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Abstract: 

In today’s life human thinking depends on uncertainty and fuzziness.Predominantly in the 

faltering atmosphere, the precise value of some factors is difficult to measure. Though, it can be 

easily approximated by intuitionistic fuzzy linguistic term in the real-life world problem. To deal 

with such uncertainty and fuzziness in present communication fuzzy information ordered measure 

defined on intuitionistic fuzzy set. Baiget. al.[18] and O. Prakash[19] defined a fuzzy entropy 

measure on fuzzy set and we generalize this entropy on intuitionistic fuzzy set. To verify the validity 

of proposed measure some properties, tables and numerical example is given. 

Keywords: Fuzzy logic, entropy, information theory, fuzzy sets, intuitionistic fuzzy set and image 

processing.  

 

Introduction: 

Quantification, storage and communication of information are main tool in our daily life. For 

better solution of all these factors the concept was given by C. E. Shannon [2] in 1948. But in 

decision making there is always uncertainty and hesitation. The prolegomena of fuzzy set was firstly 

given by Zadeh [3] and for bargain with uncertainty and hesitation Zadeh [4] defined fuzzy entropy 

measure. In other words we can say that entropy, degree of uncertainty is defined by Zadeh [4]. In 

modern research of information theory, fuzzy set is back bone and main concept is membership and 

non-membership value between 0 and 1. With the help of all these factors, four axioms were given 

by Deluca and Termini [5] for entropy of fuzzy set and under these conditions various authors 

defined many types of entropy on fuzzy set. Bhandari and Pal [6], Pal and Pal [7, 8], Hooda [9], and 

Tomar and Ohlan [1] introduced the measure on fuzzy set. These entropies solve lot of problem of 

uncertainty.A generalization of theory of fuzzy set is given by Atanassov [10]. Intuitionistic fuzzy set 

introduced by Atanassov [10] parallel to fuzzy set. In crisp theory to deal with uncertainties and 

impreciseness intuitionistic fuzzy theory has an important role. Axioms defined by Deluca and 

Termini [4] are extended by Szmidt and Kacprzyk [11] to intuitionistic fuzzy set. Thereafter Hung 

and Yang [12] defined a entropy measure on intuitionistic fuzzy set. Measure defined by De Luca 

and Termini [5] is generalized by Zhang and Jiang [13] on intuitionistic fuzzy set. Ye [14] proposed 

two entropy measures on intuitionistic fuzzy set to extend the entropy measure given by Prakash et 

al. [15]. 

Keeping in mind all the above studies of entropy, the present article proposed an ordered 

entropy measure on intuitionistic fuzzy set which is called intuitionistic entropy measure. The 

proposed measure is generalization of entropy defined by Baig et. al. [18] and O. Prakash[19]on 

fuzzy set. 
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Preliminaries: 

In this portion we define some definition and notation about fuzzy set and intuitionistic fuzzy 

set. The detail of intuitionistic fuzzy set are given which are important for our next discussed  

Definition:Entropy is the information required to specify the state of system. Entropy defined by 

Shannon is given as: 
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   be a finite universe of discourse and a fuzzy set A  on X  is given 
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Pal and Pal [8] introduced the fuzzy exponential entropy for fuzzy set A   given by  
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Tomar and Ohlan [1] defined exponential ordered fuzzy entropy of order   on fuzzy set which is 

given as: 
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Baig et. al. [18]defined fuzzy entropy measure as 
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O. Prakash[19] defined fuzzy entropy measure as 
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Definition: Let  
n

yyyX ,.....,
21

   be a finite universe of discourse and Atanassov [10] introduced 

an intuitionistic fuzzy set A  in X as 
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  for all .Xy   Let K  be a real function defined on intuitionistic 

fuzzy set such that    
 RXIFSK :  and if K  satisfies the following properties then it is called 

entropy measure on intuitionistic fuzzy set 
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Definition:Let  
n

yyyX ,.....,
21

   be a finite universe of discourse and A  be a intuitonistic fuzzy set 

in X . For each  A  if  
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  1 , then  x
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  is known as hesitation degree of element .Xx   

 

Main Result: 

Li, Lu and Cai [16] describe a method for convert fuzzy set into intuitionistic set by putting 

hesitation degree equal to membership and non-membership value. Various author defined number 

of entropies on intuitionostin fuzzy set with the help of method given by Li, Lu and Cai [16].Dass 

and Tomar[17] definedentropy measure for intuitionstics fuzzy set. We proposed a fuzzy entropy 

measure on intuitionistic fuzzy set which is generalization of entropy given by Baig et. al. [18] and 

O. Prakash[19]on fuzzy set. The proposed entropies are 
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Theorem:1 Show that measure )(
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For 20   in ,
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For 20   , from above equations, we get 

).()()()(
1111

QPQPQP  in 
1

X . Similarly the result hold for 
2

X . 

 

In particular: For any     XIFSPXIFSP
C
 ,  where  C

P  the complement of fuzzy set P , it 

get 

 ).()()()(
1111

CCC
PPQPPP 

 
 

Theorem: 3 Show that measure )(
2

A  is valid entropy measure of order   over intuitionistic fuzzy 

set A and satisfy the property ).()()()(
2222

QPQPQP   

Proof. We can prove the validity of entropy measure proposed in )(
2

A  as above entropy and their 

properties. 
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Numerical Example: 

Let  
n

xxx .......,,,
21

  be a finite universe of discourse and     
iiAiAi

xxxxB /,,   be 

an intuitionistic fuzzy set. We assume that intuitionistic fuzzy set on universal set   which follows 

as: 

       
i

n

iA

n

iAi

n
xxxxB /11,,              (4) 

We consider an intuitionistic fuzzy set Q on  which is defined as 

B =           0.0,0.1,0.0,9.0,5.0,3.0,4.0,5.0,8.0,1.0
,5,4,3,2,1

xxxxx  

Now with the help of operations defined in equation (4) the following intuitionstic fuzzy set are 

created: 

 
4322

1

,,,, BBBBB  

which are defined as follows: 

 2

1

B may be assumed as “More or less LARGE” 

 B may be assumed as “LARGE” 

 
2

B may be assumed as “very LARGE” 

 
3

B may be assumed as “quite very LARGE” 

 
4

B may be assumed as “very very LARGE” 

and the corresponding set of above notation are given as  

  

   

     

     

   

   

     

   

     

   

     

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
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
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



















































0,0.1,,0,6591.0,,9375.0,0081.0,

,8704.0,6250.0,,9984.0,0001.0,

0,0.1,,0,7290.0,,8750.0,0270.0,

,7840.0,0125.0,,9920.0,001.0,

0,0.1,,0,8100.0,,7500.0,0900.0,

,6400.0,2500.0,,9600.0,010.0,

0,0.1,,0,9.0,

,5.0,3.0,,4.0,5.0,,8.0,1.0,

0,0.1,,0,9487.0,,2929.0,5477.0,

,1056.0,7746.0,,5528.0,3162.0,
B 
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321

543
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yyy

yy
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yyy

yy
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yyy

yy
B

yy

yyy
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yyy
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According to the fuzzy mathematical operation the proposed entropy on different set should be in 

following order 

        4

1

3

1

2

11

2

1

1
BBBBB 
















 

Table is constructed for batter comparison between entropies on intuitionistic fuzzy set 
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Different values of )(
1

A for different values of 10    

Table. 1 

 

 



 














 2

1

1
B

 

 

 

 B
1



 

 

 2

1
B

 

 

 3

1
B

 

 

 4

1
B

 

 

0.1 
0.6685 0.6490 

 

0.4459 

 

0.3284 

 

0.2711 

 

0.2 0.6488 

 

0.6305
 

0.4347 

 

0.3213
 

0.2654 

0.5 
0.54204 

 

0.529079 

 

0.370839 

 

0.278488 

 

0.230741 

 

0.7 
0.405737 

 

0.397882 

 

0.283467 

 

0.216184 

 

0.179734 

 

0.9 
0.173924 

 

0.17162 

 

0.124959 

 

0.097199 

 

0.08122 

 

 

From the above tables it is clear that required order is maintained by proposed entropy.  

 

Conclusions: 

As we know that entropy measure has an important role in uncertainty. So our work introduces a new 

parametric entropy measure for intuitionistic fuzzy set. Some properties of this measure have been 

also studied. This measure generalizes parametric fuzzy entropy given by Baig et. al. [18] and O. 

Prakash[19].The theory of parametric entropy on intuitionistic fuzzy set provides new flexibility and 

wider application in different situations. 
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