integrated" version of a stationary series, whereas lags 

of the stationarized series in the forecasting equation are called "autoregressive" terms and lags of the 

prediction errors are called "moving average" terms. Special examples of ARIMA models include the 

random-walk and random-trend models, the autoregressive model, and the exponential smoothing 

model. 

A nonseasonal ARIMA model is classified as an "ARIMA(p,d,q)" model, where: 

• p is the number of autoregressive terms, 
• d is the number of nonseasonal differences needed for stationarity, and 
• q is the number of lagged forecast errors in the prediction equation. 

• The forecasting equation is constructed as follows.  First, let y denote the dth difference of Y, 

which means: 
• If d=0:     𝑦𝑡 = 𝑌𝑡 

• If d=1:   𝑦
𝑡

= 𝑌𝑡 − 𝑌𝑡−1 

• If d=2:  𝑦𝑡 = (𝑌𝑡 − 𝑌𝑡−1) − (𝑌𝑡−1 − 𝑌𝑡−2) = 𝑌𝑡 − 2𝑌𝑡−1 + 𝑌𝑡−2  
• Note that the second difference of Y (the d=2 case) is not the difference from 2 periods 

ago.  Rather, it is the first-difference-of-the-first difference, which is the discrete analog of a 

second derivative, i.e., the local acceleration of the series rather than its local trend. 
• In terms of y, the general forecasting equation is: 

• �̂�𝑡 = 𝜇 + 𝜑1𝑌𝑡−1 + ⋯ + 𝜑𝑝𝑌𝑡−𝑝 − 𝜃1𝜀𝑡−1 − ⋯ − 𝜃𝑞𝜀𝑡−𝑞 

The ARIMA (AutoRegressive Integrated Moving Average) model is a powerful time series analysis 

technique used for forecasting data points based on the historical values of a given time series. It 

consists of three key components: AutoRegression (AR), Integration (I), and Moving Average (MA). 

 

THE METHODOLOGY FOR CONSTRUCTING AN ARIMA MODEL INVOLVES THE 

FOLLOWING STEPS: 

 

1. Stationarity Check: Analyze the time series data to ensure it is stationary, meaning that the mean and 

variance of the series do not change over time. Stationarity is essential for ARIMA modeling. 

2. Differencing: If the data is not stationary, take the difference between consecutive observations to 

make it stationary. This differencing step is denoted by the 'I' in ARIMA, which represents the number 

of differencing required to achieve stationarity. 

3. Identification of Parameters: Determine the values of the three main parameters: p, d, and q, where p 

represents the number of autoregressive terms, d represents the degree of differencing, and q represents 

the number of moving average terms. 

4. Model Fitting: Fit the ARIMA model to the data, using statistical techniques to estimate the 

coefficients of the model. 

5. Model Evaluation: Assess the model's performance by analyzing the residuals, checking for any 

remaining patterns or correlations, and ensuring that the model adequately captures the underlying 

patterns in the data. 

6. Forecasting: Once the model is validated, use it to generate forecasts for future data points within the 

time series. 

 

Analysis  
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The supplied data reflects the number of deaths in Cambodia attributable to CKD from 1990 to 2019. 

Deaths attributed to CKD have been on the rise across the time period studied, with some variation 

attributable to likely regional differences in CKD prevalence and treatment approaches. 

The slow but steady rise in CKD-related mortality rates is cause for public health concern and calls for 

urgent action and innovative solutions. There is still a significant CKD burden in Cambodia, as shown 

by these numbers, and more research is needed to determine what is driving this trend and how to best 

address the mounting problems that CKD poses in the country. 

 

To accurately evaluate the dynamics and patterns of CKD-related mortality, it is crucial to conduct in-

depth analyses, such as the Augmented Dickey-Fuller (ADF) test, Autocorrelation Function (ACF), 

Partial Autocorrelation Function (PACF), and the Box-Jenkins technique. These statistical methods can 

shed light on the dynamics of CKD over time in Cambodia, leading to more accurate predictions and 

more effective interventions to reduce the alarming rate of CKD-related mortality. 

 
Autocorrelation and partial autocorrelation functions were plotted to find the optimal order of the 

autoregressive and moving average polynomials, or the values of p and q. 

 

The vast majority of autocorrelation delays, defined as those that depart from zero and so exhibit non-

stationarity, take on negative values. Cambodia has a number of non-stationary time series. Plotting the 

acf figure shows that the acfs decrease over time, suggesting nonstationarity. As a result, we know that 

the series is not stationary. The pacfs image, on the other hand, shows a substantial spike at lag 1, which 

may be evidence of an autoregressive component of order one in the series. 

 

Cambodia's non-stationary data series were converted to stationary ones by first differencing the 

original data. Differentiation at the first order reveals d=1, suggesting that the auto arima function can 

be used for forecasting. Seeing the several arima models and having the data converted to stationary 

automatically was all that was needed to have a reliable stationary series for Cambodia. This non-

stationary nature of deaths is now further supported by the autocorrelation of mortality rates. 
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Time series data on mortality caused by Chronic Kidney Disease (CKD) in Cambodia were subjected to 

the automatic ARIMA modeling technique, yielding a number of different models. Different orders of 

differencing and various combinations of autoregressive and moving average terms were used to create 

the models. 

ARIMA Model Metric 

ARIMA(2,2,2) Inf 

ARIMA(0,2,0) 188.2905 

ARIMA(1,2,0) 189.4895 

ARIMA(0,2,1) 189.2652 

ARIMA(1,2,1) 191.2573 

 

The ARIMA (0,2,0) model was selected as the most appropriate model for projecting CKD-related 

mortality in Cambodia based on the Akaike Information Criterion (AIC), a parameter used to determine 

the goodness of fit of the model. The chosen model combines two orders of differencing to capture the 

underlying patterns in the time series data, suggesting the lack of autoregressive and moving average 

terms. 

The ARIMA (0,2,0) model's detection highlights the importance of differencing in achieving 

stationarity and stabilizing the time series data. 

Using two orders of differencing to stabilize the time series data, the ARIMA(0,2,0) model was found to 

be optimal for predicting CKD-related deaths in Cambodia. This model represents the absence of 

autoregressive and moving average terms. Sigma squared, a measure of the model's variance, is 

estimated to be 45.49, which shows how highly variable the data on CKD-related mortality is. 

Parameter Value 

Sigma^2 45.49 

Log Likelihood -93.15 

AIC (Akaike Information Criterion) 188.29 

AICc (Corrected AIC) 188.44 
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BIC (Bayesian Information Criterion) 189.62 

 

Overall, the model does a decent job of capturing the dynamics and patterns contained in the time series 

data, as indicated by the log-likelihood value of -93.15, which adds to the assessment of the model's 

goodness of fit. The accuracy of the ARIMA(0,2,0) model in predicting CKD-related mortality in 

Cambodia is further supported by the model's Akaike Information Criterion (AIC) value of 188.29, its 

corrected AIC (AICc) value of 188.44, and its Bayesian Information Criterion (BIC) value of 189.62. 

 

 
The ARIMA(0,2,0) model was used to project the changes in CKD mortality in Cambodia over the next 

decade, and the predicted values show what those patterns would look like. The expected values for 

CKD-related mortality during the prediction horizon of 2020-2029 show a steady increase over the past 

few years. 

Year Point Forecast Lower 95% CI Upper 95% CI 

2020 2259 2245.781 2272.219 

2021 2325 2295.442 2354.558 

2022 2391 2341.540 2440.460 

2023 2457 2384.598 2529.402 

2024 2523 2424.967 2621.033 

2025 2589 2462.901 2715.099 

2026 2655 2498.593 2811.407 

2027 2721 2532.198 2909.802 

2028 2787 2563.841 3010.159 

 

Given the inherent uncertainty in such predictions, the point projections for each year, along with the 

corresponding lower and higher 95% confidence intervals, provide useful insights into the potential 

range of CKD-related mortality estimates. Confidence intervals reflect a range of outcomes, while the 
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anticipated values show a steady upward trend; this highlights the need for proactive efforts to reduce 

the rising burden of CKD in Cambodia. 

 
Forecast errors for mortality from chronic kidney disease (CKD) in Cambodia were tested for 

significant autocorrelation using the Box-Ljung test with a lag value of 5. The p-value for this test was 

0.06202, and the X-squared value was 10.51 (with 5 degrees of freedom). 

 

The resulting p-value indicates a possible presence of autocorrelation in the residuals, suggesting a 

modest probability of rejecting the null hypothesis. Despite the fact that the p-value is just slightly 

higher than the frequently used significance level of 0.05, it nevertheless indicates that more research 

into the underlying patterns and structures within the forecast mistakes is required. This finding 

highlights the need for further research to guarantee the validity of the projected CKD-related mortality 

estimates in Cambodia and the trustworthiness of the forecasting model. 

 

Conclusion: 
In summary, the ARIMA(0,2,0) forecasting model analysis of CKD-related deaths in Cambodia has 

shed light on the future course of CKD mortality in the country. Using a battery of diagnostic tools, 

such as the Box-Jenkins technique, the Augmented Dickey-Fuller (ADF), and the Ljung-Box, 

researchers have pieced together a complete picture of the causes and dynamics of CKD-related 

mortality. 

 

The increasing burden of CKD in Cambodia is reflected in the steadily rising trend of deaths attributable 

to the disease over the following decade. While the model shows promise in predicting future trends, the 

presence of a barely noticeable autocorrelation in the residuals suggests that it should be closely 

monitored and tweaked in the future. 
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