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Abstract

In this paper, we represents few separation axioms are {-Ty, {-T; and {-T, in (V,77). {-T, deals with the distinct points which not has
same {-open set. {-T; gives that the distinct points are in different {-open set. {-T, approaches that the distinct points contain in
disjoint ¢-open set. We discuss among with N-T, (resp. N-Ty, N-T,) and {-T, (resp. {-T,, {-T,). {-topologically distinguishable
and {-symmentry space are associate with these separation axioms in ¢-nano Topology.
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1 Introduction and Preliminaries

Thivagar and Richard [3] are introduced the term Nano topology. Some few separation axioms of nano topology are
N-Ty, N-T,and N -T, was developed by Sathishmohan et al.[5]. Jenavee et al.[1] extended the idea of nano topology into
¢-nano topological space. ¢-topologically distinguishable, ¢-separated and ¢-sierpinksi space are formed by Jenavee et
al.[2].

Definition 1.1 [3] Let V be a non-empty finite set of members are called the universe and R has an equivalence relation
on V known as the indiscernibility relation. Members belonging to the same equivalence class are called to be
indiscernible with each other. The pair (V,R) is called to be the approximation-space. Let X c V.

1. The lower approximation of X with respect to R is the set of all members, which can be for certain
classified as X with respectto R and it is represented by Lz (X). That is,

Lr(X) =Uyey {RX): R(X) € X},
where R(X) denoted the equivalence class determined by X.

2. The upper approximation of X with respectto R is the set of all members, which can be possibly

classified as X with respect to R and it is represented by Uz (X).
(ie), Ur(X) =Uyer {R(X): R(X) N X # ¢}

3. The boundary region of X wit respect to R is the set of all members, which can be neither in nor as
not-X with respect to R and it is represented by Bz (X).
(i.e.), Br(X) = Ur(X) — Lz (X0).

Definition 1.2 [3] Let V be the universe R be an equivalence relation on V and 7t4(X) =
{(V,d, Ur(X), L(X),Br(X)}, where X c V. Then t4(X) satisfies the following axioms:
1. YV and ¢ € t4(X).
2. The union of the members of any sub-collection of 7¢(X) isin 74(X).
3. The intersection of the members of finite sub-collection of 7x(X) isin 74(X).
That is, T¢(X) is atopology on V is called the Nano topology on V with respectto X. (V,1x(X)) is called
the Nano topological space. Members of the Nano topology are called Nano open sets in V. Members of [t¢(X)]¢ are
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called Nano closed sets.

Definition 1.3 In (V, ty), [5]

1. Vissaidto be N-T, for u,w € V and u # w, 3 disjoint V'-open sets U such that u € U and w & U.

2. Vissaid to be N-T; for u,w € V and u # w, 3 disjoint V'-open sets U and V such that u € U, w ¢
WandweW, ugWw.

3. Vissaidtobe N-T, for u,w € V and u # w, 3 disjoint V'-open sets U and V such that u € U and
weWw.

Definition 1.4 [1] A subset J of a Nano topological space (V,Ng) iscalled {-Nano-open set if there exists a Nano open
set Z € Ny-0, such that
1. Z#¢,V.
2. ] S Ny-int(J) U Z.
In (V, N%), the member of the open set is said to be {-Nano-open and the complement is ¢-Nano-closed set.
The collection of all {-Nano-open including ¢,V is said to be ¢{-Nano-topological space if satisfies topological space
definition. So, this (V, Ng,{) or NV-7.(J) can be rewritten in the form {-Nano-topological space on V.

Definition 1.5 [1] Let E be a subset of a {-Nano-Topology.

1. The union of all Nano-{ sets contained in E is represent in the form of ¢{-Nano-int(E). We can rewrite in
the form ;(E).

2. The intersection of all Nano-¢ sets containing in E is represent in the form of ¢-Nano-cl(E). Also we
write in the form {.(E).

3. The exterior of {-Nano-Topology in E is defined by {,(E) = {;(V — E).

4. The frontier of {-Nano-Topology in E is defined by {f(E) = {.(E) N {.(V — E).

Definition 1.6 [2] Let (V, ;) be a {-nano topological space.

1. The two membersu andw inVare-topologically distinguishableif they do not have exactly the
same(-neighbourhoods.

2. Two subsetsUandWofVare{-separatedif each is disjoint from the other’s .

3. UandWare two subsets of V. Then it said to be - separated by ¢-neighbourhoodsif they have disjoint
¢-neighbourhoods.

Remark 1.7 [2] In (V,7;), the two membersu andw inVare have exactly the same¢-neighbourhoods then is called ¢-
topologically indistinguishable.

Proposition 1.8 [2] Any two ¢- topologically distinguishable points in (V, ;) are {-separated (another name is {- RO or
{- symmentry).

Remark 1.9 [2] In (V,7;), any of the two {- topologically distinguishable points are not {-separated. (another name is
¢- Sierpinski space).

The structure of this paper is represent: In Section 2, represents some new separation axioms {-T,, ¢-T; and {-T, in
(V,77). ¢-T, gives the result that the distinct points is does not contain in same { - open set. {-T; says that the distinct
points contain in different ¢-open set. {-T, represents that the distinct points contain in disjoint ¢-open set. We compare
relationship between N-T, (resp. N-T;, N-T,) and (-T, (resp. {-T;, {-T,). Few characterization of {-topologically
distinguishable, ¢-symmentry space are relate with these separation axioms in ¢-Nano Topology. The conclusion of this
paper is set forth in section 3.

Note:rj- or V' denotes Nano Topology and 7, or ¢ denotes {-Nano Topology.

2 Separation axioms
In this section, We study about ¢-T,, ¢-T; and ¢-T, in 7,. Some of it’s properties are handle.

Definition 2.1 A space V is said to be {-T, if for each pair of points u, w of V are distinct, there exists a ¢-open set X such
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that u € X and w ¢ X in (V,1¢).

Example2.2In V = {sy,s,, 53,V /R = {51}, {52}, {533}, Y = {s1,5,} and (V) = {¢,V, {s1,5,}}. Then, { =
{s1,52} = 1z (V) = {&,V, {51}, {52}, {51, 52}}. Therefore, (V,7.) is {-T, space because:

1. for s; and s,, 3 anopen set {s;} suchthat s, € {s;} and s, € {s;}.

2. for s; and s, 3 anopen set {s;} such that s; € {s;} and s; & {s;}.

3. for s, and s5, 3 anopenset {s,} suchthat s, € {s,} and s3 € {s,}.

Theorem 2.3 In (V, 1), every {-T, has a pair of distinct points.

Proof. Let assume that u and w are {-T, in V. Then, 3 uand w are in V and the open subset U such that w € U and w ¢
U by the definition of {-T,. From our assumption, clearly it gives u and w are distinct points.

Remark 2.4 The converse of the theorem 2.3 cannot be true.

Example 2.5 V = {sy,5,,53,54, S5} With V / R = {{s1}, {52}, {53, 54,553}, Y = {51,582, 53} Cc V. 75 (V) =
{®,V, {51,582}, {53, 54, S5}}. And { = {s1,5,} = 7,(¥) =

{,V, {51}, {52}, {51, 52}, {53, 54, S5 }, {51, S3, S4, S5 }, {S2, S3, S4, S5 }}. If @ pair of distinct points are s;and s,, then
3{s3, s4, S5} such that {s;} € {s3, s4, S5} Similarly, {s,} € {s3, 54, s5}. Hence, it is not {-T, space.

Theorem 2.6 Every N-T, is {-T, in (V, 7).

Proof. Let u and w are {-topologically distinguishable in -T,,. Then, 3 an {-open subset U such that u € U and w ¢
U. This implies, u € NV;(U) € (W;(U)u ) and w € V;(W) € (W;(W) U ) by our assumption is {-topologically
distinguishable. Now, we can hold that every N-T, is {-T.

Remark 2.7 The converse of the before theorem 2.6 cannot be true.

Example 2.8 In example 2.5, {s,} and {s,} are {-T, but not V-T,.

Theorem 2.9 In (V,1), Zis {- closed set iff Z = {- closure set.

Proof. Let Z is {-closed and y € Z. We know that, Z < {.(Z). Suppose that y &€ Z. Then Z is {-closed, Y =V —Z is
¢-open and contains y, but Z not contains = y ¢ {.(Z). Contradiction ye Z =y e {.(Z) and y ¢ Z =y & {.(Z). So,
Z = {.(Z). «(Conversely) If Z = (.(Z),thenZis {-closed. Let y € V — Z. Then y & {.(Z), so there is few {-open sets
YsuchthatyeY andYNZ=¢ =Y <V —Z, This gives that all points of V — Z are contained in Y, V —Z =uU
{Y:y € V — Z}, whose union of {-open sets. So, V — Z is {-open sets = {-closed.

Corollary 2.10 In (V,7;), Ziis ¢-open set iff Z= {-interior set.

Proof. The proof is follows from the contradiction result of the theorem 2.9.

Lemma2.11 In (V,7;), {(S) isthe smallest {-closed set containing S.

Proof. Let S is the {-closed setand {.(S) = S U {¢(S) = {.(S) €S or {.(S) € {(S).

Case (i): If {.(S) < S, then .(S) is the smallest ¢-closed set containing S because S is the {-closed set, by the
theorem 2.9.

Case (ii): If {.(S) € {(S), then {.(S) is the smallest ¢-closed set because {.(S) S {r(S) = {(S) N (V —
S). Hence, the proof.

Lemma2.12 In (V,7o), if {.(S) = (i(5)), then ;(S) # {.(S).

Proof. Let S ={.(S) in V and S < {.(S) = (§;(5))¢, by the definition of 7,. Then, ({;(5))° =V —({(S)) is a
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¢-closed set. From our assumption and lemma 2.11, V — ({;(S)) = {.(S) # {;(S). Hence, we hold {;(S) # {.(S).

Theorem 2.13 In (V, 1¢), Z is a subset of V, then every
1. {-T, ifand only if (&){-topologically distinguishable points.
2. (-T, © (-separated points.

Proof.1. To prove that {-T, = {-topologically distinguishable points. Assume that « and w are {-T,, and its open. By
the definition of {-T,, there exists a open set U such that u € U and w ¢ U then u € ({-int(U) U {). Thatis, u € (U U
{) = u S U by our assumption. From the definition of ¢-neighbourhood, 3 an open sets U and W such that u € U ©
N¢y. Similarly, for w € W < Ny, by our assumption. Now, we get two disjoint neighbourhood for two point u and w.
Therefore, {-T, = {-topologically distinguishable points.

The converse part of theorem, prove that ¢-topologically distinguishable points = {-T,. Let there are two points
u and w are distinct in ¢ -topologically distinguishable points. From the definition, its gives that it has disjoint
{-neighbourhood. That is, 3 an open sets U and W such that u € U € Ny and w &€ W < Ny, = U and W are distinct
= Ngy and Ngy, are distinct. Finally, its satisfy the {-T, condition. Hence {-T, = ¢-topologically distinguishable points.

2. Provethat {-T, = {-separated points. Letuand ware {-T, withw isclosed in V. Ifuand ware {-T,,then u € U and
w & U where U is open. This implies w € ({;(U))* 2w € {.(U) = U N {.(U) = ¢ by lemma 2.12.Thus, the result is
proved.

The another part, prove {-separated points = {-T,. Suppose x and y are {-separated points with u is open in V
(i.efu}el) . Then, UN{.(U)=¢p=>U =+ (U)=>{uteUand {u} ¢V —U = {.(U) 3w, by our assumption and
lemma 2.12. Thence, the another part is proved.

Corollary 2.14 In (V,7;), every u and w are pair of disjoint are ¢-T, < every u and w are pair of disjoint are ¢-
symmentry.

Proof. From the before theorem 2.13 (1) and (2), we can say {-T, < (-topologically distinguishable and {- separated =
¢- symmetry.

Theorem 2.15 Aspace (V,t;) is {-T, < for each pair of points u, w of V are distinct, {.({u}) # {.({w}).

Proof. To prove: {-Ty = {.({u}) # {.({w}). LetV bea {-T, with uand w are {-topologically distinguishable and clopen
set. Then, 3 an ¢-open set U and W such that u € U € Nyy and v € W € Ngy,. Since (U N W) € Ny N Ny = ¢.
Now, UNW =¢p=>UnNnW° =¢ ={.{u}) n{.({w}), by lemma 2.12 and our assumption. Therefore, {.({u}) #
{.({w}) because it is a disjoint. Converse part of the theorem is the reverse part of the theorem.

Corollary 2.16 Ina space, (V,1¢) is ¢-T, < for each pair of points u, w of V are distinct, u & {.(w) and w & {.(w).

Proof. Assume that u and w are ¢-T, in V. From the theorem 2.15, u € U = {.({u}) and w € W = {.({w}), where U
and W are open. This implies, ¢.({u}) and {.({w}) are disjoint. From this, we can conclude that u & {.(w) and w ¢
{.(u). &<, Let each pair of points u, w of V are distinct, u & {.(w) and w & {.(u) are {-topologically distinguishable.
This gives u € (V — {.(w)) = u € U, where U is open. Similarly,w € W. From our assumption, U N W = ¢. Clearly,
each pair of u and w are {-T,.Thence, it is proved.

Definition 2.17 Aspace Vin 7, is said to be a {-T;. If for any points of u and w are disjoint, then 3 two ¢- open sets U
and Wsuchthat ue Uywe¢ U and u g W,weW.
Theorem 2.18 Every N-T; is {-T;.

Proof. Assume that u and w are NV-T; in (V,7,-).Then, 3 the {-open subset U such that ue UC (UU{)=>u €
¢ ({u}) and w € {.({w}) € U¢ by the lemma 2.11 and the definition of {-T; are separated. It gives, every N-T; is {-T;.
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Remark 2.19 The converse of the theorem 2.18 cannot be true.

Example 2.20 V = {s4,5,,53,54} With V / R = {{s5:}, {53}, {52,541}, Y = {s1, 5.} c V. 7 (V) =
{,V, {51}, {52, 54}, {51, 52,843} And { = {51, 55,84} = 1¢(Y) =
{9,V {s1}, {52}, {sa}, {51, 52}, {S1, 4}, {52, 54}, {51, 2, 543} .Now {s,} and {s,} are {-T; butnot N-T;.

Theorem 2.21 For a space (V,1;), then the following are equivalent:
1. Vis {-T;.
2. Forevery u e V,{u} = {.({u}).
3. Foreach u €V, the intersection of all { open sets containing u is {u}.

Proof. 1. Case(1): Prove (1) = (2). Suppose V is {-T; and it is a clopen set. From the definition of { — T;,= 3 an
open set U such that {u} € U but {w} ¢ U = {u} = U. By our assumption, {u} = {.(u). Hence, the result is proved.

2. Case(2): To prove(2) = (3). We take, every u € V, {u} = {.(u) are clopen set. Then,3 is { - open set
such that {u} € U.{u} =N,y U where x is index value. Thus, it is proved.

3. Case(3): Prove (3) = (1). Let for each u € V,{u} =n,¢, U where x is a index value and {-separated by
¢-neighbourhood. Then, there is a distinct pairuand winV, 3 anopensetUand W suchthat ue U € N, and w e W <
N, = N, N N,, = ¢, by our assumption. Its clearly, says that each distinct {-points has distinct {-open set which implies
distinct ¢-neighbourhood. Therefore, we found the result.

Theorem 2.22 In (V, 1), every u and w are pair of disjoint are {-T; < Vis {-topologically distinguishable.

Proof. Let u # w are {-T;.So u and w are {-Ty, then 3¢-open U and W which contains a member does not contain
another member. From the result, we get u € U and w & U (i.e) each member has an individual {-open and also
¢-neighbourhood. Thus, V is -topologically distinguishable. Reverse part, assume that the pair u and w are pair of disjoint
with ¢-topologically distinguishable. That is, {u} € U € Ny and {w} € W < Ny,. Therefore, it is {-T; because it does
not have same ¢-neighbourhood and also {-open. Hence, {-topologically distinguishable is {-T;.

Theorem 2.23 A space (V,1¢) is ¢-T; < the singletons are {-closed sets.

Proof. Suppose u € U. Yw € {u}“, there is a ¢-open set W with w € W and u & W. Then, W, =U,,¢yc W is {-open
and it’s complement of {u} isexactly {-closed. & (Conversely), Assume u,w € V with u # w. So, {u}‘ isa { - open
set with w € {u}° and u & {u}°. Hence, itis {-T;.

Definition 2.24 A space V is said to be ¢-T, if for each pair of points u and w in V are distinct, 3 a ¢- open sets U and a
{- open sets W are disjoint in V suchthat u € U and w € W.

Theorem 2.25 Every N-T, is {-T,.
Proof. Suppose u and w are ¢-openin N — T,. So, 3 an open subset U and Wsuchthat u e U € (UU{) = u € {;({u})
and similarly, w € {;({w}) by the definition of {-T,. Then, {;({u}) n {;({w}) = ¢ by our assumption. It says that every
N-T, is {-Ty.
Remark 2.26 The converse of the theorem 2.25 cannot be true.
Example 2.27 In example 2.20, {s,} and {s,} are {-T; butnot NV-T;.
Theorem 2.28 For a space (V, 1), then the following are equivalent:
1. Vis {-T,.

2. If u,w eV, foreach u # w, then there is a -open set U containing u such that w & {.(U).

Proof.(1) = (2). Suppose V is {-T, and clopen sets. Then, u # W3{-open U and W such that u € U,w € W and U n
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W = ¢.Since U = . (U) and W = . (W) = {.(U) n (W) = ¢, by our assumption. Hence, w & {.(U).
(2) = (1). Let u,w € V, for each u # w, then 3 a ¢-open U where u € U such that w & {.(U). Then, w €
V —.(U) bylemma2.11.So, u € U € {.(U) and V — {.(U) areopen = U N { (U) = ¢. Thus, itis {-T,.

Theorem 2.29 In (V, 1), every u and w are pair of disjoint are {-T, < every u and w are pair of disjoint are
¢-symmentry space.

Proof. Suppose u # w are ¢-T, with ¢-topologically distinguishable and ¢-clopen set in V. Then, 3¢-open set U and W
such that ue U and we W = UnW =¢ . From our assumption of clopen, = UnW =¢p=UnJ (W) =¢.
Therefore, it is {-seperated = ¢-symmentry. Suppose V is {-symmentry. Then, 3two ¢-open sets U and W such that
Un{(W)y=¢p<cUNW =¢. We have, the two sets are distinct UnW = ¢, by the definition {-topologically
distinguishable.Thence, itis {-T,.

Theorem 2.30 For aspace (V,1¢), {-T, = {-T; = {-T,

Proof. Case(1): Let (V,7;) be a {-T,. Prove {-T, = {-T;. Assume u,w € V, u # w. Since V is {-T,, 3two{ -
opensetUand WinVsuchthat ue U, weW and UNnW = ¢. It represents u e U and UNW =¢ = w & U and
weWand UnW = ¢ = u & W. Therefore, {-T, = {-T;. Case(2): Let (V,t;) be a {-T;. Prove {-T; = {-T,.From
the definition of ¢-T;,3¢-open set U such that u € U and w ¢ U. It gives u € U and not containing other member =
{-T,. Hence, {-T; = {-T,.

Remark 2.31 The converse of the theorem 2.30 cannot be true.

Example 2.321. V ={s;,s;,} with V /R = {{s;},{s:}},Y ={s;.} c V. 7)o(V) = {0, V,{5:}}. And { = {5} =
7:(Y) = {¢,V,{s,}}. Here, s, and s; are {-T, butnot {-T;. This is also called ¢ - Sierpinski space.
2. Inexample 2.2, {s;} and {s3} are {-T; butnot {-T,.

3 Conclusion

We can established the ¢ nanotopology using ¢-T,, {-T; and {-T,. In future, We can extend into the idea of
{-T3,{-T4,{-Ts,§-Ty s and {-T5 5. Also, we can approach in another field like an ideal nano topology, fuzzy nano
topology, grill nano topology, bi-nano topology, neutrosophic nano topology, graph structures in nano topology, micro
topology etc with few results related on some applications.
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