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1. Introduction  

Recent years have seen an increase in interest in statistical issues relating to the modeling and analysis of 

special data. The rise in the quality of real world issues for which data is being obtained spatial order is what 

drives the importance of this field of research. Such issues are common in a wide range of disciplines, including 

epidemiology, econometrics, earth and environment sciences, agronomy, etc. Several monographs in spatial data 

analysis are presented in (Anselin, L., and R. J. G. M. Florax. 1995), (Cressie, N. A. 1993) and (Ripley, B. 

1981). In addition, some important sources for functional data modeling we refer (Ramsay, J. O., and B. W. 

Silverman. 2002), (Bosq, D. 2000), (Ferraty, F., and P. Vieu. 2006), (Geenens, G. 2011), (Horvath, L., and P. 

Kokoszka. 2012), (Zhang, J. 2014) or (Hsing, T., and R. Eubank. 2015). The non-parametric functional spatial 

statistics serve as the overall framework for current contribution. Modeling are association between a scalar 

response variable and functional covariant has received a lot of attention in this context. The most popular 

strategies rely on local constant fitting. In this study, we suggest employing local linear M-regression to model 

this relationship. An alternate method to estimate the spatial regression was put on forth by (Li, J., Tran, L.T., 

2009). The authors in (Xu, R., Wang, J., 2008) investigated the local linear estimation of the regression model in 

the spatial situation. The least absolute deviation is minimized to provide the final semi-parametric estimate. 

The local linear technique has a variety of advantages over local constant fitting, as is widely known. 

Particularly, it enables the reduction of the bias term in a diverse range of situations. For further information on 

the significance of this strategy, see (Fan, J., and I. Gijbels. 1996). Noting that many authors have looked into 

the robust linear estimation in the multivariate case. For the i.i.d. case we suggest to see (Fan, J., and Hu, T.C., 

Troung.Y.K., 1994), and (Cai. Z., and E. Ould-Said. 2003) for the α-mixing case. For some asymptotic findings 

using the robust constant method for both techniques (KNN and kernel), we go-back to (Boente, G., Manteiga, 

W.G., Péerez. Gonzàlez, A., 2009). We shall concentrate on the scenario when the covariant has infinite 

dimensions in this paper. It should be mentioned that in applied statistics, the importance of statistical analysis of 

infinite-dimensional data is increasing. These studies all primarily concentrate on the classical regression. 

It is well recognized, nonetheless, that the given model is particularly susceptible to outliers and struggles with 

errors that are heavy-tailed. Such data are frequently seen in many practical domains, including econometrics, 

finance, and many more. In this study, we propose to robustly the functional local linear regression model to 

minimize the lack of robustness of this model. The structure of this paper is as follow: In Section 2, we present our 

model. The main outcomes and necessarily conditions are presented in Section 3. In Section 4, we describe the 

key aspects of our strategy and contrast it with other strategies.  In this part, we also present some perspectives on 

the current contribution.  
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2. Presentation of the spatial data and the robust local linear estimator 

Let a F×R-valued measurable noted by Zi=(Xi,Yi) for i
N  and a strictly stationary spatial process, given  in 

a space of probability (Ω,A,P), where ( , )F d denotes a semi-metric space, and N ≥ 1. Let a point   

(       )   
  refers a site.  

We suppose that the process Zi= (Xi,Yi), is observed over a rectangular domain:  

 

    {  (       )   
                         } 

 

 where   (       )     . 

 The point i denotes a site, and we shall write: 

 

                    
        

{  }                                  

 

where C is a constant in which 0 ≤ C ≤ ∞ for all j, k ∈ {1, ..., N}.  

For   (       )     , we set  ̂ =    × · · · ×    .  

 (  ) is assumed to have the same distribution as (X, Y ) throughout this paper. We suppose a regular version 

of the conditional probability of Y given X exists and has a continnous and bounded density function. It is given 

with respect to the lebesgue measure over  . The conditional distribution (respectively density) function given by 

  (respectively    ) of Y given X with x ∈Ꞙ and xN denotes a given neighborhood. Our goal in this work is the 

generalization of the results given in (Ibrahim M. Almanjahie), that we can see in our model by taking  ( )  

   |      |we obtain this last result. Furthermore, by taking   ( )    |      | we obtain the     conditional 

expectile. For x∈Ꞙ,   , the nonparametric robust regression, defines the unique minimizer of 

 

            
   

    (     )                                                 (1) 

 

where ρ(.) is real-valued Borel function satisfying some regularity condition that will be stated below. This 

model belongs to the of M-estimates class introduced in (Huber, P.J., 1964). We refer the reader to (Stone, C. J. 

2005) for more additional examples. Note that the local linear smoothing method relies on the model being 

approximated by a linear function in a neighborhood of x. Several techniques exist in functional static analysis to 

extend this strategy (see, (Baıllo, A., and A. Grane. 2009) or (Barrientos, J., F. Ferraty, and P. Vieu. 2010) for 

several instances). In this contribution, we use the simple version suggested by (Barrientos, J., F. Ferraty, and 

P. Vieu. 2010) in which the function     is approximately presented by 

 

  ( , ) , x x bz a z x  N , 

where  ̂ and  ̂  denotes the estimates of a and b respectively and they are solution of 

 

 

   
(   )   

∑  (           
 (     )) (      (     ) ) .                   (2) 

 

Here, β(. , .) is a known function from (Ꞙ ×Ꞙ) into   such that,∀ξ ∈Ꞙ, β(ξ, ξ) = 0 with kernel K. Also h =    

denotes a positive real sequence numbers and δ(., .) denotes a function of ( Ꞙ ×Ꞙ ) such that d(., .)=|δ(., .)|. It 

obvious that taking this into account, we can write 

 

               ̂    ̂. 

 

We emphasize the fact that the robust linear estimator cannot be defined directly, in contrast to classical 

regression case investigated by (Barrientos, J., F. Ferraty, and P. Vieu. 2010). As a result, establishing the 

asymptotic proprieties of our estimate is quite challenging and necessitates the use of some additional techniques. 

Note that, the major outcome of this work is to demonstrate the estimator’s      
̂ almost complete consistency (with 

rate) forr the following condition of mixing: 
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{
 
 

 
                           ( )                                                      

∀                                           

  (  ( )   (  ))            ( )         (  )  (    )    ( ) ( ) 

   (      ( )        (  )) (     (     )

  (3) 

 

where  ( ) (respectively,  (  )) denotes the Borel σ-field generated by (Zi,i∈ E) (respectively, (Zi , i∈  )).  
The cardinality number of E (respectively,   ), is denoted by Card(E) (respectively, Card(   )) and  dist(E,    ) 
defines the Euclidean distance between E and     A symmetric positive non-decreasing function         in 

each variable so that  

∀               (     )      (     )                   (4) 

For some       and  

∑    
    ( )                                          (5) 

 

Remark that, when (3) holds with ψ ≡ 1 or N = 1, thus Zi= (Xi,Yi), the random field is called strongly mixing. 

3. Hypotheses and results 

When there is no possibility of confusion, a strictly positive generic C and     will be denoted in what follow. 

Furthermore, we denotes x a fixed point in Ꞙ, and by xN  for a fixed neighborhood of x. For i∈  , we denote 

by    (     δ(     ) ), and β
 
 β(     ). In addition, we put 

 
 (     )    (     δ (    )      )  where B 

(x, r) = {  ∈  Ꞙ δ (     )     } as well as the following hepotheses: 

 

(H1) For any       ,   ( )     (        )    and there exists a function    ( ) so that:  

∀             ∈  (    )    
  ∞

  (         )

  ( )
      ( ). 

 

(H2) For all,       

0 <       Ꞙ [(Xi , Xj) ∈ B (x, h) × B (x, h)] ≤ C ( 
 
( ))

(   )

 
 

for some                          . 

 

(H3) A continuously differentiable function p in which it is a strictly convex, and has a Lipschitzian derivative 

ψ such that  

 

    ψ (     )                ∞                                        

 

(H4) The function   ( x , . ) : =   ψ (     )           is of class    on 

       δ           δ     ; δ      and    ∈ {1, 2}. We put  (     )  
 

  
  (     ) 

 

{

( )      ∀(     ) ∈        δ           δ      ∀ (     )  ∈ xN    xN                    

   (      )     (      )           (     )           
  

(  )     (      )      (      )              (     )           
                                                       

 

 

(H4’) The variable δ (x, X) is σ (β (X, x))-measurable and the two partial derivatives of the function 

  (   )            (   )  β(   )              (     )      . 
 

(H5) The function β (., .) is such that: 

 

{
( )  ∀   ∈  Ꞙ    δ (   )     β (   )           δ (   ) 

(  )    
     (   )

 β (   )   δ (   )     ( )                                    



Asymptotic Properties of the Robust Regression Estimator by using the Local Linear Method Case of Spatial Functional Data 

 

 833 

        (   )    {  ∈  Ꞙ δ (     )     }   
 

(H6) K is a positive kernel, differentiable function that is supported within (−1, 1) so that: 

(
 ( )  ∫    

  
( )  ( )                        ( )  ∫ (   ( ))

  
    ( )   

 ( )  ∫ (   ( ))
  

    ( )                    ( )  ∫ (    ( ))
  

    ( )   
), 

is a positive definite matrix. 

 

(H7) There exists  
 

  , and the bandwidth h satisfies : 

{
( )    

  ∞

     ̂

 ̂  
 
( )

                                                  

(  )      ̂
  

δ
            

 
( )               

 

 Comments on hypotheses 

The classical concentration property is characterized by condition (H1). Moste recent non-parametric statistical 

works on functional data use it. As in the i.i.d. case, the same convergence rate can be obtained by the local 

dependence. Condition (H3) is much lower than that considered by (Attouch, M., Laksaci, A., Ould Said, E. 

2009). In order to assess the asymptotic bias, the regularity constraints (H4) and (H4’) that define the functional 

space of our model must be met. Note that, the convexity of loss function ρ and the boundedness of the score 

function ψ are what regulate the robustness attribute of M-estimators. However, employing the truncation method 

described in (Laıb, N., Ould-Saıd, E., 2000) allows for dropping boundedness condition of ψ which helps to 

obtain generalize our model. Finally (H5) - (H7) are technical conditions (Barrientos, J., F. Ferraty, and P. 

Vieu. 2010).  

The main result of the paper is given in this following theorem. 

4. Main result 

Theorem 1.Under hypotheses (H1)–(H7) and if γ (x,    ) > 0 then 

|   ̂       |    (    (     ))     ((
     ̂

 ̂   ( )
)

 

 

)                   

5. Proofs 

To begin, we present the lemmas that are required to prove our asymptotic findings 

Lemma 1. Let    be a sequence of vectorial function, such that: 

 

 i). For all   ≥ 1 and a vector δ: 

 ( )  (   )      ( )  (  ) 

 

 

ii). For a positive definite matrix D and vectorial sequences   , such that:‖  ‖        ( ) 

for some A> 0 we have 

 

   
‖ ‖   

‖  (  )           ‖        ( )      
 

    ( )
     ∞   

 

where   ( ) is the minimum eigenvalue ofD and     . 

So that for any vectorial sequence   ,    (  )        ( ), we have 

 

 

‖  ‖                                                                                                   ( ) 
 

 

Proof of Lemma 1. 

 

 The proof of the lemma has the same concepts as presented in (Koenker, R., and Q. Zhao. 1996). In fact, for   > 

0, we can write 
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  (‖  ‖    )     (‖  ‖      ‖  (  )‖     )     (‖  (  )‖    ) 

 

    (    
‖ ‖    

‖  (  )‖    )     (‖  (  )‖    ) 

 

Since,   (  )        ( ), then 

 

∑ (‖  (  )‖    )    

 

 

 

Consequently, it is enough to prove that 

 

∑  (    
‖ ‖    

‖  (  )‖    )   ∞

 

 

 

Then,  for all δ such that  ‖ ‖      , there exists    ≥ 1  and  ‖  ‖    for which       . The first condition of 

lemma (1) gives us 

 

 

‖  (  )‖   ‖  
   

  (  )

 
‖      

   
  (  )

 
     

   
  (  )

 
 

 

So we have 

 

  (    
‖ ‖    

‖  (  )‖    )    Ꞙ (    
‖  ‖   

[  
   

  (  )

 
]    ) 

 

Therefore, evaluating this last quantity is the only thing left to do. We write about this 

 

 

  (    
‖  ‖   

[  
   

  (  )

 
]    )    Ꞙ (    

‖  ‖   
[     

  (  )]      

   
‖  ‖   

[     
(           )]        ) 

    Ꞙ (    
‖  ‖   

[     
(           )]        ) 

  Ꞙ (    
‖  ‖   

‖  (  )            ‖    ) 

 

                                                              +Ꞙ (‖  ‖       ( )       ). 

 

 

At last, under the second conditions given in  Lemma(1), we can choose   for which 

 

∑   (    
‖  ‖   

‖  (  )            ‖    )   ∞

 

 

 

Also 

 

∑Ꞙ (‖  ‖       ( )       )   ∞

 

 

 

Accordingly,  

 

∑   (‖  ‖    )   ∞

 

 

. 
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Proof of Theorem  

 

We define, for all   ( 
 
), 

 

  (  )     (    ((   )   (      )  )) 

 

and we consider the following vectoriel sequence 

 

  (  )   
 

 ̂   ( )
∑  (  )

    

(
 

     

)    

 

                    (  )       (
 

 
) 

 

 

Thus, the proof of Theorem is based on the application of Lemma (1)’s  second part of to  (          ) with  

  (  )   (  ̂   
   ( ̂   )

) 

 

While the second result is obtained by applying the lemma (1)’s first part  to  (   
      

     
 
 ) where 

 

 

  
 (  )    (    (   

 

√ ̂   ( )
 )   (

 

 √ ̂   ( )
   )   ) 

 

 

  
 (  )   

 

√ ̂   ( )
∑  

 (  )

    

(
 

     

)    

 

 

                       
      

 (  )                                 
  √ ̂   ( )    

 

Clearly, the condition (i) given in lemma (1) holds, because ψ is a monotone increasing function. The case of 

decreasing can be obtained by considering−ψ. 

The theorem’s result is a consequence of the following lemmas: 

Lemma 2.Under hypotheses (H1)-(H7), we have 

‖  ‖    (    (     ))        ((
    ̂

 ̂   ( )
)

 

 

) 

 Lemma 3. Under hypotheses (H1)-(H7), we have 

   
‖ ‖   

‖  (  )           ‖    (    (     ))        ((
    ̂

 ̂   ( )
)

 

 

) 

With  

   (
 ( )   ∫    

  
( ) 

 
( )                        ( )   ∫ (   ( ))

  

  
 
 
( )   

 ( )   ∫ (   ( ))
  

  
 
 
( )                    ( )   ∫ (    ( ))

  

  
 
 
( )   

) 
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And  

       (     )  

 

Proof of Lemma 2. 

Firstly, we establish 

 

           (
  

 

  
 ) 

where 

{
 
 

 
   

     
 

 ̂   ( )
∑  

 

    

  
      

 

 ̂   ( )
∑   

 

    

 

with  

  
      

 

 ̂   ( )
∑   

   
    for      

 

and 

  
        (  ) 

    
      [  (  ) 

    
   ] 

 

Furthermore, under (H1),(H3) and (H5) 

 

|  (  ) 
    

   |           (    )             

 

 

Thus, it is sufficient  to demonstrate  that 

                ((
    ̂

 ̂   ( )
)

 

 

) 

On the other hand 

 [  
   ]   

 

    ( )
 [  (  ) 

    
   ] 

  
 

    ( )
  [     

     (    )(  )   (       )     (         ) ] 

 

   (   )     (   )  

which achieves the proof of Lemma (2).  

Now, for the second claimed result, we consider the spatial decomposition of (Tran, L. T. 1990) in which it 

is based on the split of the sum into    random variables sums defined for a fixed integers pn, given as follow 

 

 (         )   ∑   
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 (         )   ∑ ∑   

(    )  

               

         

                   

 

 

 (         )   ∑ ∑

 (      )  

                   

         

                   

∑   

         

           

 

 

 (         )   ∑ ∑

 (      )  

                   

     

                   

∑   

 (    )  

              

 

 

Along with others. 

Lastly, 

 

 (             )   ∑

 (    )  

                      

∑   

         

           

 

 

 

 (           )   ∑   

 (    )  

                    

 

 

Where    means either   
  or     

 
. 

Next, put 

 (     )   ∑  (       )

   

 

 

with    {          }     {          }    and     2    
   ,  i= 1, ….,N. 

At the end, From       , we can write, 

 

|  
    [  

 ]|   
 

 ̂   ( )
∑   (     )   

   (7) 

 

Where   
   equal   

 or       
 
. 

Note that, the term say  (         )              as raised in (Biau, G., and B. Cadre. 2004), if we 

don’t have equalities    2    
   (which holds the   ( )

 s at the ends and it is not included in the blocks above). 

The proof will be not greatly changed by this. 

So according to (7), for all   > 0, we have,  

 (|  
    [  

 ]|    )          
    

 ( (     )    ̂   ( )) 

Lastly, the only thing left to calculate is 

 ( (     )    ̂   ( ))                    
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We are just considering the case where i=1 to maintain generality. For such situation, we enumerate the  

 ∏        ̂  
    

    ̂  
  random variable  (         )      in the arbitrary way          Therfore, for 

each    it exists some    in   such that 

    ∑   

   (         )

 

 

Where  (         )   {                                    }   Straightorward calculations can 

indicate that these sets contains    
  sites and are distant at least by   

 . 

      The remain of the proof is from (Carbon, M., L. T. Tran, and B. Wu. 1997) which allows to 

approximate          by some independent random variables   
       

  that has the same low as         

and such that 

∑  |     
 |     

 

   

  
  ((   )  

    
 ) (  ) 

Now, taking a look at the quantity ( (     )   ). In there, we derive from the Bernstein and Markov 

inequalities that 

 

 ( (     )    ̂   ( ))          

where 

 

     (|∑  
 

 

   

|    
   ̂   ( )

  
)        (  

(  ̂   ( ))
 

     [  
 ]     

   ̂   ( )
) 

 

and 

 

     (|∑|     
 |

 

   

|    
  ̂   ( )

 
) 

 

  
 

  ̂   ( )
∑|     

 |

 

   

 

 

     
 (  ̂   ( ))

  
 ((   )  

    
 ) (  ) 

 

Since  ̂       
 and ((   )  

    
 )      

 we get for    
 √

    ̂

 ̂   ( )
 

 

      ̂  
 (    ̂) 

 

 ( ̂   ( ))
 

 

  (  ) 

 

Taking     (
 ̂   ( )

    ̂
)

 

  
, to get  
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       ̂ (  )      (8) 

 

So, combining (5) and (H5) together, we may say that 

 

∑ ̂ (  )   ∞

 

 

 

Initially, we asymptotically evaluate    [  
 ] for       Indeed, 

 

   [  
 ]          

 

Where     ∑       ( )    (       ) and     ∑ |   (  ( )    ( ))|     (       )    

By the hypothesis (H1) and the first part of (H5), we have 

 

      ( )     (  ( )  (  ( ))
 
) 

hence 

     (  
   ( )) 

 

Additionally, we introduce the following sets for the term Rn: 

 

   {        (       )   ‖     ‖     }    {        (       ) ‖     ‖    } 

Where   is a real sequence that converges to +∞ that will be defined later. Divide this sum into two separate 

summations over sites in     and     

   ∑ |   (  ( )    ( ))|(    )   
+ ∑ |   (  ( )    ( ))|     

    
 

(    )   
 

Initially, we have: 

  
   ∑ | [    ]|   |      [  ]|

(    )   

 

    
   

   ( ) ((  ( ))
 

     ( )) 

     
   

 (  ( ))
   

  

Rather, we have 

  
    ∑ |   (      )|

(    )   

 

 

 As     are bounded, we deduce from that (Ibragimov, I. A., and Y. V. Linnik. 1971)  

|   (      )|     (‖     ‖) 

Therefore 
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   ∑  (‖     ‖)    

(    )   

  
 ∑  (‖ ‖)

  ‖  ‖   

 

 

     
   

   ∑ ‖ ‖   (‖ ‖)

  ‖  ‖   

 

Let     (  ( ))
  

  ,    then we have  

  
       

    
   ∑ ‖ ‖   (‖ ‖)

  ‖  ‖   

 

 

     
   ( ) ∑ ‖ ‖   (‖ ‖)

  ‖  ‖   

 

Due to (5) and (H3) we obtain 

  
       

   ( ) 

Furthermore, under this choose of    we have 

 

  
       

   ( ) 

Consequently  

   [  
 ]    (  

   ( )) 

Using this final outcome along with the definitions of   , M and  , we obtain 

 

          (  ( 
 
)    ̂) 

At the end, we conclude that 

                ((
    ̂

 ̂   ( )
)

 

 

) 

And 

 [  
   ]   

 

    ( )
 [  (  ) 

    
   ] 

  
 

    ( )
  [     

     (    )(  )   (       )     (         ) ] 

   (   )     (   ). 

Thus 

‖   ‖    (    (     ))        ((
    ̂

 ̂   ( )
)

 

 

) 

Proof of Lemma 3. 

We prove that 

   
‖ ‖   

‖    (  )         (     )   ‖    (    (     ))                         (9) 

And 
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‖ ‖   

‖  (  )           (  )      ‖       ((
    ̂

 ̂   ( )
)

 

 
)                    (10) 

The initial outcome is as follow 

           (
  

 (  )

  
 (  )

) 

Where 

  
   (  )   

 

 ̂    ( )
∑

    

(     (  )    (  ))  
      

Observe that, by (H4) we have 

 [  
   (  )]=

 

    ( )
  [  

     (    )(  )( (   (   )  (   
    )  )      (        ))] 

  
 

    ( )
   [  

     (    )(  )  (        )(        )  ]   (‖  ‖) 

    (     )
 

    ( )
( [  

   ]    
   [  

     ])    (    (     ))   (‖  ‖)  

Therefore 

    (  )         (     )
 

    ( )
(

           
     

      
      [       

   
 ]

)     (    (     ))    (‖  ‖)  

Following (Demongeot, J., A. Laksaci, F. Madani, and M. Rachdi. 2013), under the second part of (H5) so 

that 

  
   [    

 ]    ( ) (  ( )  ∫(   ( ))
 

 

  

    ( )  )    (  ( ))  

It follows that 

   
‖ ‖   

‖    (  )         (     )    (‖  ‖)‖    (    (     )). 

Which complete the proof (9). Regarding (10), we utilize the compactness of the ball  (    ) in Ꞙ and we 

can write 

 (    )  ⋃  (       )
  
      ,      (

  

  
)and       

   
 

√ 
 

 

By taking  ( )         |     | and use  fact that 

 

   
‖ ‖   

‖  (  )           (  )      ‖      
‖ ‖   

‖  (  )    (  )‖……………..……..F1 

 

     
‖ ‖   

‖  (  )        [  (  )     ]‖….F2 

 

  +    
‖ ‖   

‖ [  (  )    (  )]‖…………………F3 

 

Concerning F1 and F2 utilizing the fact that ψ is Lipshitzian and K is bounded. In addition, under (H5) we get 
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‖ ‖   

‖  (  )    (  )‖  
   

  ( )
   (√

    ̂

 ̂   ( )
) 

it follows that 

   
‖ ‖   

‖  (  )    (  )‖        (√
    ̂

 ̂   ( )
) 

Regarding F3 by utilizing the same steps used for F1 we have : 

 

   
‖ ‖   

‖  (  )    (  )‖    (√
    ̂

 ̂   ( )
) 

Presently, we deal with  the quantity F2, and take 

  (  )        [  (  )     ]     (  )    [  (  )] = (
  

 (  )

  
 (  )

) 

where 

  
   (  )   

 

 ̂   ( )
∑   

   

    

 

and 

  
     (  (  )     (  ))       

      [(  (  )     (  ))       
   ]  

Once more we present the same arguments such given in Lemma (2). We replace the classical spatial block 

decomposition with precision,   
              

           Hence   > 0 exists so that 

∑ Ꞙ(    
‖ ‖   

‖  (  )        [  (  )     ]‖   √
    ̂

 ̂   ( )
  ∑  ̂

 

  (      )) . 

When combining both (8) and (H6), we can show that 

∑  ̂
 

      ∞. 

When choosing an appropriate  , it allows obtaining that 

∑  ̂
 

      ∞, 

which implies the result (10). 
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