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Abstract 

   In this study, the transition theory and generalized strain measure theory were used to model the 

elastoplastic deformation in a transversely isotropic spherical shell subjected to a thermal gradient and 

uniform pressure. The main difference in transition's theory from the classical plasticity theory is 

neglecting ad-hoc assumptions such as the deformation is infinitesimally small, material 

incompressibility and yield criterion. However, results obtained by transition theory satisfy the yield 

condition in plastic state, and it is important to determine elastoplastic and fully plastic stresses on the 

basis of Lebesgue measure. Results are obtained in non-dimensional quantities and are shown 

graphically and illustrated numerically. The validations of analytical results of particular cases were 

compared to other works published in the literature and found to be the same. It is concluded that the 

pressure required for the initial yielding of the thicker shell made of transversely isotropic material is 

lower than the pressure required for thinner shell at room temperature. Through adding thermal effects, 

the pressure required for initial yielding of a transversely isotropic shell decreases. The value of fully 

plastic circumferential stress at the outer surface of the shell decreases with the increase in temperature 

and pressure. It is seen that the stress distribution through the shell surface, induced by temperature and 

separately induced by pressure, is opposite. 

 

1. Introduction 

A shell is a cylindrical or spherical curved surface which is much smaller in thickness than its other 

dimensions. The geometric properties of shells, i.e. single or double curvature give such lightweight 

structures a tremendous advantage. Shell structures find wide applications in many branches of 

engineering. Examples include aircraft, spacecraft, nuclear reactors, tanks for liquid and gas storage, 

and pressure vessels. Researchers applying advanced materials in order to reduce the weight, thickness 

and cost of the structures. This is particularly important for aircraft and launch vehicles. Researchers 

have also discovered various uses of spherical shell structures in aircraft, industrial, chemical and 

mechanical ventures, such as rapid centrifugal separators, gas turbines for high control flying machine 

motors, turning satellite structures, other rotor systems, and pivoting magnetic shields. Many material 

properties, such as stiffness, strength, thermal expansion, thermal conductivity, and permeability, are 

used to compose a spherical shell associated with a direction or axis. If the material's properties along 

any direction are the same as those along a symmetric direction with respect to a plane, then that plane 

is defined as a plane of material symmetry. An isotropic material comprises an infinite number of 
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planes of material symmetry, while a transversely isotropic material has three mutually perpendicular 

planes of material symmetry and one of its principal planes is an isotropic plane [1, 2, 3, 4]. 

Researchers dedicated to the study of spherical shell based on classical and non-classical treatment to 

figure out the optimal design of structural components and they led not to confine themselves to the 

usual elastic regime, but the elastoplastic regime due to the increasing material scarcity and higher 

costs of the material. Elastoplastic analysis of spherical shells made from transversely isotropic or 

isotropic materials is critical in solid mechanics. It has attracted a great amount of scientific interest. 

Stresses and strains analysis in spherical shell has been extensively performed in classical treatment. 

Reuss [5] originally gave the solutions corresponding to the plastic state for shells under pressure, 

which Hill [6] improved and interest in this issue has never stopped ever since. Reissner [7] studied the 

analysis of stress and displacements of isotropic spherical shells.  Timoshinko and Goodier [4] 

evaluated the elastic stresses in a thick hollow sphere shell under internal pressure, and Hill [6] 

provided a comprehensive account of the same problem for work-hardening and non work-hardening 

materials in the elastic-plastic case. Johnson and Derrington [8] studied the onset of initial yield under 

pressure and uniform heat flow in a spherical shell. All of the researchers mentioned above used the 

method of superposition and semi-empirical laws to investigate these types of problems. Starting in 

1962 [9], researchers used Seth's transition theory and generalized strain measure theory (non-classical 

treatment) which does not use the superposition method and semi-empirical laws. The generalized 

principal strain measure has been defined [10] as 

   
1 1

1 2 12 21 2

0

n n
A A A

ii ii ii

Aeii
e e de ein i

 
       
 

                                                   (1)                                         

where n  is strain measure coefficient, eA
ii  is Almansi finite strain component and 1,2,3.i  It gives 

2, 1,0,1,2n     respectively to Green, Cauchy, Hencky, Swainger   and Almansi measures. 

This theory is applied to a more general and wider range of problems [7, 9, 11, 12, 13, 14, 15, 16]. 

Using his theory, Seth [17] studied elastic-plastic transition stresses and strains in tubes under pressure. 

Gupta and Dharmani [11] studied creep transition in transversely isotropic shells under uniform 

pressure. Pankaj et al. [18] investigated the problem in creep transition in the rotating spherical shell 

under the effect of density variable. Pathania and Verma [19] studied temperature and pressure 

dependent creep stress analysis of spherical shell. However, the studies using the non-classical 

treatment of spherical shell are very limited as compared to classical treatment, although the empirical 

assumptions are ignored and the nonlinear behavior of the material is taken into account, as shown in 

Figure 1 (b). 
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Figure 1: Stress-strain curves 

In this paper, elastoplastic stress and fully plastic stress analysis are carried out on an isotropic or a 

transversely isotropic spherical shell subjected to a thermal gradient and uniform pressure using the 

transition theory of Seth and generalized strain measure theory. Results are obtained in non-

dimensional quantities and are shown graphically and illustrated numerically. 

2. Governing Equation 

2.1 Mathematical Model 

Consider an isotropic or a transversely isotropic spherical shell having internal and external radii a  and 

b ( )a b respectively, subjected to a thermal gradient o and uniform pressure P  on the inner surface

r a , the cross-section of the shell subjected to these loads is shown in Figure 2. 

 
2.2 Displacement Coordinates and Strain Measures 

Due to the spherical symmetry of the structure, the displacements are purely radial and a function of r 

only. The components of these displacements in spherical coordinates are given by Seth [17]  

 1u r   ,   0v  ,  0w   ,                                      (2)                                              
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  where , , andu v w are the physical components of displacement,   is a function of 2 2 2r x y z    

only. 
For finite deformation, the Almansi strain components in spherical coordinates are:  

 
1 2

2
1 rreA

r     
  

 

1 2

2
1eA Ae    
  

                                                    (3)                                       

0A Ae A
r re e      

where , , , , ,A A A A A A
rr re e e e e e r      are the components of the strain tensor  eij

A , the superscripts “ A  ” is 

Almansi and '
d

dr



  .  

Substituting equation (3) into equation (1), the generalized strain components are: 

 1
e

n

rr
n

r   



 

  

1 n

n
e e 





 
 

                                                       (4)                                                                      

0e er er     

2.3 Stress-Strain Relation for Transversely Isotropic Material 

The thermo-elastic constitutive equations for transversely isotropic materials are given by [12]   

 11 11 11 11 66 22 13 332 1C e CC e C e        

 22 11 66 11 11 22 13 332 1C C e C e C e       (5) 

33 13 11 13 22 33 33 2C e C e C e       

(2 ), (2 ), (2 )44 23 4423 13 113 66 12 2C e C e C e      

where   is the temperature change, Cij  are the elastic stiffness constants,  and1 2   are the thermal 

moduli, andij jei  denote respectively the stress and strain tensor.  

The stress components can be calculated if the distribution of temperature is given. Consider the case of 

steady flow and we take the temperature  

, for ,

0, for

r ao

r b





 


 

where o is constant, then the temperature at any distance r from the center is  given by [4] 

b r
o

r
 

 
  

 


                                                    (6) 

where   
ao

o
b a


 


 

 

Substituting equation (4) in equation (5), we get 

 
2 13

1

33 2

1 r
C C

n n

rr
n n

  
  

         
 



  
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 
 13 11 62 2 1

1 1
2 6

n n

n
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  
  

         
   



       (7)                                

 
 2 213 6

' 1
6

1
11

1
C CC n nr

n n
     

        
     

 

0r r       

 

The equilibrium stress-equations are given by [3] 

     

     
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   

 
   

  

  



  
 



  



  
 

                (8) 

Substituting the values of stresses from equation (7) in equation (8), we see that the equations of 

equilibrium are all satisfied except, 

  2
( ) 0

rr
rr

r r


 


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
                                     (9)                                                                 

Using equations (6) and (7) in equation (9), we obtain a non-linear differential equation governing 

transitions in   as: 

          
2 2 ( 1)3 3 21 1 1 1 1 13

_ _
2( )2 1 2

33 3
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3

1
p p p p pn

dpn n nn np
d
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r
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  
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 

    

 





         







  

    
   

   (10) 

where 13and 13
33

C
r p

C
     . In equation (10) the transitional points of   are 1p    and p   

3. Boundary Conditions 

The problem’s boundary conditions are set by:  

| Prr r a                                                                    (11)                     

| 0rr r b  (12) 

where P   is a pressure on the inner surface of the spherical shell. 

4. Analytical Solution  

To evaluate the plastic stresses, the transition function  at the transition point p   [11, 14, 15, 16, 

17, 18, 19, 20,  21, 22, 23] is taken through the principal stresses. We define the transition function   

as 

  2(1 31 )
nn p     

  
                             (13)                           

Then, 
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   
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From equation (10) substitute the value of  
dp

d
   in equation (14), we get 

 
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            where 
211 12 13 (1 ).3 2

33

C C C

C
 

 
   

By taking asymptotic value of equation (15) as p   , we get  

ln
2 3ln

d

d r



                                                                                  (16) 

 Then integration of equation (16) yields,  
2

,3Ar


     where A   is an integration constant.             (17) 

Using equation (17) in equation (13), we get  

233 33 2 3
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Ar
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r
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
    
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   

 
  
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 
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                          (18)                                    

The relationship between yielding stress in tension and material constants at the transition range [13] is 

given by 
(3 2 )33 3 2 3

(2 )3 2 3

C
Y

n

  

  

 


                                                          (19)                 

where Y  is the yield stress in tension. Using equation (19)  in equation (18), we get 
_(2 )3 2 3 12(3

2
33 2 32 )2 3 3

Y b
r r oAr

r


   

  
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
 

 


 
 

 
  
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       (20)

 

 

 Using the boundary condition (12) in equation (20), one gets 
2

3(3 2 )3A b


   

Thus by substituting the value of the constant A , equation (20) becomes  
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                              (21) 

Using the boundary condition (11) in equation (21), we get  
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Substituting equation (21) in equation (9), we get   
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4.1 Initial Yielding 

We note that the value of rr   is maximum at r a . Hence yielding of the shell will take place at 

the inner surface. Thus,   
_

(2 )(3 22 )3 2 3 3 2 ( )1(3 2 ) 22 3

3Y bo
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b
r r aa
r a

   
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
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        (24) 

Substituting the value of  Y in terms of 1Y  in equations (21), (22) and (23), one gets the transitional 

stress as   
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and a relation between pressure and temperature for initial yielding at the internal surface as 
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We introduce the following non-dimensional quantities 
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Thus equations (25), (26) and (27) in non-dimensional quantities become 
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4.2  Fully Plastic State 

When fully plastic state is reached 03  , equations (28), (29) and (30) become  
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Particular Cases 

(a) Spherical shell under uniform internal pressure only ( 0o  ). 

Transitional stresses and the pressure required for initial yielding of equations (28), (29) and 

(30) become 
2
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These results are the same as obtained by Seth [17]. 

Fully plastic stresses and the pressure required for fully plastic state of equations (31), (32) and (33) 

become 
2lnrf R 

                                                                          (37) 
1f rf   

                                                                      (38) 
2lnP Rof  

                                                                      (39) 

These results are the same as obtained by Johnson and Mellor [24] and Hill [6]. 

(b) Spherical shell under a temperature gradient only ( 0P  ). 

Using the boundary condition | 0rr r a   in equations (21), (22) and (23), the transitional 

stresses and the pressure required for initial yielding of equations in non-dimensional quantities 

become 
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Fully plastic stresses and the pressure required for fully plastic state of equations (31), (32) and (33) 

become 
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5. Numerical Illustration and Discussion  

As a numerical illustration, the Cij , elastic stiffness constants for transversely isotropic material 

(Titanium) [14] and isotropic material (Steel) [20] are given in Table 1.  

Table 1: Elastic stiffness constants Cij   used in units of 1010 2/N m  

Materials 11C  12C  13C  33C  44C  

Transversely 

isotropic 
( =0.618,3

Titanium)


 

 

16.24 

 

9.20 

 

6.90 

 

18.07 

 

4.67 

Isotropic 
( =0.563, Steel)3  

 

2.908 

 

1.27 

 

1.27 

 

2.908 

 

0.819 

 

It is seen from Figure 3 that the pressure required for the initial yielding of the thicker shell made of 

titanium and steel material is lower than the pressure required for thinner shell made of titanium and 

steel material at no temperature. Through adding thermal effects, the pressure required for initial 

yielding of the shell made of titanium and steel material decreases. At higher temperature titanium shell 

requires low pressure compared to steel shell but at lower temperature reverse is the case. Compared to 

thinner shells, thicker shell requires high pressure to become fully plastic with temperature rise. Despite 

uniform internal pressure, thicker shell requires high temperature compared to thinner shell to become 

fully plastic. 

 

The pressure required for transition and fully plastic state along with the radii ratio is illustrated in 

Figure 4. It is depicted in the figure that the thicker shell requires high pressure for initial yielding and 

fully plastic as compared to thinner shell when the shell is subjected to pressure only.  Figure 5 shows 

that thinner shell requires high temperature for initial yielding and fully plastic compared to thicker 

shell when the shell is subjected to temperature only. From both Figure 4 and Figure 5, shell made of 

titanium material requires high temperature and high pressure as compared to steel material for initial 

yielding when the shell is subjected to temperature only and pressure only respectively. Pressure 

required for fully plastic state is much lower than the pressure required for initial yielding, while 

reverse results are obtained for the temperature required. 
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It is observed in Figure 6 that circumferential stress on the outer surface is maximum for titanium and 

steel shells. The value of the transitional circumferential stress for steel and titanium shells increases at 

the shell's outer surface with the rise in temperature and pressure. The transitional circumferential stress 

value for steel shell at lower temperature is higher than the titanium shell on outer surface. It is also 

observed that fully plastic circumferential stress on the outer surface is maximum. With the rise in 

temperature and pressure, the value of fully plastic circumferential stress decreases at the shell's outer 

surface. 

 

In Figure 7, stress distribution in a shell along with the radii ratio R separately due to uniform internal 

pressure and temperature are drawn. It is seen from the figure that the stress distribution through the 

shell surface, induced by temperature and separately induced by pressure, is opposite. 
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6. Conclusion 
It is inferred from the numerical discussion that the pressure required for the initial yielding of the 

thicker shell made of transversely isotropic material is lower than the pressure required for thinner shell 

at no temperature. Through adding thermal effects, the pressure required for initial yielding of the shell 

made of transversely isotropic material decreases. Compared to thinner shells, thicker shell requires 

high pressure to become fully plastic with temperature rise. The thicker shell requires high pressure for 

initial yielding and fully plastic as compared to thinner shell when the shell is subjected to pressure 

only,  whereas thinner shell requires high temperature for initial yielding and fully plastic compared to 

thicker shell when the shell is subjected to temperature only. Shell made of titanium material requires 

high temperature as compared to steel material for initial yielding when the shell is subjected to 

temperature only. The transitional circumferential stress value for steel shell at lower temperature is 

higher than the titanium shell on outer surface. With the rise in temperature and pressure, the value of 

fully plastic circumferential stress decreases at the shell's outer surface. It is seen that the stress 

distribution through the shell surface, induced by temperature and separately induced by pressure, is 

opposite. 
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