EXISTENCE OF BEST PROXIMITY POINTS ON GEOMETRICAL PROPERTIES OF PROXIMAL SETS

Arul Ravi $\mathbf{S}^{\mathbf{1}}$, Eldred AA ${ }^{\mathbf{2}}$
1,2 Assistant Professor, Department of Mathematics, St. Xavier's College (Autonomous), Palayamkottai
ammaarulravi@gamil.com

Article History:Received:11 november 2020; Accepted: 27 December 2020; Published online: 05 April 2021

Abstract

The notion of proximal intersection property and UC property is used to establish the existence of the best proximity point for mappings satisfying contractive conditions.

Keywords: Best Proximity point, Proximal sets, UC property, proximal intersection property.

1. Introduction and Preliminaries:

Let X be a nonempty set and T be a self map of X. An element $x \in X$ is called a fixed point of T if $T x=x$. Fixed point theorems deal with sufficient conditions on X and T ensures the existence of fixed points. Suppose the fixed point equation $T x=x$ does not posses a solution, then the natural interest to find an element $x \in X$, such that x is in proximity to $T x$ in some cases.
In other words we would like to get a desirable estimate for the quality $d(x, T x)$.
It is natural that some mapping, especially non-self mappings defined on a metric space (X, d), do not necessarily possess a fixed point that $d(x, T x)>0$ for all $x \in X$. In such situations, it is reasonable to search for the existence and uniqueness of the point $x \in X$ such that $d(x, T x)=0$.
In other words, one intends to determine an approximate solution $x \in X$ that is optimal in the sense that the distance between x and $T x$ is minimum. Here the point x is the proximity point. That is $d(x, T x)=d(A, B)$ where $d(A, B)=\inf \{d(x, y): x \in A, y \in B\}$.
In Suzuki et al [1], UC property was introduced to prove some existence results on best proximity point. In Raj and Eldred [2], the author introduced p-property and proved strict convexity is equivalent to p-property.
We use proximal intersection property for a pair (A, B) where A and B are non empty closed subsets of a metric space. Then this property is used to prove the existence of the best proximity point for mapping satisfying some contractive conditions introduced by Wong [3].
In this section, we use some basic definitions and concepts that are related to the context of our main results.
Definition:1.1 [4] Let A and B be nonempty subsets of a metric space (X, d). Then, the pair (A, B) is said to satisfy the property UC if the following holds: If x_{n} and x_{n}^{\prime} are sequence in A and y_{n} is a sequence in B such that $\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=d(A, B)$ and $\lim _{n \rightarrow \infty} d\left(x_{n}^{\prime}, y_{n}\right)=d(A, B)$ then $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n}^{\prime}\right)=0$ holds.
Definition:1.2 Let A and B be nonempty subsets of a metric space (X, d). Then (A, B) is said to satisfy proximal intersection property if whenever $A_{n} \subset A$ and $B_{n} \subset B$ are a decreasing sequence of closed subsets such that $\delta(A, B) \rightarrow d(A, B)$, then $\cap A_{n}=\{x\}, \cap B_{n}=\{y\}$ with $d(x, y)=d(A, B)$.
Remark:1.1 $d(A, B) \rightarrow d(\bar{A}, \bar{B})$ and $\delta(A, B) \rightarrow d(\bar{A}, \bar{B})$ where $\delta(A, B)=\operatorname{Sup}\{\|x-y\|: x \in A, y \in B\}$.
Definition:1.3 [2] Let X be a metric space and let $T: X \rightarrow X$. Then d_{T} is the function on $X \times X$ defined by $d_{T}(x, y)=\inf \left\{d\left(T_{x}^{n}, T_{y}^{n}\right): n \geq 1, x, y \in X\right\}$ \qquad
Definition:1.4 [3] Let A and B be nonempty subsets of a metric space X. We shall use X_{d} to denote the set $\left\{r^{\prime}\right.$: for some $s>r^{\prime}, d(x, y)-d(A, B) \in\left[r^{\prime}, s\right]$ for some $\left.x \in A, y \in B\right\}$.
Remark:1.2 If $r^{\prime} \in X_{d}$, then there exists $x_{n} \in A, y_{n} \in B$ such that $d\left(x_{n}, y_{n}\right)-d(A, B) \rightarrow r^{\prime}$. Also if $x \in A, y \in$ B, then $d\left(x_{n}, y_{n}\right)-d(A, B) \in X_{d}$ and if $x_{n} \in A, y_{n} \in B$ such that $d\left(x_{n}, y_{n}\right)-d(A, B) \rightarrow r^{\prime}$, then $r^{\prime} \in X_{d}$.
Lemma:1.1 [1] Let A and B be nonempty subsets of a metric space (X, d). Then (A, B) has the property UC. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequence in A and B respectively such that either of the following holds:
$\lim _{m \rightarrow \infty} \operatorname{Sup}_{n \geq m} d\left(x_{m}, y_{n}\right)=d(A, B)$ or
$\lim _{n \rightarrow \infty} \operatorname{Sup}_{m \geq n} d\left(x_{m}, y_{n}\right)=d(A, B)$
Then $\left\{x_{n}\right\}$ is Cauchy.
*Corresponding author: Arul Ravi S
Assistant Professor,
Department of Mathematics, St. Xavier's College (Autonomous), Palayamkottai
ammaarulravi@gamil.com

2.Results:

Theorem:2.1 Let A and B be nonempty closed subsets of a complete metric space X satisfying UC property. Let A_{n}, B_{n} be decreasing sequence of nonempty closed subsets of X such that $\delta\left(A_{n}, B_{n}\right) \rightarrow d(A, B)$ as $n \rightarrow \infty$ then $\cap A_{n}=\{x\}, \cap B_{n}=\{y\}$ with $d(A, B)$ that is (A, B) satisfies proximal intersection property.
Proof: Construct a sequence x_{n}, y_{n} in X by selecting $x_{n} \in A_{n}, y_{n} \in B_{n}$ for each $n \in N$.
Since $A_{n+1} \subseteq A_{n}, B_{n+1} \subseteq B_{n}$ for all n, we have $x_{n} \in A_{n} \subseteq A_{m}, y_{n} \in B_{n} \subseteq B_{m}$ for all $n>m$.
We claim that x_{n} is a Cauchy sequence.
Let $\varepsilon>0$ be given.
Since $\delta\left(A_{n}, B_{n}\right) \rightarrow d(A, B)$, there exists a positive integer N such that $\delta\left(A_{n}, B_{n}\right)<d(A, B)+\varepsilon$, for all $n \geq N$.
Since A_{n}, B_{n} are decreasing sequence, we have $A_{n}, A_{m} \subseteq A_{N}$ and $B_{n}, B_{m} \subseteq B_{N}$ for all $m, n \geq N$.
therefore $x_{n}, x_{m} \in A_{N}$ and $y_{n}, y_{m} \subseteq B_{N}$ for all $m, n \geq N$,
and there we have
$d\left(x_{n}, x_{m}\right) \leq \delta\left(A_{n}, B_{n}\right)<d(A, B)+\varepsilon$, for all $m, n \geq N$
since A and B satisfy UC property from lemma 1.1, x_{n} is a cauchy sequence. There exists $x \in A$ such that $x_{n} \rightarrow$ x.
similarly there exists $y \in B$ such that $y_{n} \rightarrow y$
we claim that $x \in \cap A_{n}, y \in \cap B_{n}$,
since A_{n} and B_{n} are closed for each n,
$x \in A_{n}, y \in B_{n}$ for all $n \in N$
since $d\left(x_{n}, y_{n}\right) \rightarrow d(A, B)$ we have
$d(x, y)=d(A, B)$
finally to establish that x is the only point in $\cap A_{n}$, if $x_{1} \neq x_{2} \in \cap A_{n}$, then $d(x, y)=d(A . B)$ UC property forces that $x_{1}=x_{2}$, similarly $\cap B_{n}=\{y\}$.
Lemma:2.1
(i) Let A and B be nonempty closed subsets of a complete metric space X such that (A, B) satisfying UC property. Let $T: A \cup B \rightarrow A \cup B$ be continuous, suppose that $T(A) \subset B, T(B) \subset A$ be a continuous function such that $\inf \{d(x, T x): x \in A\}=d(A, B)=\inf \{d(x, T x): x \in A\}=d(A, B)$
(ii) There exists $\delta_{n}>0$ such that $\mathrm{d}(\mathrm{Tx}, \mathrm{Ty})-d(A, B)<\frac{1}{n}$ whenever $\max \{\mathrm{d}(\mathrm{x}, \mathrm{Tx})-$ $d(A, B), d(y, T y)-d(A, B)\}<\delta_{n}$ and $x \in A^{\prime}, y \in B^{\prime}$ where A^{\prime} and B^{\prime} are any closed bounded sets of A and B respectively.
Then, there exists a best proximity point $x \in A$, such that $d(x, T x)=d(A, B)$, Further, if $d(T x, T y)=$ $d(x, y)$ for all $x \in A, y \in B$ then the best proximity point is unique.
Proof: Let $A_{n}=\left\{x \in A: d(x, T x)-d(A, B) \leq \frac{1}{n}\right\}$
$B_{n}=\left\{y \in B: d(y, T y)-d(A, B) \leq \frac{1}{n}\right\}$ since T is continuous, A_{n}, B_{n} are closed
from (i) A_{n} and B_{n} are nonempty
there exists N for all $n \in N$
let $x \in A_{n}, y \in B_{n}$
then $d(x, T x)-d(A, B)<\delta_{n}$ and
$d(y, T y)-d(A, B)<\delta_{n}$
from (ii) $d(T x, T y)-d(A, B) \leq \frac{1}{n}$ where $\delta_{n} \rightarrow 0$
for any $x \in A_{n}, y \in B_{n}$
$d(T x, T y)-d(A, B) \leq \frac{1}{n}$
which implies $\delta\left(T\left(A_{n}\right), T\left(B_{n}\right)\right) \rightarrow d(A, B)$
and hence $\delta\left(\overline{T\left(A_{n}\right)}, \overline{\left.T\left(B_{n}\right)\right)} \rightarrow d(A, B)\right.$
By proximal intersection property,
we have $\bigcap_{n \geq 1} \overline{T\left(A_{n}\right)}=y$ and $\bigcap_{n \geq 1} \overline{T\left(B_{n}\right)}=x$ and
$d(x, y)=d(A, B)$
Thus for each $n \geq 1$, there exists $x_{n} \in A_{n}$
such that $d\left(y, T x_{n}\right)<\frac{1}{n}$
since $d\left(x_{n}, T x_{n}\right) \rightarrow d(A, B)$ and
$d\left(y_{n}, T y_{n}\right) \rightarrow d(A, B)$
By UC property $x_{n} \rightarrow x$
Since A_{n} is closed, $x \in A_{n}$ for each n
This implies that $d(x, T x) \rightarrow d(A, B)$
Similarly $y_{n} \rightarrow y$ such that $d(y, T y) \rightarrow d(A, B)$
To prove uniqueness,
$d(x, T x)=d(A, B)$
Since T is non expansive $d\left(T^{2} x^{\prime}, T x^{\prime}\right)=d(A, B)$ which implies that $T^{2} x^{\prime}=x^{\prime}$ as
$d(x, T x)=d\left(T x^{\prime}, T^{2} x^{\prime}\right)=d(A, B)$
from (ii) $d\left(T x, x^{\prime}\right)=d\left(T x, T^{2} x^{\prime}\right)=d(A, B)$
which implies that $x=x^{\prime}$
Theorem:2.2 Let A and B be nonempty closed subsets of a metric space X and let Let $T: A \cup B \rightarrow A \cup B$ be continuous, such that $T(A) \subset B, T(B) \subset A$. Suppose that there exists $\phi: X_{d} \rightarrow[0, \infty)$ such that $d(x, y)-$ $d(A, B) \leq \phi((x, y)-d(A, B))$ for all $x \in A, y \in B$ and $\sup _{\delta>r} \inf f_{t \in[r, s]}(t-\phi(t))>0$ for $r \in X_{d}-\{0\}$. Then $d_{T}(x, y)=d(A, B)$ for all $x \in A, y \in B$ hence $\inf \{d(x, T x): x \in A\}=d(A, B)$
Proof: Suppose to the contrary that there exists $x \in A, y \in B$ such that
$\operatorname{Inf}\left\{d\left(T^{n} x, T^{n} y\right): n \geq 1\right\}>d(A, B)$
by hypothesis there exists $s \in\left(r^{\prime}, \infty\right)$ such that $u=\inf _{t \in\left[r^{\prime}, s\right]}(t-\phi(t))>0$ where $r^{\prime}=r-d(A, B)$
since there exists a sequence
$d\left(T^{n} x, T^{n} y\right)-d(A, B) \rightarrow r^{\prime}$ where $r^{\prime} \in X_{d}-\{0\}$
Then from (2) we have
$d\left(T^{n} x, T^{n} y\right)-d(A, B) \rightarrow r^{\prime}+t<s$ for some $n \geq 1$.
Since $d\left(T^{n} x, T^{n} y\right)-d(A, B) \in\left[r^{\prime}, s\right]$
$u \leq d\left(T^{n} x, T^{n} y\right)-d(A, B)-\phi\left(d\left(T^{n} x, T^{n} y\right)-d(A, B)\right)$
$\phi\left(d\left(T^{n} x, T^{n} y\right)-d(A, B)\right) \leq d\left(T^{n} x, T^{n} y\right)-d(A, B)-u$
If $T^{n} x \in A, T^{n} y \in B$ and vice versa
It follows that
$d_{T}(x, y)-d(A, B) \leq d_{T}\left(T^{n} x, T^{n} y\right)-d(A, B)$
$\leq d\left(T^{n} x, T^{n} y\right)-d(A, B)$
$\leq \phi\left(d\left(T^{n} x, T^{n} y\right)-d(A, B)\right)$
$\leq d\left(T^{n} x, T^{n} y\right)-d(A, B)$ from (5)
$<r^{\prime}+t-u$
Letting $\mathrm{t} \rightarrow 0$, we have
$d_{T}(x, y)-d(A, B) \leq r^{\prime}-u$
$d_{T}(x, y)-d(A, B) \leq r^{\prime}-d(A, B)-u$
$d_{T}(x, y) \leq r-u$ a contradiction.
Theorem:2.3 Let A and B be nonempty closed subsets of a metric space X. Suppose (A, B) satisfies UC property. Let T be as in theorem 2.2 then T satisfies all the conditions of lemma 2.1 and therefore T has a unique best proximity point.
Proof: Clearly from theorem 2.2 and (i)2.1 of lemma are satisfied.
To prove (ii) of lemma 2.1 assume $x_{n} \in A$, and $y_{n} \in B$ are bounded sequences, then $d\left(x_{n}, T x_{n}\right)$ and $d\left(y_{n}, T y_{n}\right) \rightarrow d(A, B)$ where x_{n} and y_{n} are sequences in A and B resoectively.
suppose $d\left(x_{n}, T x_{n}\right)-d(A, B) \rightarrow 0$
since x_{n}, y_{n} are bounded sequence, there exists subsequence n_{k} and $r>0$ such that $d\left(T x_{n_{k}}, T y_{n_{k}}\right)-$ $d(A, B) \rightarrow r>0$
clearly $r \in X_{d}$
let $r_{n_{k}}=d\left(T x_{n_{k}}, T y_{n_{k}}\right)-d(A, B)$ and
$s_{n_{k}}=d\left(x_{n_{k}}, y_{n_{k}}\right)-d(A, B)$
given $r_{n_{k}}-s_{n_{k}} \rightarrow 0$ as $k \rightarrow \infty$
$d\left(T x_{n_{k}}, T y_{n_{k}}\right)-d(A, B) \leq d\left(T x_{n_{k}}, T y_{n_{k}}\right)-d(A, B)$
therefore $r_{n_{k}} \leq \phi\left(s_{n_{k}}\right)$
now from (13) we have
$0>\phi\left(s_{n_{k}}\right)-s_{n_{k}}$
$=\phi\left(s_{n_{k}}\right)-r_{n_{k}}+r_{n_{k}}-s_{n_{k}}$
$\geq r_{n_{k}}-s_{n_{k}}$
since $r_{n_{k}}-s_{n_{k}} \rightarrow 0$ we have
$\operatorname{liminff}\left(\phi\left(s_{n_{k}}\right)-s_{n_{k}}\right)=0$
contradicting $\inf _{t \in\left[r_{0}, s\right]}(t-\phi(t))>0$ where $s_{n_{k}} \rightarrow r_{0}$.
This completes the proof.

References:

Suzuki T,Kikkawa M,Vefro C. The existence of best proximity points in metric spaces with the UC property UC.Nonlinear Anal 2009;71:2918-26.

Raj VS,Eldred A.A characterization of strictly convex space and applications. J optim theory Appl 2014;160:703-10.
Woug CS.Fixed point theorems for non-expansive mappings. J Math Anal Appl 1972;37:142-50.
Eldred A. Ph.D thesis. Madras:Indian Institutes of Technology; 2007.

