Some more properties onsemipre- Regular Space(SP-T₃)

Suhad K.Hameed, Shahad Jasim University of Diyala, Collage of Sciences suhadkareem@uodiyala.edu.iq

Abstract

The aim of this research is to give more properties for the semipre-regular topological space which introduced byGovindappa Navalagi[1]. The property of weakly semipre- Hausdorff was considered and the relationamong(SP- T_3) spaces and other type of a topological space,werediscussed. Furthermore the notation of strongly (SP- T_3) define, as well as some certain features about the space was proved.

Keywords : semipre-(closed) sets, g- closed sets, simepre- closure of a set, semipre- Hausdorff space, S- openmapping, semipre-open mapping.

Introduction and Preliminaries

Firstly the symbols of closure of a subset A is cl(A), the interior is *int* (A), and the complement is represent by A^c in a topological space (X,τ) . For the subset with respected to relative topology τ_A we will use the symbols $cl \tau_A$ and *int* τA as the closure and the interior operators for a subspace $(A, \tau A)$ of a topological space (X,τ) . A semipre-open set was introduce by D.Anderijevie [2], A subset A of a space X is called semipre-open if $A \subset cl$ (int (cl(A))), while the complement of semipre-openis semipre-closed. The concept semipre-regular space define by Govindappa Navalagi[1] as a generalize of the concept regular space.

1.Semipre - regular spaces(SP-*T*₃)

Definition 1.1[1]:The space X is said to be a semipre-regular space if for every semipre-closed set $F, x \in X$ -*F*there is semipre-open sets U, V with $F \subset U$, as $x \in V$.

Lemma 1.2:[3] Let $(E, \tau E)$ be a subspace of a topological space *X*, assume that C is a subset of *A* with C is a semipre-closed subset and *E* \subset X is a semipre-closed. Then C is semipre-closed.

Theorem 1.3: Let, (E, τ) be a closed subspace of (X, τ) , then every semipre open subset of X is semipre open set on τ .

Proof: Let, $C \subseteq E \subseteq X$, and *E* is closed set in *X*, *C*semipre- open in *X*. Then *C* is semipre-open in *X* iff for each semipre-closed set *F* in *X* with $F \subseteq B$, that implies $F \subseteq int(cl(B))$. Let $E \subseteq C, E$ is semipre-closed set, as *E* is closed then its semipre-closed from lemma 1.2. *E* is semipre-closed on *X*, but *C*semipre open on *X*, then $E \subseteq$ int $\tau(cl \tau(C)) \subseteq$ int $\tau(cl \tau(C)) \subseteq int \tau(cl \tau(C)) = int \tau(cl \tau(C)) \subseteq int \tau(cl \tau(C)) \subseteq int \tau(cl \tau(C)) = int \tau(cl \tau(C)) \subseteq int \tau(cl \tau(C)) = int \tau(cl \tau(C)) \subseteq int \tau(cl \tau(C)) = int \tau(cl \tau$

Definition1.4:[2] The semipre- closure of a set *B*, represented by $cl_{sp}(B)$, is the intersection of all semipre closed sets containing *B*.

Theorem 1.5:Let X be a topological space, X is semipre-regular space iff for each $x \in X$ and each open set U contain in a finite base β with $x \in U$, there is semipre open set E with $x \in V$, $cl(int(E)) \subset U$.

Proof : $x \in U$, so $x \notin U^c, U^c$ is closed, therefore there is a disjoint semipre open set E_1, E_2 with $x \in E_1$ and $U^c \subset E_2$, we get $E_1 \subset (E_2)^c \subset U$. Moreover, $(E_2)^c$ is semipre closed set ,U is open set therefore U is

g-open set, sofrom the characterization of semipre closed subset we get $cl(int(E_1)) \subseteq cl(int(E_2)^c) \subset U$. For substantiation suppose $x \in X, G$ be Closed subset of X with $x \notin G$ now claim that U_1 , $U_2, \ldots, U_k \in \beta$ such that $x \in \bigcap_i^k = 1$ $Ui \subset G^c$. Then there is a semipre open set E_i with $x \in E_i$, $cl(int(E_i)) \subset U_i$, and $i = 1, 2, \ldots, n$. So that semipre open set $E_1 = \bigcap_{i=1}^n Ui, U_2 = (\bigcap_{i=1}^n cl int(E_i))^c$ are separated sets with $x \in E_1, G \subset (\bigcap_{i=1}^n cl int(E_i))^c = E_2$.

Definition1.6:A space X is said to be weakly semipre- Hausdorff, if for every various points $a, b \in X$ with $a \notin cl(Ub)$, with Ubsemipre open set with $b \in Ub$, so there is semipredisjoint open subsets U, Wwith $a \in U$, and $b \in W$.

Theorem1.7: Every semipre- regular is weakly semipre- Hausdorff.

Proof: suppose X is $(SP-T_3)$, $x, y \in X$ with $x \neq y$, let $x \notin cl(U_y)$ with U_y is a semipre open set consisting x. We have X is semipre regular, so that there is semipredisjoint open sets V_x , V_y where $x \in V_x$, $y \in cl(U_y) \subset V_y$, then X be a weakly – Hausdorff space. In case $y \notin cl(U_x)$ it's the same Way of proof.

Theorem 1.8: A semipre- T_1 , and semipre-regular is semipre- T_2 .

Proof: Assume that X is semipre- T_1 , semipre-regular, then every singleton set $\{x\}$ is sp-closed, $\forall x \in X$, and $\{x\}$ is semipre-closed subset of X, let a be a point on $X/\{x\}$, so that $x \neq a$. From the fact of regularity there exist a disjoint semipre-open sets E_1, E_2 with $\{x\} \subset E_1, a \in E_2$, that mean $x \in E$, $a \in E_2$, thus X is semipre- T_2 .

Definition1.9: [4] A space X is said to be semipre- Hausdorff if for each points $x, y \in X$, $x \neq y$ there is semipre-open disjoint sets V_x and V_y containing x and y respectively.

We will give an example explain that the quotient topology of the semipre regular space could be semipre Hausdorff space.

Example 1.11: Let, *X* is a (SP- T_3), *G* is a closed subset of *X*. Declare \Re as relation on a space *X*, in wich x \Re y iff either *x*, *y* belong to *G* or *x*, *y* \notin *G*, in this case *x*=*y*. Its clear that \Re is an equivalents relation, in order to explain the set *X*/ \Re with quotients topology is semipre Hausdorff claim $[x], [y] \in X/\Re$ where $[x] \neq [y]$, its obvious either *x* or $y \in G$. let $x \in G$; $y \notin G$, while *G* is closed semipre regular space *X* thus there is semipredisjoint open subsets *U* and *V*where $[x] \subset G \subset U$ also, $[y] \subset V$ and that meant *X* is semipre Hausdorff.

The example below explain that the quotientt space of semipre regular space doesn't necessary a semipre regularly.

Example 1.12: Taking the real number on the usual topology , define Q: $\mathbb{R} \to \mathbb{F}$, with $\mathbb{F} = \{a, b, c\}$ declareby following : Q(x) = a if x > 0, Q(x) = b if x < 0, and Q(x) = c if x = 0. Therefore the quotient topology on $Ais\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ then Fona topology τ doesn't semipre regular space while \mathbb{R} is a semipre regular.

Definition 1.13:[5] A mapping $f: X \rightarrow Y$ is said to be semipre irresolute if the inverse image of each semipre open set in *Y* is semipre open set in *X*.

Theorem1.14: A function $f: X \rightarrow Y$ is a closed semipre irresolute injective if Y is semipre regular space then X is semipre regular space.

Proof. Suppose that $x \in X, F$ be any closed subset of *X* with $x \notin F$, then f(F) is closed in *Y*where $f(x) \notin f(F)$ and since *Y* is semipre regular space, then there exists semipre-disjoint open sets *W*, *U* with $f(F) \subset W$ and $f(x) \in U$. implies that $F \subset f^{-1}(f(F)) \subset f^{-1}(W)$ and $x \in f^{-1}(U)$ furthermore $f^{-1}(W) \cap f^{-1}(U) = \phi$, but the function *f* is semipre irresolute thus $f^{-1}(W)$, $f^{-1}(U)$ are semipre open subsets of *X*.

Definition 1.15. [5] A function $f: X \rightarrow Y$ is said to beS- open if the image of everysemipre-open set in X is semipre open set in Y.

Theorem1.16. Let the mapping $f: X \to Y$ is a bijective, S- open and continuous mapping, and X is semipre regular space, thus Y is semipre- regular space.

Proof. Suppose that *A* is a closed subset in *Y* with $y \notin A$, then $f^{-1}(A) \subset X$ and $f^{-1}(y) \notin f^{-1}(A)$. Since $f^{-1}(A)$ is closed in *X*, *X* is semipre regular space therefore there exists semipredisjoint open sets *W* and *U* such that $f^{-1}(A) \subset W$ and $f^{-1}(y) \in W$, but *f* is S – open thus it is clear that f(W) and f(U) are semipre with $f(W) \cap f(U) = \emptyset$ in *Y* containing *A* and *y* respectively.

2. Strongly semipre regular

Definition 2.1: A space is said to be strongly semipre-regular space if for each $y \notin S$, S semipre closed set then there is two open sets *W* and *U* with $y \notin W$ and $S \subset U$, and $W \cap U = \emptyset$.

every strong semipre-regular is mildly-regular but the convers need not necessarily true as shown in the example below .

Example 2.2:Determine $X = \{a,b,c\}$ with topology $\tau = \{X,\phi,\{a\},\{b,c\}\}$ is semipre-regular but not strong semipre-regular

Theorem.2.3:For a topological space(X, τ) the followingsstatement are equivalently:

(i) *X*be a strong semipreregular space.

(ii) For every $y \in W$, Wisa semipre open, there is an open set U with $y \in U \subset cl(U) \subset W$

(iii) For every $\in X$, semipre closed set W, with $y \notin W$, there is an open set U with $y \in U$ and $cl(U) \subset W^c$.

Proof: (i) \rightarrow (ii) we have U^c is semipre closed and $y \notin W^c$ and then there exist U and Gwith $y \in U$ and $W^c \subset G$ where G and U are disjoint open sets and it clear that $cl(U) \subset G^c$ thus $cl(U) \cap W^c \subset cl(U) \cap G = \phi$, thus $cl(U) \subset W$.

(ii) \rightarrow (iii) We use (ii) on y and W^c to find open set U with $y \in U \subset cl(U) \subset W^c$

(iii) \rightarrow (i) let $y \in X$, and W any semipre closed subset of X with $y \notin W$, then its easy to find two disjoint open sets U, and $(cl(U))^c$ with $y \in U$ and $W \subset (cl(U))^c$.

Definition2.4: [6] A mapping $f: X \rightarrow Y$ is called S- closed if each image of semipre closed subset in X is semi closed in Y.

Theorem 2.5: If $f: X \rightarrow Y$ is injective, continuous, S- closed fmapping and *Y* be a strongely semipre regular then *X* is strongely semipre regular.

Lemma 2.6:[3] Let $A \subset B \subset X$, and A is semipre closed subset with respect to relative B, and B is g-open and semipre closed set with respect to relative topology X, then A is semipre closed relatively to X.

Theorem 2.7: For a semipre regular space X, the subset B is a g-open and semipre close subspace off X so that B is semipre regular space.

Proof: Suppose *FB* be a semipre close set relatively to $B, x \in B$ with $x \notin F_B$. From lemma (2.6) F_B . is semipre close set relatively to *X*, then there is an open sets W, U with $y \in U, F_B \subset W$ where $(W \cap U = \emptyset)$. We get hat the sets $B \cap W$, and $B \cap U$ are disjoint open sets relatively to *B* such that $B \cap W$ containing F_B , and $B \cap U$ containing *x*.

References

[1] G. Navalagi, Mallavva M. S. , Semipre-regular and semipre-normal spaces in topology, the Global J. of Appl. Math. & Math. Sci., 2(2009), 27-39.

[2] D.Andrijievic, Semi-preopen sets, Mat. Vesnik 38(1986), No.1, 24-32.

[3] Jyoti Gupta and M.Shrivastava, Semi-pre open sets and Semi-pre continuity in Gradation of Openness, Advances in fuzzy Mathematics (AFM), 12(2017), No.12, 609-619.

[4] MIGYEL CALDAS , Weakly sp- θ –closed functions and semipro-Hausdorff spaces, CREAT. MATH.INFORM., 20(2011) , No.2 , 117-123

[5] G.B.Navalagi,Semi-precontinuos functions and properties of generalized semi-preclosed sets in topological spaces , IJMMS (2002) 85-98 .

[6] M.K.R.S. Veera Kumar, Contra-Pre-Semi-Continuous Functions, Bull. Malays. Math. Sci. Soc. (2) 28(1) (2005), 67–71