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ABSTRACT : In this paper, we establish a new convergence theorem for best proximity of weak contractions
in Branciari type generalized metric spaces under weak conditions.
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1. Introduction and Preliminaries:

The concept of generalized metric spaces, which is a generalization of netric spaces was first defined by
Branciari [1] in 2000. The generalization is via the fact that the triangle inequality is replaced by rectangular
inequality d(x,y) < d(x,u) + d(u,v) + d(v,y) for all pairwise distinct points x, y,u,v € X.

Afterwards many authors studied and extended the existence of fixed point results in such spaces [1-18].

In thus paper, we are to generalize well known best proximity point theorems.

For this we recall some basic definitions.

Definition:1.1 Let X be nonempty set and d: X X X — [0, o) be a mapping such that for all x,y € X and for
all distinct points u, v € X each of them different from x and y resoectively satisfying the following conditions:
Q) dx,y)=0iffx =y
(ii) d(x,y) = d(y,x)
(iii) d(x,y) < d(x,u) + d(u,v) + d(v,y) the rectangular inequality.
Then (X, d) is called a Branciari type generalized metric space.
Remark:1.1 Every metric spaces is a Branciari type generalized metric space, but the converse is not true [2].

Definition:1.2 Let (X, d) be a Branciari type generalized metric space and {x,,} be a sequence in X and x € X.
We call that
(i) {x,} is convergent iff d(x,, x) = 0 asn — oo (denoted by x,, = x)
(i) {x,} is a Cauchy sequence iff for each £ > 0 there exists a natural number N such that
d(xp, xy) < eforalln,m > N.
(iii) X is complete iff every Cauchy sequence is convergent in X.
In 2012, Lakzian and Samet [4] obtained a fixed point theorem of the generalized metric spaces.

Theorem:1.1 Let (X, d) be a Hausdorff and complete generalized metric space and Let T: X — X be a self
mapping satisfying ¥(d(Tx, Ty)) < ¥(d(x,y)) — ¢(d(x,y)) for all x,y € X where
(i) 1:[0,0) — [0, =) is a continuous and monotone nondecreasing function with ¢ (t) = 0 ifft = 0.
(i) ¢:[0,00) — [0, 00) is a continuous function with ¢(t) = 0ifft = 0.
Then T has a unique fixed point.
In 2013, Liu and Chai [8] gave a generalization of the above theorem.

Theorem:1.2 [5] Let (X, d) be a Hausdorff and complete generalized metric space and Let T: X — X be a self
mapping satisfying ¥(d(Tx, Ty)) < ¥(a;d(x,¥) + axd(x, Tx) + a;d (¥, Ty)) — p(a;d(x,y) + a,d(x, Tx) +
az;d(y,Ty)) forall x,y € X where
(M : [0, ) — [0, %) is a continuous and monotone nondecreasing function with ¢ (t) = 0 iff t = 0.
(i) ¢:[0,0) — [0, o) satisfying ltl_l’}: ¢(t) > 0forr > 0and 13;1 o) =0iffr=0
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(iii) a; =2 0(i=1.23)witha; +a,+a; <1.
Then T has a unique fixed point.
Later in 2021, [22] Zhicum and Guiwen found a result for generalized (i) — ¢)-weak contractions in Branciari
type generalized metric spaces.

Theorem: 1.3 [22] Let Let (X, d) be a Branciari type generalized metric space and Let T: X — X be a self
mapping satisfying w(d(Tx, Ty)) < w(ald(x, y) + a,d(x,Tx) + azd(y, Ty)) —¢(ad(x,y) +

a,d(x,Tx) + a;d(y,Ty)) forall x,y € X whereyp e Y and ¢ € @ and a; = 0(i = 1,2,3) witha;, + a, + a; <
1.

Then T has a unique fixed point.

Definition:1.3 [21] Ay = {x € A:d(x,y) = d(4,B),fory € B
B, ={y €B:d(x,y) =d(A,B),forx € A
where d(4,B) = inf{d(x,y):x € A,y € B}

Definition: 1.4[20] Let (4, B) be a pair of nonempty subsets of metric space (X, d) with A, # 0. Then the pair
(4, B) is said to have p —property iff for any x;,x, € Ay and y;,y, € By, d(x1,y1) = d(A,B) = d(xy,¥,)
Remark: 1.2 [20] It is easy to that for any nonempty subsets A of X, the pair (4, A) has the p —property.

2 Main Results:
Theorem: 2.1 Let (4, B) be a pair of nonempty subsets of a metric space such that A, is nonempty. Let T: 4 -
B be a mapping satisfying T (4,) © By. Suppose (d(Tx, Ty)) < ¥((a,d(x,y) + ad(x, Tx) +
asd(y,Ty)) — d(4,B)) — ¢((ayd(x,y) + a,d(x,Tx) + azd(y,Ty)) — d(A,B)) forall x e A,y € B
wherep e P and ¢ € @ and a; = 0(i = 1,2,3) witha, + a, + a; < 1.
Proof: Choose x, € A.
Since Tx, € T(4,) S By, there exists x; € A, such that d(x,, Tx,) = d(4, B).
Analogously, regarding the assumption, Tx, € T (4,) S B,
we determine x, € A, such that d(x,, Tx;) = d(4, B).
Recursively, we obtain a sequence (x;,) in A, satisfying d(x,+1,Tx,) = d(A,B) forallne........... 2)
Claim: d(xp, xp41) = 0
If xy = xy41, then xy is a best proximity point.
By the p-property, we have
d(Xns1, Xni2) = d(Txp, Txpiq)
Hence we assume that x,, # x,,, forall n € N.
Since d(x,41,Tx,) = d(4,B), from (1), we have foralln € N.
PY(dXn+1, Xn42)) = P(d(Txn, Txn11))
< l/)((ald(xn' xn+1) + azd(xn: Txn) + a3d(xn+1rTxn+1)) - d(A' B)) - ¢((a1d(xn' xn+1) + aZd(xn' Txn) +
asd(Xn11, TXn41)) = A(AB)) e (3) =Y((a, + ap + az)d(x,, Tx,) —
d(A,B)) — ¢((ay + a; + a3)d(x,, Tx,) — d(4, B))
< Y((d(xy, Txy) — d(4, B)) — p((ay + a; + a3)d(xn, Tx,) — d(4, B))
ie ¢p((ag + a, + az)d(x,, Tx,)) = d(A,B) if Y3, a; # 0, we get d(x,, x,41) = 0 a contradiction.
If ¥.3, a; = 0 we get from (3) that 1 (d(x,, x,41)) = 0
d(x,, xn41) = 0, contradicting our assumption
Therefore d(xp41,Xnt2) < d(xp, xp41) for any n € N and hence {d(x,,x,+1)} iS monotone decreasing
sequence of nonnegative real numbers, hence there exists r > 0 such that 71113)10 d(xy, Xpeq) =T

In the view of the fact from (2), for any n € N, we have

Y(d(Xnr1, Xne2)) < P(A (X, Xn11)) = (A (X, Xn41)),
Taking the limit as n — oo in the above inequality, and using the conditions of 1 and ¢ we have

Y(r) <Y(r) — ¢(r) which implies ¢p(r) =0

HeNCe M d (X, Xp01) = 0enenii i e @)
n—-oo

Next we show that (x,,) is a Cauchy sequence.

If otherwise there exists € > 0, for which we can find two sequences of positive integers (m;) and (n;) such

that for all positive integers my, > n, > k, d(xpm,, Xp,) = € and d(xp,, Xy, _,) < .

Now & < d(Xpm,, Xn,) < dXmyr Xny_,) + Ad(Xny_y» Xy,

thatis e < d(xp,, Xp,) < &+ d(xp,_,, Xn,)

Taking the limit as k — oo in the above inequality and using (4) we have

L P %)

n—oo
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AQain d(xpy, Xn,) < d@Xmy Xmpy ) + A0y Xngy) + A0y Xy )

Taking the limit as k — oo in the above inequalities and using (4) and (5) we have

,11_)1210 T ) I P (6)
Again d (X, , Xp,) < A (X Xngep) T A(Xnyyy Xny)

< d(xmk,xnk) + d(xnk,xnkH)

Letting k — oo in the above inequalities and using (4) and (5) we have

,ll_)rglo A Xy g) T €ttt @)

,ll_)rglo A Xy 1) T € ettt (8)
For x = X, , ¥ = Y, We have
Ay Txmy) — A(A,B) < d(Xmp Xmyy,) + QX TXimy,) — d(A, B)
= d(xmk’ xmk+1)
Similarly d(xy,, Txy,) — d(A,B) = d(Xy,, Xn,,,)-
Also d (X, Txp,) — d(A4, B) = d(xXp,, Xn,,,) and
Ay, Tx) — d(4,B) = d(xny, Xy, )
From (1) we have Y(d(xm,,,, Xn,,,)) = Y(d(Txp,, Txy,))

<y ((ald(xmk,xnk) + ayd (%, Txm,,) + a3d(xnk,Txnk)) —d(4, B)) ) ((ald(xmk, Xn,) +
azd(xmk,Txmk) + a3d(xnk, Txnk)) —d(4, B))
<y ((ald(xmk,xnk) + ayd (%, Txm,,) + a3d(xnk,Txnk))) —¢ ((ald(xmk, Xn,) + ayd (X, T, ) +

a3d(xnk, Txnk)))
It follows that
Y(d(Txm,, Txy,))

<y ((ald(xmk, X)) + apd (%, T, ) + a3d(xmk,Txmk+1)))

) <(a1d(xmk,xnk) + azd(xnk,Txnk+1) + a3d(xmk,Txmk+1)))
From (4), (5), (6) and (7) and letting k — oo in the above inequalities and using the conditions of ¥ and ¢, we
have ¥ (g) < yY(e) — ¢(e) which is contradiction by virtue of property ¢.
Hence {x,} is a Cauchy sequence.
Since {x,} € A and A is a closed subset of the complete metric space (X, d), there exists x* in A such that
X, = x*.
Putting x = x, and y = x* and since
d(x,, Tx*) < d(x,,x*) +d(x",Tx,) and
d(x*,Tx,) <d(x*,Tx")+d(Tx*,Tx,)
We have Y(d(x,41,Tx*) —d(A, B) < Yd(Tx,, Tx*))
< (@1d (@ 1) + 0d (X, Txo) + azd(x, Tx")) = d(A,B)) = ¢ (a1 () + @2 (2, T) +
a3d(x*,Tx*)) —d(4, B))
Taking the limit as n — oo in the above inequalities and using the conditions of i and ¢,we have
Y(d(x*,Tx*) —d(4,B)) <yY(d(x*,Tx*) —d(4,B)) — ¢(d(x*,Tx*) — d(A,B))
which implies that d(x*, Tx*) = d(4, B)
Hence x* is a best proximity point of T.
For the unigueness

Let p and g be two best proximity points and suppose that p # q,
Then putting x = p and y = q in (1) we obtain

P (d(Tp,Tq)) <y ((ald(p, q) + azd(p, Tp) + a3d(q, Tq)) —d(4, B)) —¢ ((ald(p, q) + azd(p, Tp) +

asd(q, Tq)) —d(A, B))
thatis Y (d(p,q)) < ¥(d(® q)) — ¢(d®, 7))

which is contradiction by virtue of a property ¢.

Therep =q
This completes the proof.
Example:2.1 Let X = AUB,where A = &’%’i'%} and B = {1,2}

Define the generalized metric space on X as follows:
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d(x,y),x € A,y€EB
0, xeA,yeBwithx=y

1 1 1
0.3,x=5,y=50rx=1,y=

d(xy) = 0.2,x =%,y =§orx =§

<<
o

WIRr B IR G| R

1 1 1
0'6’x - E;y - ZOT‘x = E
lx —yl,x €A,y €B
Then (X, d) is a Branciari type generalized metric space, but it is not metric space.
Infact 0.6 = d (3,3) >d (1,1) +d (1,1) =05
24 2

3 3 4
Let T: A — B is defined by
1

E,XE[LZ]
Tx = x€[r,2,%

1
4’ 2’374
1

]
1
) X ==
3 5
Define (t) = £, ¢(t) = ,¢ € [0, )
then T satisfies
Y(d(Tx, Ty)) < P(ad(x, y) + a,d(x, Tx) + azd(y,Ty)) — ¢p(a,d(x,y) + a,d(x, Tx) + azd(y, Ty)) for all
x €A,y € Bwherea, =0.4,a, =0.4,a; = 0.2.
Y(d(Tx, Ty)) < P((a1d(x, ) + ayd(x, Tx) + azd(y, Ty)) — d(4, B)) — ¢p((a,d(x,y) + a,d(x, Tx) +
Thus all the hypothesis of theorem are satisfied and T has a best proximity point.
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