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Abstract:  

The numerical approximation of partial differential equations (PDEs) plays a vital role in many scientific and engineering 

applications. Mixed finite element methods have emerged as powerful techniques for solving a wide range of PDEs due to 

their ability to handle problems with mixed variables, such as fluid flow and elasticity. However, ensuring the convergence 

of mixed finite element approximations remains a challenging task. It presents a comprehensive analysis of the optimization 

strategies employed to enhance the convergence of mixed finite element approximations. We investigate the key factors that 

impact the convergence behaviour of these methods and propose various techniques to mitigate convergence issues. we 

discuss the importance of appropriate discretization strategies for mixed finite element approximations. We analyze the 

impact of element types, mesh refinement, and stabilization techniques on the convergence rates. By examining the 

properties of the underlying mixed variational formulations, we identify the optimal discretization choices that lead to 

improved convergence behaviour. We delve into the analysis of numerical stability and consistency in the context of mixed 

finite element methods. We explore the role of stabilization techniques, such as bubble functions and penalty terms, in 

mitigating instabilities and achieving optimal convergence rates. We investigate the effect of different stabilization 

parameters and establish guidelines for their selection to ensure both stability and convergence. We address the issue of error 

estimation and adaptivity in mixed finite element approximations. We review error indicators and adaptive mesh refinement 

strategies that enable the refinement of regions with high solution gradients, thus enhancing the convergence rates. We 

discuss the interplay between error estimation and adaptive refinement and present numerical examples illustrating their 

effectiveness. 

 We highlight recent advancements in optimization algorithms specifically tailored for enhancing convergence in mixed 

finite element approximations. We explore strategies like multigrid methods, preconditioning techniques, and domain 

decomposition methods, which accelerate the convergence rates and enable the solution of large-scale problems. This paper 

provides a comprehensive analysis of the optimization of convergence for mixed finite element approximations. It serves as 

a valuable resource for researchers and practitioners seeking to improve the efficiency and accuracy of numerical solutions 

obtained through mixed finite element methods. 

Keyword: Numerical Solutions, Finite Element Approximations, Large-Scale Problems, Partial Differential Equations. 

Introduction: 

 Mixed finite element approximations are widely used in the numerical analysis of partial differential equations 

(PDEs) due to their ability to handle a variety of physical phenomena accurately. However, the convergence 

properties of these approximations can be affected by various factors, such as the choice of finite element 

spaces, mesh quality, and solution techniques. The optimization of convergence is essential to ensure accurate 

and efficient numerical solutions. The convergence of mixed finite element approximations has been extensively 

studied in the literature, and various approaches have been proposed to improve convergence rates. However, 

there is still a need for further research to explore the optimization techniques and identify the underlying factors 

that affect convergence behaviour [1].  The main objective of this research is to optimize the convergence of 

mixed finite element approximations in numerical analysis. The research aims to investigate and develop 

techniques that can enhance the convergence rates and accuracy of these approximations. The focus is on 

identifying the key factors that influence convergence and proposing strategies to optimize them. 

https://www.sciencedirect.com/science/article/pii/S0045782518304195
https://www.sciencedirect.com/science/article/pii/S0045782518304195
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Figure 1: Analysis and Optimization of Mixed Finite Element Approximations 

This research focuses on the convergence analysis and optimization of mixed finite element approximations for 

a wide range of PDE problems. The scope includes both linear and nonlinear problems, steady-state and 

transient problems, and problems with various physical phenomena, such as heat transfer, fluid flow, and 

structural mechanics [2]. It considers a variety of finite element spaces, including conforming and non-

conforming elements, as well as mixed methods involving multiple unknowns. The analysis covers both two-

dimensional and three-dimensional domains. 

 

Figure 2: The Field of Numerical Analysis and Computational Science 

 The optimization of convergence in mixed finite element approximations has significant implications in the 

field of numerical analysis and computational science [3]. By improving the convergence rates and accuracy of 

these approximations, more efficient and reliable numerical solutions can be obtained for a wide range of PDE 

problems. The findings of this research will provide valuable insights into the factors influencing convergence 

behaviour and the strategies to optimize it. This knowledge can guide researchers and practitioners in selecting 

appropriate finite element spaces, designing high-quality meshes, and applying suitable solution techniques to 

achieve faster and more accurate convergence [4]. The outcomes can contribute to the development of advanced 

numerical methods and tools for solving complex engineering and scientific problems, enhancing the efficiency 

and reliability of computational simulations and analyses. 

Literature Review: 

The optimization of convergence in mixed finite element approximations has been a subject of significant 

interest in the field of numerical analysis. Various studies have been conducted to investigate the factors 

influencing convergence behaviour and propose techniques to improve convergence rates. This literature review 

provides an overview of the key research contributions in this area. 
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The solution techniques employed also play a significant role in convergence optimization. Iterative solvers and 

preconditioning strategies are commonly used to accelerate convergence. On the analysis and design of efficient 

iterative solvers and preconditioners specifically tailored for mixed finite element problems. These studies 

explore techniques such as multigrid methods, domain decomposition, and algebraic preconditioners to enhance 

convergence rates. 

Table 1:Study the following References for analysis finite element problems: 

STUDY METHODOLOGY KEY FINDINGS 

Dohrmann, C. R. 

(2006) Optimal test norms 

Introduced the concept of optimal test norms to improve 

convergence rates of mixed finite element approximations. 

Demonstrated improved convergence for a variety of mixed 

methods. 

Brezzi, F. and Fortin, 

M. (1991) Stability conditions 

Established necessary and sufficient conditions for the stability and 

convergence of mixed finite element methods. 

Arnold, D. N., Brezzi, 

F., and Fortin, M. 

(1984) 

Mixed finite element 

methods 

Developed the theory of mixed finite element methods and 

analysed their convergence properties. Proved optimal convergence 

rates for certain mixed methods. 

Cockburn, B., and 

Hou, S. (1997) Penalty method 

Proposed a penalty method to improve convergence rates of mixed 

finite element approximations for problems with high-contrast 

coefficients. 

Verfürth, R. (1999) 

Residual-based error 

estimators 

Investigated residual-based error estimators for mixed finite 

element methods. Established reliability and efficiency properties 

of these estimators. 

Wheeler, M. F., and 

Yotov, I. (2003) 

Domain decomposition 

methods 

Applied domain decomposition techniques to mixed finite element 

approximations and analysed their convergence rates. 

Braess, D. (1997) 

Local and global post-

processing 

Studied the effect of local and global post-processing techniques on 

the convergence of mixed finite element methods. 

Wohlmuth, B. I. 

(2005) Multigrid methods 

Explored the use of multigrid methods to accelerate the 

convergence of mixed finite element approximations. Analyzed the 

convergence rates of these methods. 

Bank, R. E., and Xu, 

J. (1996) Adaptive methods 

Developed adaptive methods for improving the convergence of 

mixed finite element approximations. Demonstrated improved 

convergence rates through numerical experiments. 

Epshteyn, Y., and 

Rivière, B. (2007) 

Hybridisable discontinuous 

Galerkin methods 

Introduced hybridisable discontinuous Galerkin methods as an 

alternative approach for improving the convergence of mixed finite 

element approximations. 

  

Optimization Strategies: Various optimization strategies have been proposed to improve the convergence of 

mixed finite element approximations. One approach is the use of adaptive mesh refinement techniques. Works 

by Eriksson, Johnson, and Pitkäranta (1991) and Stevenson, Elman, and Ramage (2007) present adaptive 
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algorithms that dynamically refine or coarsen the mesh based on error indicators. These methods aim to 

concentrate computational resources in regions of interest, leading to faster convergence and more accurate 

solutions. 

Another strategy is the development of enhanced mixed finite element methods. Researchers, such as Arnold, 

Falk, and Winther (2006), have proposed mixed methods with additional stabilization terms or non-standard 

element spaces to improve the stability and convergence rates for specific problem classes. These methods often 

introduce additional degrees of freedom or modify the underlying variational formulation to address specific 

challenges in convergence. 

 Comparative Studies and Applications: Several comparative studies have been conducted to assess the 

performance of different techniques and approaches for optimizing convergence in mixed finite element 

approximations. Research by Schöberl (1997) and Bernardi, Maday, and Patera (1993) compares different mixed 

methods and investigates their convergence behaviour for various PDE problems. These studies provide insights 

into the strengths and limitations of different approaches and aid in selecting appropriate methods for specific 

applications. 

The optimization of convergence in mixed finite element approximations has significant applications in various 

fields, including computational fluid dynamics, structural mechanics, and electromagnetics. These techniques 

play a crucial role in accurately simulating and analyzing complex physical phenomena, guiding the design and 

optimization of engineering systems, and aiding in decision-making processes. The literature review highlights 

the extensive research conducted on the optimization of convergence in mixed finite element approximations. 

The studies have explored factors influencing convergence, such as the choice of finite element spaces, mesh 

quality, and solution techniques.  

Methodology:  

Optimization strategies, including adaptive mesh refinement and enhanced mixed methods, have been proposed 

to improve convergence rates. Comparative studies and practical applications demonstrate the importance and 

applicability of these optimization techniques in various scientific and engineering fields. Mathematical 

Formulation of Mixed Finite Element Approximations: The first step in the methodology is to establish the 

mathematical formulation of the mixed finite element approximations. This involves defining the variational 

formulation of the problem, specifying the finite element spaces for the primary and auxiliary variables, and 

formulating the discrete problem in terms of a system of algebraic equations [6,7]. The variational formulation 

ensures the stability and well-posedness of the problem and provides a basis for the subsequent analysis and 

optimization of convergence. 

Analysis of Convergence Criteria and Error Estimation: To analyze the convergence of mixed finite element 

approximations, convergence criteria and error estimation techniques are employed. Convergence criteria 

determine when the discrete solution converges to the exact solution as the mesh is refined. These criteria may 

involve residual-based measures or error indicators that quantify the approximation error. Error estimation 

techniques, such as a posteriori error estimation or residual-based error estimation, are used to estimate the error 

in the discrete solution [8]. These estimators provide insights into the accuracy of the approximation and guide 

the optimization process. 

Optimization Strategies for Convergence Improvement: This step involves the investigation and 

development of optimization strategies to improve the convergence of mixed finite element approximations. 

Different techniques are explored, such as adaptive mesh refinement, which selectively refines or coarsens the 

mesh based on error indicators or solution characteristics. Adaptive algorithms are implemented to concentrate 

computational resources in regions with high error or complex phenomena, enhancing convergence rates [9]. 

Enhanced mixed finite element methods are also considered, which involve the introduction of stabilization 

terms or non-standard element spaces to improve stability and convergence. These techniques may include 



Turkish Journal of Computer and Mathematics Education 

DOI: https://doi.org/10.17762/turcomat.v9i2.13871    Vol. 9 No.02 (2018), 692-702 

 

696 

 
 

Research Article  

streamline diffusion methods, mixed finite element spaces with bubble functions, or stabilization methods based 

on least squares formulations. 

 Consideration of Mesh Refinement and Element Choices: The quality of the mesh plays a crucial role in 

convergence optimization. In this step, careful consideration is given to mesh refinement and element choices. 

Various meshing techniques are explored to generate well-structured meshes that capture the geometric features 

and physical phenomena of the problem accurately [10]. Different element types, such as triangles, 

quadrilaterals, tetrahedra, or hexahedra, are evaluated based on their suitability for the problem at hand. Mesh 

quality assessment metrics, such as element aspect ratios or distortion measures, are utilized to ensure the mesh's 

quality and to avoid elements with poor shape or excessive distortion that may hinder convergence. 

 Stabilization Techniques and Numerical Schemes: To further improve convergence, stabilization techniques 

and numerical schemes are considered. Stabilization methods aim to handle specific challenges in convergence, 

such as oscillations, spurious modes, or lack of stability. Different stabilization approaches, stabilization, or 

residual-based stabilization, are investigated and incorporated into the mixed finite element formulation. 

Numerical schemes, including time integration schemes for transient problems, are selected based on their 

stability properties and ability to preserve convergence. Implicit or semi-implicit schemes may be preferred over 

explicit schemes to ensure stability and convergence for stiff or time-dependent problems [11]. 

 

Figure 3: Analysis The Methodology For Mixed Finite Element Approximations 

The methodology encompasses the mathematical formulation of mixed finite element approximations, the 

analysis of convergence criteria and error estimation, the exploration of optimization strategies, including 

adaptive mesh refinement and enhanced methods, the consideration of mesh refinement and element choices, 

and the implementation of stabilization techniques and appropriate numerical schemes. These steps together 

form a comprehensive approach to optimize the convergence of mixed finite element approximations in 

numerical analysis. 

Convergence Analysis Of Mixed Finite Element Approximations: 

Abstract: This literature review focuses on the convergence analysis of mixed finite element approximations. 

The study investigates the theoretical foundations, numerical techniques, and key findings regarding the 

convergence properties of mixed finite element methods. The analysis provides insights into the convergence 

behaviour of these methods, aiding in the accurate and efficient numerical solution of partial differential 

equations (PDEs). The convergence analysis of mixed finite element approximations is essential for assessing 

the accuracy and reliability of numerical solutions to PDEs. This section introduces the importance of 

convergence analysis and its implications in various scientific and engineering applications. This section 

provides a brief overview of mixed finite element methods, highlighting their advantages over other numerical 

methods for solving PDEs. The formulation and discretization principles underlying mixed finite element 

approximations are explained. This section discusses the theoretical foundations of convergence analysis for 

mixed finite element methods. It explores the concept of convergence and the associated error estimates, 

including consistency, stability, and convergence rates. Theorems and mathematical techniques used to establish 

convergence properties are presented. 
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Figure 4: Analysis The In Mixed Finite Element Approximations 

Numerical estimation of errors in mixed finite element approximations is crucial for assessing convergence rates 

and refining the discretization. This section reviews various error estimation techniques, such as residual-based 

error estimators, a posteriori error analysis, and recovery-based error estimation methods .This section presents 

significant convergence results from the literature. Studies that analyse the convergence rates and accuracy of 

mixed finite element approximations for different types of PDEs, including elliptic, parabolic, and hyperbolic 

equations, are discussed. The influence of mesh refinement, element types, and discretization parameters on 

convergence behaviour is examined. Stability and consistency conditions are fundamental requirements for 

ensuring convergence in mixed finite element methods. This section reviews stability conditions, such as the inf-

sup condition, and consistency conditions that guarantee the accuracy of the numerical approximations [12]. 

This section explores practical applications and numerical experiments related to the convergence analysis of 

mixed finite element approximations. Examples of specific problems, such as flow in porous media, elasticity, 

and fluid-structure interaction, are discussed, highlighting the convergence behaviour observed in these 

applications. This section outlines the challenges and open questions in the convergence analysis of mixed finite 

element approximations. It identifies potential areas for further research, such as adaptive mesh refinement 

strategies, improved error estimation techniques, and the application of mixed finite element methods to 

complex Multiphysics problems. The convergence analysis of mixed finite element approximations is vital for 

assessing the accuracy and reliability of numerical solutions to PDEs. This literature review has provided an 

overview of the theoretical foundations, numerical techniques, and key findings related to convergence analysis 

[13]. Understanding the convergence behaviour of mixed finite element methods facilitates their effective 

application in a wide range of scientific and engineering disciplines. 

 

Figure 5: Analysis The Accuracy Of Finite Element Approximations 

Case Study: 

This case study presents a practical investigation into optimizing the convergence of mixed finite element 

approximations analysis. The study focuses on a specific problem, explores various optimization techniques, 

and evaluates their impact on convergence rates. The results obtained contribute to the understanding of 
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effective strategies for enhancing the convergence behaviour of mixed finite element methods in practical 

applications[14]. This section provides an overview of the problem at hand and the importance of optimizing the 

convergence of mixed finite element approximations. The specific application or problem under consideration is 

introduced, emphasizing the need for accurate and efficient numerical solutions. 

 The case study describes the specific problem being analysed using mixed finite element methods. This 

includes defining the mathematical model, the governing equations, boundary conditions, and the discretization 

strategy employed for the numerical approximation. Convergence Analysis: This section discusses the initial 

convergence behaviour of the chosen mixed finite element method for the given problem. It highlights the 

limitations or challenges faced in achieving the desired convergence rates and the motivation behind seeking 

optimization techniques. Optimization Techniques: Various optimization techniques are explored in this section. 

These may include, but are not limited to, approaches such as optimal test norms, penalty methods, adaptive 

mesh refinement, post-processing techniques, stabilization techniques, or specialized element formulations. 

Each technique is explained, and its theoretical basis is outlined. Implementation and Numerical Experiments: 

The selected optimization techniques are implemented in numerical simulations. This section details the 

numerical experiments performed to assess the effectiveness of each technique in improving the convergence 

behaviour. Key parameters, such as mesh refinement, convergence criteria, and discretization choices, are 

discussed. Analysis and Results: The results obtained from the numerical experiments are analysed and 

compared to the initial convergence behaviour. The impact of each optimization technique on the convergence 

rates, accuracy, and stability of the mixed finite element approximations is evaluated [15]. Graphs, tables, or 

other visual representations may be used to present the results effectively. 

This section provides a comprehensive discussion of the findings, highlighting the most effective optimization 

techniques for enhancing the convergence of mixed finite element approximations in the given problem. The 

advantages, limitations, and potential practical implications of each technique are considered. The case study 

concludes by summarizing the key findings and their significance in optimizing the convergence of mixed finite 

element approximations. It reflects on the overall effectiveness of the implemented techniques and suggests 

possible directions for future research or improvements. 

 

Figure 6: Analysis the case Study for mixed finite element approximations 

Results And Discussion: 

  The analysis of convergence improvement strategies reveals their effectiveness in enhancing the convergence 

rates of mixed finite element approximations. The results demonstrate the benefits of adaptive mesh refinement 

techniques, where the mesh is dynamically refined or coarsened based on error indicators. It is observed that 
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adaptive mesh refinement concentrates computational resources in regions of interest, leading to faster 

convergence and more accurate solutions. The convergence behaviour is significantly improved compared to 

uniform mesh refinement, especially in cases with localized phenomena or steep gradients. 

 

Figure 7: Analysis the or Non-Standard Element Spaces 

The investigation of enhanced mixed finite element methods shows promising results in terms of convergence 

optimization. The introduction of stabilization terms or non-standard element spaces improves stability and 

convergence rates, particularly for challenging problems. It is found that these techniques effectively handle 

issues such as oscillations, spurious modes, or lack of stability, leading to more robust and convergent solutions. 

 The impact of mesh refinement and element choices on convergence is examined, highlighting their significant 

influence on the convergence behavior of mixed finite element approximations. The results indicate that well-

structured and refined meshes play a crucial role in achieving accurate and efficient convergence. Mesh quality 

assessment metrics, such as element aspect ratios or distortion measures, are found to be valuable tools in 

ensuring the quality of the mesh and avoiding elements that can hinder convergence. The evaluation of different 

element types reveals their suitability for specific problem characteristics. Triangular or quadrilateral elements 

are found to be effective for problems with planar domains, while tetrahedral or hexahedral elements are more 

suitable for problems involving three-dimensional geometries. Careful consideration of element choices based 

on the problem's physical properties can significantly impact the convergence behaviour. The comparison of 

stabilization techniques and numerical schemes demonstrates their impact on convergence improvement. The 

results show that the choice of stabilization technique depends on the specific problem and its characteristics. 

Each method has its strengths and limitations, and selecting the most appropriate technique is essential for 

achieving optimal convergence rates. Numerical schemes, particularly for transient problems, are analysed 

based on their stability properties and convergence behaviour. Implicit or semi-implicit schemes are found to be 

more suitable for stiff or time-dependent problems, ensuring stability and convergence. The results highlight the 

importance of selecting appropriate numerical schemes to preserve convergence properties and obtain accurate 

solutions. The results demonstrate the effectiveness of the analysed convergence improvement strategies, 

including adaptive mesh refinement, enhanced mixed finite element methods, and appropriate stabilization 

techniques and numerical schemes. These techniques contribute to enhancing the convergence rates and 

accuracy of mixed finite element approximations. The impact of mesh refinement and element choices on 

convergence is evident, emphasizing the importance of well-structured and refined meshes. The comparison of 

stabilization techniques and numerical schemes provides insights into their strengths and limitations, aiding in 

selecting the most suitable approach for specific problem classes. These findings advance the optimization of 

convergence in mixed finite element approximations, enabling more accurate and efficient numerical solutions 

for a wide range of PDE problems. 

Conclusion:  

In this have investigated the optimization of convergence in mixed finite element approximations. Through a 

comprehensive analysis, we have identified key factors and strategies that contribute to improving convergence 
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rates. Adaptive mesh refinement techniques, which dynamically refine or coarsen the mesh based on error 

indicators, significantly enhance convergence rates compared to uniform mesh refinement. These techniques 

concentrate computational resources in regions of interest, leading to faster convergence and more accurate 

solutions. Enhanced mixed finite element methods, involving the introduction of stabilization terms or non-

standard element spaces, improve stability and convergence rates for challenging problems. These methods 

effectively handle issues such as oscillations, spurious modes, or lack of stability, resulting in more robust and 

convergent solutions. Mesh refinement and element choices play a crucial role in convergence optimization. 

Well-structured and refined meshes, guided by mesh quality assessment metrics, ensure accurate and efficient 

convergence. The selection of appropriate element types based on the problem's physical properties further 

improves convergence behaviour. 

Stabilization techniques and numerical schemes impact convergence improvement. Different stabilization 

methods. The choice of numerical schemes, especially for transient problems, affects stability and convergence, 

with implicit or semi-implicit schemes being preferred for stiff or time-dependent problems. 

 The findings of this study have significant implications for various fields that rely on mixed finite element 

approximations. The optimization of convergence contributes to more accurate and efficient numerical 

solutions, enabling improved analysis and understanding of complex physical phenomena.  The optimized 

convergence of mixed finite element approximations allows for more accurate simulations of fluid flow 

phenomena, such as turbulent flows, multiphase flows, and fluid-structure interactions. This has implications for 

applications in aerodynamics, hydrodynamics, and environmental fluid dynamics. 

 Convergence optimization enhances the accuracy of stress and deformation predictions in structural analysis. 

This is beneficial for designing and optimizing structures in fields such as civil engineering, mechanical 

engineering, and aerospace engineering. The optimization of convergence in mixed finite element 

approximations improves the accuracy of electromagnetic field simulations, enabling better analysis and design 

of antennas, electromagnetic devices, and communication systems. The findings have implications for 

simulations involving the coupling of multiple physical phenomena, such as fluid-structure interaction, heat 

transfer, or electromagnetic-thermal analysis. Optimized convergence ensures accurate and consistent results 

across different domains. This research makes several contributions to the field of numerical analysis and 

computational engineering. The study provides a comprehensive analysis of convergence improvement 

strategies, including adaptive mesh refinement, enhanced mixed finite element methods, and stabilization 

techniques. It offers insights into their effectiveness, strengths, and limitations, aiding researchers and 

practitioners in selecting appropriate approaches for specific problems. The investigation of mesh refinement 

and element choices highlights their impact on convergence behaviour. The findings provide guidance on 

generating high-quality meshes and selecting suitable element types for accurate and efficient convergence. The 

comparison of stabilization techniques and numerical schemes offers valuable information for achieving 

stability and convergence in mixed finite element approximations. This assists in choosing appropriate 

stabilization methods and numerical schemes for different problem classes. Overall, this research advances the 

optimization of convergence in mixed finite element approximations, contributing to the development of more 

accurate and efficient numerical methods for solving a wide range of partial differential equations. 
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