Research Article

BEST PROXIMITY POINT THOREM FOR GENERALIZED (ψ_i) -WEAK CONTRACTIONS IN BRANCIARI TYPE GENERALIZED METRIC SPACES

Arul Ravi S

Assistant Professor,

Department of Mathematics, St. Xavier's College (Autonomous),

Palayamkottai

ammaarulravi@gamil.com

Article History: Received: 11 november 2020; Accepted: 27 December 2020; Published online: 05 April 2021

ABSTRACT : In this paper, we establish a new convergence theorem for best proximity of weak contractions in Branciari type generalized metric spaces under weak conditions.

Keywords: Branciari type generalized metric spaces, Best Proximity point, p -property

1. Introduction and Preliminaries:

The concept of generalized metric spaces, which is a generalization of netric spaces was first defined by Branciari [1] in 2000. The generalization is via the fact that the triangle inequality is replaced by rectangular inequality $d(x,y) \le d(x,u) + d(u,v) + d(v,y)$ for all pairwise distinct points $x,y,u,v \in X$.

Afterwards many authors studied and extended the existence of fixed point results in such spaces [1-18]. In thus paper, we are to generalize well known best proximity point theorems.

For this we recall some basic definitions.

Definition:1.1 Let X be nonempty set and $d: X \times X \to [0, \infty)$ be a mapping such that for all $x, y \in X$ and for all distinct points $u, v \in X$ each of them different from x and y resoectively satisfying the following conditions:

- (i) d(x,y) = 0 iff x = y
- (ii) d(x,y) = d(y,x)
- (iii) $d(x,y) \le d(x,u) + d(u,v) + d(v,y)$ the rectangular inequality.

Then (X, d) is called a Branciari type generalized metric space.

Remark:1.1 Every metric spaces is a Branciari type generalized metric space, but the converse is not true [2].

Definition:1.2 Let (X, d) be a Branciari type generalized metric space and $\{x_n\}$ be a sequence in X and $x \in X$. We call that

- (i) $\{x_n\}$ is convergent iff $d(x_n, x) \to 0$ as $n \to \infty$ (denoted by $x_n \to x$)
- (ii) $\{x_n\}$ is a Cauchy sequence iff for each $\varepsilon > 0$ there exists a natural number N such that $d(x_n, x_m) < \varepsilon$ for all n, m > N.
- (iii) *X* is complete iff every Cauchy sequence is convergent in *X*.

In 2012, Lakzian and Samet [4] obtained a fixed point theorem of the generalized metric spaces.

Theorem:1.1 Let (X, d) be a Hausdorff and complete generalized metric space and Let $T: X \to X$ be a self mapping satisfying $\psi(d(Tx, Ty)) \le \psi(d(x, y)) - \phi(d(x, y))$ for all $x, y \in X$ where

- (i) $\psi: [0, \infty) \to [0, \infty)$ is a continuous and monotone nondecreasing function with $\psi(t) = 0$ iff t = 0.
- (ii) $\phi: [0, \infty) \to [0, \infty)$ is a continuous function with $\phi(t) = 0$ iff t = 0.

Then T has a unique fixed point.

In 2013, Liu and Chai [8] gave a generalization of the above theorem.

Theorem:1.2 [5] Let (X, d) be a Hausdorff and complete generalized metric space and Let $T: X \to X$ be a self mapping satisfying $\psi(d(Tx, Ty)) \le \psi(a_1d(x, y) + a_2d(x, Tx) + a_3d(y, Ty)) - \phi(a_1d(x, y) + a_2d(x, Tx) + a_3d(y, Ty))$ for all $x, y \in X$ where

- (i) $\psi: [0, \infty) \to [0, \infty)$ is a continuous and monotone nondecreasing function with $\psi(t) = 0$ iff t = 0.
- (ii) $\phi: [0, \infty) \to [0, \infty)$ satisfying $\lim_{t \to \infty} \phi(t) > 0$ for r > 0 and $\lim_{t \to \infty} \phi(t) = 0$ iff r = 0

*Corresponding author: Arul Ravi S

Assistant Professor.

Department of Mathematics, St. Xavier's College (Autonomous),

Palayamkottai

ammaarulravi@gamil.com

```
(iii) a_i \ge 0 (i = 1,2,3) with a_1 + a_2 + a_3 \le 1.
```

Then T has a unique fixed point.

Later in 2021, [22] Zhicum and Guiwen found a result for generalized $(\psi - \phi)$ -weak contractions in Branciari type generalized metric spaces.

Theorem: 1.3 [22] Let Let (X,d) be a Branciari type generalized metric space and Let $T: X \to X$ be a self mapping satisfying $\psi(d(Tx,Ty)) \le \psi(a_1d(x,y)+a_2d(x,Tx)+a_3d(y,Ty)) - \phi(a_1d(x,y)+a_2d(x,Tx)+a_3d(y,Ty))$ for all $x,y \in X$ where $\psi \in \Psi$ and $\phi \in \Phi$ and $\phi \in$

Then T has a unique fixed point.

```
Definition:1.3 [21] A_0 = \{x \in A : d(x, y) = d(A, B), \text{ for } y \in B \}
B_0 = \{y \in B : d(x, y) = d(A, B), \text{ for } x \in A \}
where d(A, B) = \inf\{d(x, y) : x \in A, y \in B\}
```

Definition: 1.4[20] Let (A, B) be a pair of nonempty subsets of metric space (X, d) with $A_0 \neq 0$. Then the pair (A, B) is said to have p —property iff for any $x_1, x_2 \in A_0$ and $y_1, y_2 \in B_0$, $d(x_1, y_1) = d(A, B) = d(x_1, y_2)$ **Remark: 1.2** [20] It is easy to that for any nonempty subsets A of X, the pair (A, A) has the p —property.

2 Main Results:

```
Theorem: 2.1 Let (A,B) be a pair of nonempty subsets of a metric space such that A_0 is nonempty. Let T:A \to B be a mapping satisfying T(A_0) \subset B_0. Suppose \psi \big( d(Tx,Ty) \big) \leq \psi \big( \big( a_1 d(x,y) + a_2 d(x,Tx) + a_3 d(y,Ty) \big) - d(A,B) \big) - \phi \big( \big( a_1 d(x,y) + a_2 d(x,Tx) + a_3 d(y,Ty) \big) - d(A,B) \big) for all x \in A, y \in B where \psi \in \Psi and \phi \in \Phi and
```

Proof: Choose $x_0 \in A$.

```
Since Tx_0 \in T(A_0) \subseteq B_0, there exists x_1 \in A_0 such that d(x_1, Tx_0) = d(A, B).
```

Analogously, regarding the assumption, $Tx_1 \in T(A_0) \subseteq B_0$,

we determine $x_2 \in A_0$ such that $d(x_2, Tx_1) = d(A, B)$.

Recursively, we obtain a sequence (x_n) in A_0 satisfying $d(x_{n+1}, Tx_n) = d(A, B)$ for all $n \in \dots (2)$

Claim: $d(x_n, x_{n+1}) \rightarrow 0$

If $x_N = x_{N+1}$, then x_N is a best proximity point.

By the p-property, we have

$$d(x_{n+1}, x_{n+2}) = d(Tx_n, Tx_{n+1})$$

Hence we assume that $x_n \neq x_{n+1}$ for all $n \in \mathbb{N}$.

Since $d(x_{n+1}, Tx_n) = d(A, B)$, from (1), we have for all $n \in N$.

 $\psi(d(x_{n+1},x_{n+2})) = \psi(d(Tx_n,Tx_{n+1}))$

$$\leq \psi(\left(a_1d(x_n, x_{n+1}) + a_2d(x_n, Tx_n) + a_3d(x_{n+1}, Tx_{n+1})\right) - d(A, B)) - \phi(\left(a_1d(x_n, x_{n+1}) + a_2d(x_n, Tx_n) + a_3d(x_{n+1}, Tx_{n+1})\right) - d(A, B))...(3)$$

$$= \psi((a_1 + a_2 + a_3)d(x_n, Tx_n) - a_3d(x_n, Tx_n) + a_3d(x_n, Tx_n) - a_3d(x_n, Tx_n) -$$

$$d(A,B)$$
) - $\phi((a_1 + a_2 + a_3)d(x_n, Tx_n) - d(A,B))$

$$\leq \psi((d(x_n, Tx_n) - d(A, B)) - \phi((a_1 + a_2 + a_3)d(x_n, Tx_n) - d(A, B))$$

ie
$$\phi((a_1 + a_2 + a_3)d(x_n, Tx_n)) = d(A, B)$$
 if $\sum_{i=1}^3 a_i \neq 0$, we get $d(x_n, x_{n+1}) = 0$ a contradiction.

If $\sum_{i=1}^3 a_i = 0$ we get from (3) that $\psi(d(x_n, x_{n+1})) = 0$

 $d(x_n, x_{n+1}) = 0$, contradicting our assumption

Therefore $d(x_{n+1}, x_{n+2}) < d(x_n, x_{n+1})$ for any $n \in \mathbb{N}$ and hence $\{d(x_n, x_{n+1})\}$ is monotone decreasing sequence of nonnegative real numbers, hence there exists $r \ge 0$ such that $\lim_{n \to \infty} d(x_n, x_{n+1}) = r$.

In the view of the fact from (2), for any $n \in N$, we have

$$\psi(d(x_{n+1},x_{n+2})) \le \psi(d(x_n,x_{n+1})) - \phi(d(x_n,x_{n+1})),$$

Taking the limit as $n \to \infty$ in the above inequality, and using the conditions of ψ and ϕ we have

 $\psi(r) \le \psi(r) - \phi(r)$ which implies $\phi(r) = 0$

Hence
$$\lim_{n\to\infty} d(x_n, x_{n+1}) = 0$$
....(4)

Next we show that (x_n) is a Cauchy sequence.

If otherwise there exists $\varepsilon > 0$, for which we can find two sequences of positive integers (m_k) and (n_k) such that for all positive integers $m_k > n_k > k$, $d(x_{m_k}, x_{n_k}) \ge \varepsilon$ and $d(x_{m_k}, x_{n_{k-1}}) < \varepsilon$.

Now
$$\varepsilon \le d(x_{m_k}, x_{n_k}) \le d(x_{m_k}, x_{n_{k-1}}) + d(x_{n_{k-1}}, x_{n_k}),$$

that is
$$\varepsilon \leq d(x_{m_k}, x_{n_k}) < \varepsilon + d(x_{n_{k-1}}, x_{n_k})$$

Taking the limit as $k \to \infty$ in the above inequality and using (4) we have

$$\lim_{n \to \infty} d(x_{m_k}, x_{n_k}) = \varepsilon. \tag{5}$$

Again
$$d(x_{m_k}, x_{n_k}) \leq d(x_{m_k}, x_{m_{k+1}}) + d(x_{m_{k+1}}, x_{n_{k+1}}) + d(x_{n_{k+1}}, x_{n_k})$$
. Taking the limit as $k \to \infty$ in the above inequalities and using (4) and (5) we have
$$\lim_{k \to 0} d(x_{m_k}, x_{n_k}) = \delta (x_{m_k}, x_{n_{k+1}}) + d(x_{n_{k+1}}, x_{n_k}) \leq d(x_{m_k}, x_{n_k}) + d(x_{n_k}, x_{n_{k+1}}) + d(x_{n_{k+1}}, x_{n_k}) \leq d(x_{m_k}, x_{n_k}) + d(x_{n_k}, x_{n_{k+1}}) + d(x_{n_k}, x_{n_{k+1}}) \leq d(x_{m_k}, x_{n_k}) + d(x_{n_k}, x_{n_{k+1}}) + d(x_{n_k}, x_{n_k}) + d(x_{n_k}, x_{n_k}) + d(x_{n_k}, x_{n_{k+1}}) + d(x_{n_k}, x_{n_{k+1}}) + d(x_{n_k}, x_{n_k}) + d(x_{n_k}, x_{n_$$

Define the generalized metric space on *X* as follows:

$$d(x,y) = \begin{cases} d(x,y), x \in A, y \in B \\ 0, & x \in A, y \in B \text{ with } x = y \\ 0.3, x = \frac{1}{2}, y = \frac{1}{3} \text{ or } x = \frac{1}{4}, y = \frac{1}{5} \\ 0.2, x = \frac{1}{2}, y = \frac{1}{5} \text{ or } x = \frac{1}{3}, y = \frac{1}{4} \\ 0.6, x = \frac{1}{2}, y = \frac{1}{4} \text{ or } x = \frac{1}{5}, y = \frac{1}{3} \\ |x - y|, x \in A, y \in B \end{cases}$$

Then (X, d) is a Branciari type generalized metric space, but it is not metric space.

In fact
$$0.6 = d\left(\frac{1}{2}, \frac{1}{4}\right) > d\left(\frac{1}{2}, \frac{1}{3}\right) + d\left(\frac{1}{3}, \frac{1}{4}\right) = 0.5$$

Let $T: A \to B$ is defined by

$$Tx = \begin{cases} \frac{1}{5}, & x \in [1,2] \\ \frac{1}{4}, & x \in [\frac{1}{2}, \frac{1}{3}, \frac{1}{4}] \\ \frac{1}{3}, & x = \frac{1}{5} \end{cases}$$
Define $\psi(t) = t, \phi(t) = \frac{t}{5}, t \in [0, \infty)$

 $\psi(d(Tx,Ty)) \leq \psi(a_1d(x,y) + a_2d(x,Tx) + a_3d(y,Ty)) - \phi(a_1d(x,y) + a_2d(x,Tx) + a_3d(y,Ty)) \text{ for all } x \in A, y \in B \text{ where } a_1 = 0.4, a_2 = 0.4, a_3 = 0.2.$ $\psi(d(Tx,Ty)) \leq \psi((a_1d(x,y) + a_2d(x,Tx) + a_3d(y,Ty)) - d(A,B)) - \phi((a_1d(x,y) + a_2d(x,Tx) + a_3d(y,Ty))) + d(A,B)) + \phi((a_1d(x,y) + a_2d(x,Tx) + a_3d(y,Ty))) + \phi((a_1d(x,y) + a_2d(x,Tx) + a_3d(y,Tx))) + \phi((a_1d(x,y) + a_2d(x,Tx) + a_3d(y,Tx))) + \phi((a_1d(x,y) + a_2d(x,Tx) + a_3d(y,Tx))) + \phi((a_1d(x,y) + a_2d(x,Tx) + a_3d(x,Tx)) + \phi((a_1d(x,y) + a_2d(x,Tx) + a_3d(x,Tx))$

$$\psi(d(Tx,Ty)) \le \psi((a_1d(x,y) + a_2d(x,Tx) + a_3d(y,Ty)) - d(A,B)) - \phi((a_1d(x,y) + a_2d(x,Tx) + a_3d(y,Ty)) - d(A,B))$$

Thus all the hypothesis of theorem are satisfied and T has a best proximity point.

References:

Branciari.A, A fixed point theorem of Banach Caccippoli type on a class of gener-alized metric spaces, Publ Math Debrecen, 57, 31-37 (2000).

Azam.A, Arshac.M, Kannan fixed point theorem on generalized metric spaces, J. Nonlinear Sci Appl 1(1), 45-48(2008).

Sarma IR, Rao.M, Rao.SS, contraction over generalized metric spaces, J.Nonlinear Sci.Appl 2(3), 180-182(2009).

Lakzian.H, Samet.B, Fixed point for (ψ) -weakly contractive mappings in gener-alized metric spaces, Appl Math lett 25, 902-906(2012).

Barl.C.D, Vetro.P, Common fixed point of generalized metric spaces, Appl Mathcompt 218, 7322-7325 (2012).

Aydi.H, Karapinar.E, Lakzian.H, Fixed point results of generalized metric spaces, Math Sci 6, 46 (2012).

Erhan.IM, Karapinar.E, Sekulic.T, Fixed point of (ψ) contraction rectangular metric spaces, Fixed point Theory Appl 2012:138.

Liu.B, Chai.G.O, Fixed point theorem for weakly contractive mappings in general-ized metric spaces, Huber Shifan Xueyuan 33(1) 60-69 (2013).

Caki.N, Coincidence and common fixed point theorem for (ψ_{\bullet}) wealky contractive mappings in generalized metric spaces, Fiomat 27(8) 1415-1423 (2013).

Prainar.PD, Fixed point theorems for generalized contractive mappings in metric spaces, J.Fixed point Theory Appl, 22(21) 21-27 (2020).

Eshraghisamani.M, Vaazpour.S.M, Asadi.M, New fixed point results on Branciari metric spaces, Math Anal 8(6) 132-141 (2017).

Eshraghisamani.M, Vaazpour.S.M, Asadi.M, New fixed point results with α-admissible contractions on b-Branciari metric spaces, J.Inequal Spec Funct 9(4) 101-112 (2012). Younis.M, Singi.D, Asadi.M, Josh.V, Results on contractions of Reich type in graphical b-metric spaces with applications, Fiomat 33(37) 5723-5735 (2019). [14].Karapinar.E, Some fixed points results on Branciari metric spaces via implicit functions, Carpath J.Math 31(3), 339-348 (2015).

Ahmad. AJ, Karapinar.E, Some common fixed point results in rectangular metric spaces, Int.J.Anal 2013, Article ID 307234 (2013).

Karapinar.E, Pitea.A, on α - ψ -Geraghty contraction type mappings on quasi-Branciari metric spaces, J.Nonlinear Convex.Anal 17(7) 1291-1301 (2016). Karapinar.E, Aydi.H, Samet.B, Fixed points for generalized $(\alpha - \psi)$ contractions on generalized metric spaces, Inequal Appl 2014, 229(2014).

Alghamdi.MA, Chen.CM, Karapinar.E, A generalized weaker $(\alpha - \phi - \psi)$ contrac-

BEST PROXIMITY POINT THOREM FOR GENERALIZED (ψ ,)-WEAK CONTRACTIONS IN BRANCIARI TYPE GENERALIZED METRIC SPACES

- tive mappings and releated fixed point results in complete generalized metric spaces. Fixed point Theory Appl. Anal 2014 Article ID 985080 (2014).
- Dutta.PN, Choudhary.BS, A generalization of contraction principle in metric spaces, Fixed point theory Appl, 2008 Article ID 406368, 8 pages (2008).
- Sankar Raj.V, A Best Proximity point theorem for weakly contractive non-selfmappings, Nonlinear Analysis, 74(2011) 4804-4808.
- Arul Ravi.S, Best Proximity point theorem for (ψ, ϕ) -weak contractions, International Journal of Mathematics Archive, 11(9), 2020, 1-4.

Zhicun Xue, GuiWen LV, A fixed point theorem for generalized (ψ, ϕ) -weak contractions in Branciari type generalized metric spaces, Fixed point theory Algorithms Sci.Eng (2021) 2021:1