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Abstract: The rapid development of measurement technology in fields such as genetics, medicine, and economics 

has made high-dimensional data analysis an essential practice, as analysts and researchers need to collect and 
analyze data from a large number of variables. Analyzing high-dimensional data requires advanced statistical 

techniques as conventional methods like comparing mean vectors using Hotelling's T
2
-test are not applicable. In 

this study, we compare the performance of two tests, TMCQ and TSKK, for testing the equality of high-dimensional 
mean vectors when population covariance matrices are not equal. The TMCQ was initially proposed by Chen, S. X. 

and Qin, Y. L. in 2010 and modified by Srivastava, M. S., Katayama, S., & Kano, Y. in 2013, while the TSKK was 

developed by Srivastava, M. S. et al. in 2013. A simulation study was conducted using two independent normal 
samples of equal size. The population covariance matrices were created under five structures: Sphericity, 

Compound Symmetry (CS), Heterogeneous Compound Symmetry (CSH), Toeplitz, and Block Diagonal (BD) 

matrix. The results showed that the choice of covariance structure had an impact on the performance of both tests. 
The TMCQ test performed well for certain covariance structures including Sphericity, Toeplitz, and BD, while the 

TSKK performed well for the CS covariance structure. The performance of TSKK increased for large sample sizes of 
at least 60 under the covariance structures of Toeplitz and BD. Under the covariance structures of Sphericity, 

Toeplitz, and BD, the TMCQ outperformed the TSKK, while TSKK was more efficient than TMCQ when the covariance 

matrix structure was CS. Additionally, the performance of TSKK improved when the sample size was at least 60. 
We also examined the performance of the two tests when the difference between two population covariance 

matrices increased and found that both tests continued to perform well for certain covariance structures. However, 

under the covariance structure of CSH, both tests underperformed for the case being studied. 

Keywords: High-dimensional data, tests for mean vectors, unequal covariance matrices, covariance matrix 

structures 

___________________________________________________________________________ 
 

1. Introduction 

Collecting data from a large number of variables, known as high-dimensional data, is common in various fields 

such as medicine, genetics, and economics. An example of high-dimensional data is DNA microarray data that 

stores information on thousands of human genes, with a sample size smaller than the number of variables. For 

instance, the Alon, U., Barkai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D., & Levine, A. J. (1999) 

study shows that group 1 (normal tissue group) had a sample size of 22 while group 2 (tumor tissue group) had a 

sample size of 40, with 6,500 variables of interest. Although initial data analysis may group variables and reduce 

some of them, there may still be around 2,000 variables remaining. Another example can be seen in leading global 

business organizations, such as Illumina, which was ranked as the smartest organization in the world in 2014 

(MIT Technology Review, 2014). Illumina is a biotechnology company based in the United States that researches 

the sequencing of genes using the technology of optically reading DNA. This advanced technology can finish the 

process in hours instead of days, and the utilization of rapid data processing techniques leads to substantial 

reductions in operational expenses.  

Analyzing high-dimensional data is distinct from analyzing data with few variables. As the number of 

variables increases relative to the sample size, the analysis becomes more complex. Traditional methods used for 

analyzing one or few variables, and even multivariate analysis such as comparing mean vectors using Hotelling's 

T
2
-test (Hotelling, H., 1931), are not applicable (Bühlmann, P. & Van De Geer, S., 2011; Schott, J. R., 2005). 
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 Testing the equality of two high-dimensional mean vectors can be considered under two scenarios: when 

population covariance matrices are equal and when they are not. The latter scenario, where population covariance 

matrices are not equal, is more challenging and requires more complex approaches, such as regularized estimators 

(Tibshirani, R., 1996; Fan, J. & Li, R., 2001). Several testing procedures have been developed, such as the tests 

of Bai, Z. & Saranadasa, H. (1996), Srivastava, M. S. & Du, M. (2008), Chen, S. X. & Qin, Y. L. (2010), 

Srivastava, M. S., Katayama, S., & Kano, Y. (2013), and Hu, J., Bai, Z., Wang, C., & Wang, W. (2017). 

However, the performance of these tests can be highly dependent on the conditions of the data, such as underlying 

covariance structures (Gelper, S. et al., 2017; Schreiber, J. B., 2017)  .  

The objectives of this research are to study and compare the performance of two tests - Modified Chen and 

Qin's test which was initially proposed by Chen, S. X. & Qin, Y. L. (2010) and then modified by Srivastava, M. 

S. et al.(2013), and Srivastava, M. S. et al. (2013) test - in comparing two population mean vectors with unequal 

covariance matrices, and to investigate the performance of these tests with increasing differences between 

population covariance matrices. The research will focus on comparing the mean vectors of two independent high-

dimensional normal populations, where high-dimensionality refers to the situation where the number of variables 

(p) is greater than the sample size (n), i.e., p > n. Specifically, we will consider two independent normal samples 

with sizes n1 and n2, where n = n1 + n2 - 2. The population covariance matrices will be unknown and unequal but 

will have the same structure. There will be five covariance structures considered in this study including 

Sphericity, Compound Symmetry (CS), Heterogeneous Compound Symmetry (CSH), Toeplitz, and Block 

Diagonal matrix (BD).  

2. Tests for Two High-Dimensional Mean Vectors with Unequal Covariance Matrices 

2.1. Chen and Qin’s Test 

When the covariance matrices of two populations are unequal (i.e., 1 ≠ 2) and the covariance matrices of 

both populations are unknown, one important method for testing the equality of two population mean vectors is 

proposed by Chen, S. X. & Qin, Y. L. (2010). This method builds upon the work of Bai, Z. & Saranadasa, H. 

(1996), who developed a method for the case where the covariance matrices of both populations are assumed to be 

equal. However, Chen and Qin extended this method to the case of unequal covariance matrices in a higher-

dimensional setting. 

The testing method proposed by Chen, S. X. & Qin, Y. L. (2010), denoted by TCQ, is defined as follows: 
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The test using the TCQ statistic will reject the null hypothesis at a significant level of , when the value of    

TCQ > Z where Z is the upper  quantile of N(0, 1).  

The assumptions of TCQ are    
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(1) 1 1 2/ ( ) (0,1)n n n k     where n  

(2)  1 2
1 2 1 2 1 2( ) ( ) ( ( ) ), 1,2i n tr i      μ μ μ μ Σ Σ  

In addition, the test proposed by Chen, S. X. & Qin, Y. L. (2010) has the property of being invariant under 

orthogonal transformation, but it is not invariant under scalar transformation. Furthermore, the calculation to 

obtain the test statistic can be quite complex. 

 

2.2. Modified Chen and Qin’s Test 

Although the test TCQ in (1) is more widely applicable than the test of Bai, Z. & Saranadasa, H. (1996) 

because it does not require the same covariance matrices for both populations, the estimator 
2ˆ
CQ

 in (3) is still not 

very efficient. Srivastava, M. S. et al. (2013) therefore suggested using the UMVUE (Uniformly minimum 

variance unbiased estimator) under the normal distribution of 
2( ) /itr pΣ  instead of  

2ˆ
CQ

  using in (3), which 

would improve the efficiency of the test. The estimator proposed by Srivastava, M. S. et al. (2013) is as follows: 
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The method proposed by Srivastava, M. S. et al. (2013) modifies the estimator of the covariance matrix in the 

test statistic of Chen, S. X. & Qin, Y. L. (2010) to improve its performance. The modified test statistic, denoted 

by TMCQ, is defined as follows: 
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The test using the TMCQ statistic will reject the null hypothesis at a significant level of , when the value of 

TMCQ > Z where Z is the upper  quantile of N(0, 1).  

Although the TMCQ test has fewer initial assumptions than the Bai, Z. & Saranadasa, H. (1996) test, its 

weakness is that it is only invariant under orthogonal transformations and not invariant under scalar 

transformations. In addition, the calculation to find the test statistic is quite complex. 

 

2.3. Srivastava, Katayama and Kano’s Test 

One important testing method proposed by Srivastava, M. S. et al. (2013) is the TMCQ test, which has the 



Dr.Knavoot Jiamwattanapong, Nisanad Ingadapa, Dr.Piyada Phrueksawatnon, Dr.Bandhita Plublin 

 

 

152  

property of being invariant under scalar transformation. The TSKK test statistic is as follows: 
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The test using the TSKK statistic will reject the null hypothesis at a significant level of , when the value of 

TSKK > Z1- where Z is distributed as a standard normal distribution.  

The assumptions of TSKK are    
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The important advantage that both TSKK and TMCQ tests have in common is that they do not rely on any 

assumptions about the distribution of the population, meaning that they can be applied to non-normally distributed 

data. 

In addition to the above testing methods, there are several other methods proposed for testing the equality of 

mean vectors for two high-dimensional populations, such as Sukcharoen, P. & Chongcharoen, S. (2019) who 

proposed a method for testing the equality of mean vectors for two populations in cases where the joint covariance 

matrix of the two populations is not the same, by utilizing the concept of retaining information from the joint 

covariance matrix of the sample as much as possible. The testing method developed by Jiamwattanapong, K. & 

Chongcharoen, S. (2017) is based on the case where the joint covariance matrix of the two populations is equal. 

The testing statistic proposed by Sukcharoen, P. & Chongcharoen, S. (2019) has the property of being invariant 

under scalar transformation and has an approximate distribution when the number of variables is large. The 

proposed method is more efficient than other methods, especially when the joint covariance matrix of the sample 

can be arranged into a block diagonal matrix. However, the weakness of this method is that the data must have a 

normal distribution and the process of arranging the variables that are related into the same block takes a long time. 

Based on the literature review above, the present study aims to investigate the performance of two tests: the 

modified method of Chen, S. X. & Qin, Y. L. (2010) (TMCQ) and the method of Srivastava, M. S. et al. (2013) 

(TSKK). 

3. Simulation Procedure 

3.1. Phase 1 Simulation 

Let the first sample 
11 1 11 2 nx ,x , ...,x   be drawn from a p-variable normal population 

( )
1 1( , )

s
pN μ Σ , where  s 

= 1, 2, …, 5 representing different covariance structures:  1) Sphericity, 2) Compound Symmetric (CS), 

Heterogeneous Compound Symmetry (CSH), 4) Toeplitz, and 5) Block Diagonal (BD). The second sample 

221 22 2nx ,x , ...,x , which is independent of the first one, is drawn from 
( )

2 2( , )
s

pN μ Σ , where p > n, n: n1 + n2 

1,2i 
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- 2 and n1 = n2. Five covariances structured were formed as follows: 

 

1) Sphericity  
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2) Compound Symmetry (CS) 
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where 1p  is a px1 vector in which all entries are 1’s, 
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3) Heterogeneous Compound symmetry (CSH) 
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where (3)
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(3)
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( , 1)U c c  is a continuous uniform distribution 

 

       

4) Toeplitz 
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where (4)
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(4)
2Σ  are formed with 0.1c   and 0.2c   respectively 

 

   

5) Block Diagonal Matrix (BD) 

 (5)
11 22 ( 1)( 1)( , ,..., , )m m mmk diag  Σ Σ Σ Σ Σ , (10) 

where ii Σ  (1 )1 1p p pcI c     with the sizes of 11 22 ( 1)( 1), ,..., m m Σ Σ  are 

equal to 6n  and the rest is the size of mmΣ ,  

(5)
1Σ  and 

(5)
2Σ  are formed with 0.3c   and 0.6c   respectively. 

 

 

 Under the alternative hypothesis, set the population mean vectors as  1 μ 0  and  2 1( ,..., )p  μ , where 

2 1 0k     , and  2k ( 0.4,0.6),U  1,..., / 2k p . 

Set the sample size (ni) and the number of variables (p) as follows: at 1 2n n = 20, set p = {50, 100, 200, 300, 

400}; at 1 2n n  = 40, set p = {100, 200, 300, 400}; and at 1 2n n = 60, set p = {150, 200, 300, 400}. Each 
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condition was iterated 1,000 times with a nominal significance level () of 0.05. 

The performance of a test refers to the criteria used to determine which test provides an attained significance 

level (ASL) close to the specified nominal significance level and if the ASL of a test falls within an acceptable 

range, the test is considered to have acceptable power. Tests that have higher empirical power are considered to be 

more efficient. In studying the performance of a testing method, there are criteria used for evaluation, including 

the ASL value which follows Cochran's criterion (Cochran, W. G., 1954), or Bradley’s liberal criterion (Bradley, 

J. V., 1978) for the predetermined significance level (α). If the ASL value falls within the range of [0.040, 0.060], 

then the testing method is considered to have good performance or acceptable in terms of Type I error probability. 

Additionally, if the ASL value falls within an acceptable range, the test with higher empirical power is generally 

considered to be better. Finally, if the empirical power value approaches 1, the test is considered to have high 

testing power. 

 

3.2. Phase 2 Simulation 

Phase 2 aims to assess the performance of the tests under conditions where the covariance matrices of the 

second population differ more from those of the first population. In Phase 1, we discovered that TMCQ displayed an 

acceptable level of performance for the covariance structures of Sphericity, Toeplitz, and BD. Similarly, TSKK was 

found to perform acceptably for the covariance structures of CS, Toeplitz, and BD. 

To simulate this scenario, we set the population mean vectors to be identical to those in Phase 1. However, we 

altered the covariance matrix of the second population to be more distinct by modifying the constant c forming the 

covariance matrix. Specifically, for Sphericity and CS, the constant c was adjusted from 2 to 3. For Toeplitz, it 

was adjusted from 0.2 to 0.3, and for BD, it was adjusted from 0.6 to 0.9. Each condition was iterated 1,000 times 

with a nominal significance level () of 0.05. 

 

4. Results 

The results are presented in two parts. The first part includes the results from Phase 1, where the performance 

of two tests, TMCQ and TSKK, was compared under a p-variate normal distribution with unequal population 

covariance matrices and equal sample sizes. Tables 1 and 2 show the results of this comparison. The second part 

includes the results from Phase 2, which investigated the performance of the two tests under different population 

covariance matrices. Phase 2 focused only on the covariance structures where the tests performed well, as 

determined by the results from Phase 1. The results from Phase 2 are presented in Tables 3 and 4. 

Table.1. ASL of TMCQ and TSKK under five covariance structures with nominal level 0.05 

ni   p Sphericity CS CSH Toeplitz BD 

  

TMCQ TSKK TMCQ TSKK TMCQ TSKK TMCQ TSKK TMCQ TSKK 

20 50 0.0638 0.0918 0.0726 0.0632 0.0726 0.0370 0.0640 0.0850 0.0586 0.0742 

 100 0.0604 0.1046 0.0804 0.0644 0.0830 0.0354 0.0634 0.0956 0.0662 0.0882 

 200 0.0586 0.1172 0.0720 0.0518 0.0786 0.0276 0.0580 0.1050 0.0566 0.0992 

 300 0.0546 0.1316 0.0770 0.0488 0.0696 0.0182 0.0610 0.1204 0.0606 0.1070 

 400 0.0530 0.1498 0.0868 0.0512 0.0730 0.0194 0.0538 0.1292 0.0560 0.1128 

40 100 0.0568 0.0704 0.0744 0.0532 0.0752 0.0276 0.0626 0.0704 0.0570 0.0622 

 200 0.0574 0.0788 0.0756 0.0502 0.0652 0.0190 0.0528 0.0654 0.0604 0.0694 

 300 0.0546 0.0804 0.0756 0.0450 0.0656 0.0162 0.0520 0.0714 0.0528 0.0728 

 400 0.0506 0.0792 0.0752 0.0410 0.0640 0.0118 0.0582 0.0804 0.0554 0.0746 

60 150 0.0584 0.0652 0.0718 0.0464 0.0698 0.0186 0.0516 0.0576 0.0558 0.0540 

 200 0.0566 0.0646 0.0752 0.0476 0.0760 0.0172 0.0552 0.0648 0.0572 0.0638 

 300 0.0684 0.0812 0.0728 0.0424 0.0690 0.0114 0.0556 0.0678 0.0550 0.0624 

 400 0.0540 0.0690 0.0684 0.0380 0.0724 0.0104 0.0500 0.0636 0.0592 0.0672 

The findings presented in Table 1 demonstrate that the ASL values for both TMCQ and TSKK were influenced 

by the choice of covariance structure. The TMCQ exhibited acceptable performance and outperformed the TSKK for 

the Sphericity, Toeplitz, and BD covariance structures, while the TSKK was found to be superior to TMCQ for the 

CS covariance structure. Notably, the TSKK showed satisfactory performance for Toeplitz and BD covariance 
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structures only when the sample size was at least 60. It is also evident that the performance of TSKK improves with 

increasing sample size. Overall, the TMCQ was observed to outperform TSKK for the Toeplitz and BD covariance 

structures for small sample sizes. However, both tests showed poor performance for the CSH covariance structure. 

 

Table.2. Empirical power of TMCQ and TSKK under five covariance structures with nominal level 0.05 

ni   p Sphericity CS CSH Toeplitz BD 

  

TMCQ TSKK TMCQ TSKK TMCQ TSKK TMCQ TSKK TMCQ TSKK 

20 50 0.4428 0.5034 0.2780 0.2402 0.1070 0.0524 0.6354 0.6716 0.5884 0.6084 

  100 0.6384 0.7122 0.2900 0.2320 0.1150 0.0500 0.8576 0.8870 0.8144 0.8410 

  200 0.8544 0.9122 0.2888 0.2044 0.1048 0.0346 0.9760 0.9844 0.9668 0.9782 

  300 0.9522 0.9772 0.2796 0.1782 0.1048 0.0312 0.9990 0.9992 0.9946 0.9970 

  400 0.9826 0.9928 0.2774 0.1668 0.1004 0.0268 1.0000 1.0000 0.9992 0.9994 

40 100 0.9622 0.9662 0.7280 0.5606 0.1394 0.0516 0.9974 0.9974 0.9962 0.9952 

  200 0.9990 0.9994 0.7884 0.5284 0.1362 0.0364 1.0000 1.0000 1.0000 1.0000 

  300 0.9998 0.9998 0.8084 0.5012 0.1296 0.0300 1.0000 1.0000 1.0000 1.0000 

  400 1.0000 1.0000 0.8262 0.4798 0.1420 0.0292 1.0000 1.0000 1.0000 1.0000 

60 150 0.9998 0.9998 0.9866 0.9132 0.1804 0.0466 1.0000 1.0000 1.0000 1.0000 

  200 1.0000 1.0000 0.9946 0.9142 0.1750 0.0448 1.0000 1.0000 1.0000 1.0000 

  300 1.0000 1.0000 0.9974 0.9122 0.1820 0.0402 1.0000 1.0000 1.0000 1.0000 

  400 1.0000 1.0000 0.9990 0.9066 0.1874 0.0396 1.0000 1.0000 1.0000 1.0000 

 

Based on Table 1, the ASL values of TMCQ were found to be within an acceptable range for the covariance 

structures of Sphericity, Toeplitz, and BD. Table 2 presents the results that show for these covariance structures, 

the empirical power of TMCQ was satisfactory. For the covariance structures of CS, Toeplitz, and BD where the 

ASL values of TSKK performed acceptably, the empirical power of TSKK was high. Both tests showed an increase 

in empirical power as the sample size increased. In addition, TSKK exhibited slightly higher empirical power than 

TMCQ for the covariance structures of Toeplitz, and BD. 

 

Table.3. ASL and empirical power of TMCQ in Phase 2 with nominal level 0.05 

ni   p Sphericity Toeplitz BD 

  

ASL Empirical Power ASL 
Empirical 

Power 
ASL 

Empirical 

Power 

20 50 0.0660 0.3224 0.0670 0.6378 0.0618 0.6072 

 100 0.0540 0.4804 0.0562 0.8548 0.0602 0.8372 

 200 0.0578 0.6978 0.0514 0.9820 0.0558 0.9794 

 300 0.0552 0.8428 0.0546 0.9974 0.0596 0.9962 

 400 0.0564 0.9102 0.0522 0.9996 0.0562 0.9996 

40 100 0.0558 0.8682 0.0584 0.9980 0.0608 0.9982 

 200 0.0576 0.9844 0.0536 1.0000 0.0608 1.0000 

 300 0.0556 0.9982 0.0550 1.0000 0.0586 1.0000 

 400 0.0590 1.0000 0.0496 1.0000 0.0512 1.0000 

60 150 0.0526 0.9978 0.0574 1.0000 0.0616 1.0000 

 200 0.0564 0.9992 0.0598 1.0000 0.0622 1.0000 

 300 0.0562 1.0000 0.0540 1.0000 0.0624 1.0000 

 400 0.0536 1.0000 0.0560 1.0000 0.0540 1.0000 

 

Table 3 presents the ASL and empirical power of the TMCQ test in Phase 2, where the two population 

covariance matrices differed more, with a nominal level of 0.05. In this phase, the covariance structures 

(Sphericity, Toeplitz, and BD) were examined because the results from Phase 1 indicated that the TMCQ test 

performed acceptably only for these situations. The ASL values range from 0.0496 to 0.0670, indicating that the 
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test has good performance. The empirical power increases with an increase in the sample size, indicating that the 

test has high power to detect significant differences. Overall, the TMCQ test still performs well even when the 

covariance matrices between two populations differ more. 

Table.4. ASL and empirical power of TSKK in Phase 2 with nominal level 0.05 

ni   p CS Toeplitz BD 

  

ASL 
Empirical 

Power 
ASL 

Empirical 

Power 
ASL 

Empirical 

Power 

20 50 0.0642 0.3124 0.0858 0.6620 0.0786 0.6388 

 100 0.0668 0.3388 0.0872 0.8844 0.0864 0.8662 

 200 0.0642 0.3210 0.1036 0.9886 0.1006 0.9876 

 300 0.0612 0.3060 0.1110 0.9988 0.1168 0.9974 

 400 0.0524 0.2948 0.1182 0.9998 0.1252 1.0000 

40 100 0.0566 0.7686 0.0652 0.9980 0.0658 0.9978 

 200 0.0532 0.8048 0.0684 1.0000 0.0746 1.0000 

 300 0.0504 0.7974 0.0754 1.0000 0.0780 1.0000 

 400 0.0494 0.7914 0.0714 1.0000 0.0764 1.0000 

60 150 0.0490 0.9880 0.0638 1.0000 0.0668 1.0000 

 200 0.0548 0.9936 0.0638 1.0000 0.0674 1.0000 

 300 0.0470 0.9934 0.0648 1.0000 0.0726 1.0000 

 400 0.0436 0.9932 0.0698 1.0000 0.0668 1.0000 

 

Table 4 presents the ASL and empirical power of the TSKK test in Phase 2 with a nominal level of 0.05. The 

study investigated three covariance structures (CS, Toeplitz, and BD) since the results from Phase 1 indicated that 

the TSKK test performed acceptably only for these situations. The ASL values ranged from 0.0436 to 0.0548 for the 

CS covariance structure, indicating that the TSKK test performed well in this type of covariance structure. However, 

the ASL values were slightly higher than 0.05 for the Toeplitz and BD covariance structures, indicating that the 

TSKK test performed worse when the two population covariance matrices differed more for these covariance 

structures. The empirical power of the test also increased with an increase in the sample size.  

5. Conclusion and Discussion  

5.1. Conclusion 

For two independent high-dimensional datasets with multivariate normal distributions, where the population 

covariance matrices are unknown and unequal but have the same covariance structure, we studied the case where 

the sample sizes for both datasets are equal (n1 = n2) and fall in the range of 20-60, with the number of variables (p) 

not exceeding 400 and p > n, where n = n1 + n2 - 2. We divided the results into two phases. 

The results from Phase 1 showed that the choice of covariance structure had an impact on the performance of 

both tests. The TMCQ performed acceptably for the Sphericity, Toeplitz, and BD covariance structures. The TSKK 

performed acceptably for the CS covariance structure, and for the covariance structures of Toeplitz and BD, the 

test performed well only when the sample size was at least 60. the TMCQ is more efficient than the TSKK under the 

covariance structures of Sphericity, Toeplitz, and BD, while the TSKK is more efficient than TMCQ under the CS 

covariance structure. However, the performance of the TSKK improves with increasing sample size, particularly 

when the sample size is at least 60. Both tests showed increased empirical power as the sample size increased. 

Under the covariance structure of CSH, it was found that both the TMCQ and TSKK are still underperforming. 

In Phase 2, we examined the performance of each test in detecting the difference between two mean vectors 

when the difference between the two covariance matrices was increased. It can be concluded that TMCQ continued 

to perform well for the covariance structures of Sphericity, Toeplitz, and BD. The empirical power of TMCQ 

increased with larger sample sizes. The TSKK continued to perform well for the CS structure of all cases studied, 

and the test performed acceptably under the Toeplitz, and BD, particularly for sample size was at least 60. 

Nevertheless, the TSKK still demonstrated high power with larger sample sizes.  

Based on the results, we recommend the following:  

 For Sphericity, Toeplitz, or BD covariance structures, either TMCQ or TSKK can be used when the sample 

size is at least 60. For smaller sample sizes, use TMCQ. 

 For Compound Symmetry covariance structure, use TSKK. 
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 For Heterogeneous Compound Symmetry covariance structures, use caution or consider using other 

testing methods, as neither TMCQ nor TSKK performed well in this case.  

 For other types of covariance structures, experiment with various tests and evaluate their conclusions 

before making a decision. 

Overall, our findings confirm that the choice of covariance structure affects the performance of the tests. Both 

TMCQ and TSKK showed increased power of the test with larger sample sizes, and TMCQ generally performed well for 

Sphericity, Toeplitz, and BD covariance structures, while TSKK performed well for the CS structure. However, 

caution is advised when dealing with Heterogeneous Compound Symmetry structures, as neither test performed 

well in this case.  

 

5.2. Discussion 

The TMCQ test statistic proposed by Chen, S. X. & Qin, Y. L. (2010) was found to be ineffective when applied 

to test the mean vector of two populations under the compound symmetry (CS) and heterogeneous compound 

symmetry (CSH) structures of the covariance matrix. This may be because the data used in this study did not 

conform to the underlying assumptions of the test, which are difficult to verify. The crucial assumption of this test 

is that  1 2
1 2 1 2 1 2( ) ( ) ( ( ) )i n tr    μ μ Σ μ μ Σ Σ . If the data used for testing do not meet this 

assumption, the test will be less effective than it should be. This finding is consistent with the results of 

Srivastava et al. (2013). 

The study found that the TSKK test, proposed by Srivastava, M. S. et al. (2013), demonstrated higher overall 

performance when each sample size was 60 or greater. These results are consistent with a previous simulation 

study by Srivastava, M. S. et al. (2013), which assumed a Sphericity structure for the covariance matrix of both 

populations and studied sample sizes of 30 or more (with a number of variables over 60). The TSKK test was also 

found to be equally effective in that study. 
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