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ABSTRACT 

This paper presents a tutorial on Kalman filtering that is designed for instruction to 

undergraduate students. The idea behind this work is that undergraduate students do not have 

much of the statistical and theoretical background necessary to fully understand the existing 

research papers and textbooks on this topic. Instead, this work offers an introductory 

experience for students which takes a more practical usage perspective on the topic, rather than 

the statistical derivation.  Students reading this paper should be able to understand how to 

apply Kalman filtering tools to mathematical problems without requiring a deep theoretical 

understanding of statistical theory. 
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INTRODUCTION 

Kalman filtering is a useful tool for a variety of different applications. However, this 

technique is not easily accessible to undergraduate students due to the high level details 

in existing publications on this topic. While it may not be practical to expect 

undergraduates to obtain a deep and thorough understanding of the stochastic theory 

behind Kalman filtering techniques, it is reasonable to expect undergraduates to be 

capable of making use of this computational tool for different applications. 

While there are some excellent references detailing the derivation and theory behind the 

Kalman filter [1,2,3], this article aims to take a more teaching-based approach to 

presenting the Kalman filter from a practical usage perspective. The goal of this work is 

to have undergraduate students be able to use this guide in order to learn about and 

implement their own Kalman filter. One of the major differences between this work 

and the current state of the art Kalman filtering tutorial 

[3] is that the statistical theory is minimized, and focus is given to developing skills in 

implementing Kalman filters, rather than to understand the inner workings. 

WHAT IS KALMAN FILTERING 

So what is a Kalman filter? Let us start by breaking it down. The “Kalman” part comes 

from the primary developer of the filter, Rudolf Kalman [4]. So this is just a name that is 

given to filters of a certain type. Kalman filtering is also sometimes called “linear 

quadratic estimation.” Now let us think about the “filter” part. All filters share a 

common goal: to let something pass through while something else does not. An 

example that many people can relate to is a coffee filter. This coffee filter will allow the 

liquid to pass through, while leaving the solid coffee grounds behind. You can also 

think about a low-pass filter, which lets low frequencies pass through while attenuating 
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high frequencies. A Kalman filter also acts as a filter, but its operation is a bit more 

complex and harder to understand. A Kalman filter takes in information which is 

known to have some error, uncertainty, or noise. The goal of the filter is to take in this 

imperfect information, sort out the useful parts of interest, and to reduce the uncertainty 

or noise. Diagrams of these three filtering examples are offered in Figure 1. 

The state vector, x, are the values that will be estimated by the filter. Using the filter 

analogy, the components of this vector are the things that you want to pass through the 

filter. Sometimes you may include more items in the state vector than you really care 

about if they are necessary in order to determine what you really want. For example if 

you want to determine the position of an object using information about the acceleration, 

you will likely need to determine the velocity as well. This is an important distinction 

between the state and output vectors of the system. While in other situations the 

“output” is what you are trying to get, for state estimation problems using Kalman 

filtering, the “state” is actually the desired result. 

 

The output vector, y, is not what you are trying to get out of the filter, but rather what 

you are able to measure. You need to be able to express your measurements in terms of 

the states so that you can compare them with the measurements, i.e. you need to get 

apples to apples to know how much (or little) to correct. Not all measurements need to 

appear in the output vector for a particular formulation. Sometimes certain 

measurements are necessary for use in the state dynamics (1). The output vector should 

consist of values which can be both determined mathematically from the states as well 

as through some independent measurement system, i.e. the measurements are not used 

elsewhere in the filter. 

The input vector, u, is probably the trickiest part of the Kalman filter definitions. This 

vector contains information that is necessary coming into the filter in order to define 

the system dynamics. These values can be sensor measurements, however in this case 

the uncertainty in these input values would need to be considered. In general, when 

defining your system equations 

(1) and (2), after determine the necessary states, any other terms which appear in the 

filter that do not need to be estimated as states can be considered as inputs. For example, 

in order to find the dynamics of a velocity state, you might include an acceleration 

measurement as an input. 

The terms w and v which correspond to the process and measurement noise vectors for 

the system are interesting in that they do not typically appear directly in the equations of 

interest. Instead, these terms are used to model the uncertainty (or noise) in the 

equations themselves. This can manifest itself in a number of ways. The first is 

modelling error, which is uncertainty in the equation itself. How much can we trust this 

equation? Some equations, when derived from physics principles for instance, have 

negligible modelling error. However, some situations contain heuristically defined 

equations which may not be used with full confidence in their correctness. In this case, 

a certain amount of error can be considered to appear in the equation in the form of w 

or v. Another possible source of error is error in sensor measurements used in the 

equations. The w and v terms can be used to include the errors due to sensor 

measurements. In fact, this is the most common use of v in the output equations to 

account for the error in the measurement of the output. Note that this error is not in the 
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equation itself, but accounts for how good the equation should be relative to the 

measurement. Note that w and v are not actually implemented in the calculations of (1) 

and (2) since they are assumed to be random errors with zero mean, but rather are just 

used to determine information about the process and measurement noise covariance 

matrices Q and R. If you are unfamiliar with the definition of a covariance matrix, 

please see Appendix A for more information. 

 

What about the system matrices F, G, and H? These matrices will depend on the 

considered problem, and are used in order to represent the equations as a linear system 

of states and inputs. F will contain the coefficients of the state terms in the state 

dynamics (1), while H serves a similar function in the output equations (2). The G 

matrix contains coefficients of the input terms in the state dynamics (1). These matrices 

can in general vary with time, but cannot change with respect to the states or inputs. 

For many problems, these matrices are constant. Kalman Filtering Algorithm 

The Kalman filter uses a prediction followed by a correction in order to determine the 

states of the filter. This is sometimes called predictor-corrector, or prediction-update. 

The main idea is that using information about the dynamics of the state, the filter will 

project forward and predict what the next state will be. A simple example of this would 

be if I know where I was before (previous state), and how fast I was moving (state 

dynamics), I can guess where I am at now (current state). This can be thought of as a 

numerical integration technique such as Euler’s method or Runge-Kutta [5]. The 

correction or update part then involves comparing a measurement with what we predict 

that measurement should be based on our predicted states. 

The Kalman filtering technique is now discussed in equation format. Starting from some 

initial 

state 

estimate, 

x̂0 , and initial state error covariance matrix, P0, the predictor-corrector 

format is 

applied recursively at each time step, e.g. using a loop. First, the state vector is 

predicted from the state dynamic equation using 

x̂ k|k −1  = Fk −1x̂ k −1  + 

Gk −1uk −1 

(3) 

 

wher

e 

x̂ k|k 

−1 

is the predicted state vector, x̂k 

−1 

is the previous estimated state vector, u is 

the input vector, and F and G are matrices defining the system dynamics. Note that the 

subscript k|k-1 is read as “k given k-1” and is a shorthand notation for the state at 

discrete time k given its previous state at discrete time k-1, i.e. this is the prediction of 

the state using the system model projected forward one step in time. Next, the state 

error covariance matrix must also be predicted using 
P = F P FT + Q (4) 

k|k −1 k 
−
1 

k 
−
1 

k 
−
1 

k −1 

 

where Pk|k-1 represents the predicted state error covariance matrix, Pk-1 is the previous 

estimated state error covariance matrix, and Q is the process noise covariance matrix. 

Again, k|k-1 is indicating that this is the expected covariance matrix at k based on the 
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k k |k −1 k k  k|k −1 k k 

system model and the covariance at k-1. Once the predicted values are obtained, the 

Kalman gain matrix, Kk, is calculated by 

K   = P HT (H P HT + R 
)
−

1 

(5) 

where H is a matrix necessary to define the output equation and R is the measurement 

noise covariance. The state vector is then updated by scaling the “innovation,” which is the 

difference 

between the measurement of the output, zk, and the predicted 

output, 

Hk x̂ 

k|k −1 

(sometimes 

called ŷ k|k −1 ),  by  the  calculated  Kalman  gain  matrix  in  order  to  correct  the  prediction  

by  the 

appropriate amount, as 

in x̂ k   = x̂ k |k −1  + K k  (zk  − Hk 

x̂ k|k −1 ) 

 

(6) 

Similarly, the state error covariance is updated by 

A LINEAR KALMAN FILTERING EXAMPLE 

In order to illustrate the use of the Linear Kalman Filter, a simple example problem is 

offered. This example considers a simple object in freefall assuming there is no air 

resistance. The goal of the filter is to determine the position of the object based on 

uncertain information about the initial position of the object as well as measurements of 

the position provided by a laser rangefinder. 

Using particle kinematics, we expect that the acceleration of the object will be equal to 

the acceleration due to gravity. Defining the height of the object in meters, h, we have: 

h& (t ) = −g (18) 

where g is the acceleration due to gravity (g = 9.80665 m/s2). Integrating this relationship 

over a small time interval, ∆t, gives 

h& (t ) = 
h& (t ) − h& (t − t ) 

= −g
 

t 
(19) 

which is a backward difference equation, which is useful for Kalman filtering 

applications due to the recursive structure of the filter, i.e. each time step in the Kalman 

filter always references the previous time step. Simplifying this expression gives 

h& (t ) = h& (t − t ) − gt (20) 
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= 
k 

Integrating again yields a commonly used kinematic equation relating successive 

positions of a particle with respect to time for constant acceleration 

h (t ) = h (t − t ) + h&(t − t) − 
1 

g (t )
2
 

2 

 

(21) 

Rather than consider these equations in terms of continuous time, t, it is beneficial to 

rewrite the equations in terms of a discrete time index, k, which is defined by t = k∆t. 

Additionally, discrete time values are traditionally written as subscripts rather than as a 

functional dependence, i.e. 

h(t) = h(kt) = hk 

h (t − t ) = h (kt − t ) = h (t (k −1)) = hk −1 (22) 

 

Rewriting the kinematic relationships for the example problem in terms of the discrete 

time variable, k, gives 

h&  = h& − gt 
k k −1 

h = h + h&    t − 
1 

g (t )
2
 (23) 

k k −1 k −1 
2
 

From these kinematic expressions, we see that we have two equations describing the 

motion of the object: one for velocity and one for position. Since we are interested in 

estimating the position, we know that the position must be included as a state. 

However, since we can see that the velocity also appears in the position equation, it is 

also necessary to obtain that information. One way to make sure that we have 

information about the velocity is to additionally include the velocity as a state. As a 

result, we now define the state vector for the Kalman filter as 

h  
xk 

h&   (24) 

 k  

which results in the following expression 


h + h&    t − 

1 
g (t )

2 
 

x =  
k  

k 

−

1 

k −1 
2  

&  (25) 

 hk −1 − gt  

With this definition, we can rewrite these equations in terms of the state vector, x, as in 

1 t  

− 

1 
(t )

2 
 

x = x +    2  g (26) 
k 0 1  k −1   

  

 −t  

Now, we have the problem in necessary format for the 
Kalman 

filter 
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xk = Fk −1xk −1 + Gk −1uk −1 

(27) 

where the system matrices F and G are given by 

1 t  
− 

1 
(t )

2 
 

Fk −1 = 
0 1 

 , 
G =  

k −1  
 
 −t 

(28) 

  

 

2 
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and the input vector can be 

defined as 

 

uk −1 = 

g 

 

 

(29) 

 

The reason for selecting g as an input is because this information is necessary to define 

the state dynamics, but g is not defined as a state in the filter. This additional 

information is “input” into the equations at each time step. Note that for this particular 

problem the values of F, G, and u do not vary with respect to k. It is important to note in 

these equations that there is no process noise uncertainty term, w. For this particular set 

of equations, we are assuming that there are no errors in the equations themselves. For 

this problem, this is an assumption, as there could be disturbances from air resistance or 

other sources. However, assuming that these errors are small enough to ignore, we do 

not need to model the process noise for this problem. Because of this, the process noise 

covariance matrix, Q, can be set to zero. 

 

Next, we need to consider the measurement part of the system. Let us consider a 

scenario where the position of the object can be measured using a laser rangefinder with 

2 m standard deviation of error. Because the position is what can be measured, we need 

to define an output equation that gives the position as a function of the states of the 

filter. There is some uncertainty in the measurement, which is noted in the equations by 

the measurement noise vector, v: 

 

yk = hk + vk (30) 
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Since the position can be written in terms of the state vector, this can be rewritten as 

 

yk   = 1   0xk  + vk 

Now, we have the output equations of the system defined in the proper form as in (2), where 

the system matrix, H, is given by 

The considered measurement system has a standard deviation of error of 2 m, which is a 

variance of 4 m2. Because of this, and the fact that there is only one term in the output vector, 

the resulting measurement noise covariance matrix reduces to a scalar value, R = 4 m2. 

In addition to the measurement noise, we also need to consider any uncertainty in the 

initial state assumption. The initial position is approximately known to be 105 m before 

the ball is dropped, while the actual initial position is 100 m. The initial guess was 

roughly determined, and should therefore have a relatively high corresponding 

component in the assumed initial covariance. For this example, we consider an error of 

10 m2 for the initial position. For the initial velocity, we assume that the object starts 

from rest. This assumption is fairly reasonable in this case, so a smaller uncertainty 

value of 0.01 m2/s2 is assumed. To aid the reader in the implementation of this example, 

the necessary parameters and definitions for this filtering application are summarized in 

Table 4. 

 

 

 
THE EXTENDED KALMAN FILTER 

The Extended Kalman Filter (EKF) is just an extension of the Kalman filter to nonlinear 

systems. This means that the difference with the EKF is that the state and/or the output 

equations can contain nonlinear functions. So rather than considering systems of the 

form (1) and (2), the EKF can consider a more general nonlinear set of equations: 

Other Nonlinear Kalman Filtering Techniques 

The Extended Kalman Filter (EKF) is not the only nonlinear Kalman filtering technique. 

Perhaps the most common alternative to the EKF is the Unscented Kalman Filter (UKF) 

which is sometimes referred to as a Sigma-Point Kalman Filter (SPKF). Rather than use 

Jacobian matrices to handle the nonlinear in the system, the UKF uses a statistical 

linearization technique called the unscented transformation [9]. The UKF has 

demonstrated some advantages in more accurate linearization, particularly in highly 

nonlinear problems [9,10], however in some situations it has been shown to produce 

similar results to that of the EKF [11]. The EKF tends to be more computationally 

efficient than the UKF, thus making it more desirable for real-time applications [11,12]. 

Additionally, the EKF is a bit easier to understand conceptually, which is beneficial for 

student use. The UKF, however, can provide superior linearization in certain situations, 

and can also be easier to implement since there is no need to calculate Jacobian matrices 

[10]. For details on the implementation of the UKF, see [13] or [14]. 

1. CONCLUSION 

This work provided a tutorial for Kalman filtering that is geared toward undergraduate 
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students with little or no experience on this topic. Detailed descriptions and an example 

problem were offered in order to help aid in the basic understanding of this complex 

topic. 
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