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1. Introduction

The theory of impulsive differential equations is a new and important branch of differential equations. The first
paper in this theory is related to A. D. Mishkis and V. D.Milman in 1960 and 1963 [9]. An impulsive differential
equation is described by three components: a continuous-time differential equation, which governs the state of
thesystem between impulses; an impulse equation, which models an impulsive jump defined by a jump function at
the instant an impulse occurs; and a jump criterion, which defines a set of jump events in which the impulse
equation is active. There are many good monographs on the impulsive differential equations [1]- [11]. Many
phenomena in theoretical physics, radio physics, pharmacokinetics, mathematical economy, chemical technology,
electric technology, metallurgy, ecology, industrial robotics, biotechnology processes, chemistry, engineering,
control theory, medicine and so on. Adequate mathematical models of such processes are systems of differential
equations with impulses.

In this paper, we consider the following integro-differential impulsive differential equations with

infinite interval:

Y () = Ay(®) + [*_ B(t,)y(s)ds, t € ] = [3,00) \ {ty, t5, ..},
Ay,—y, = Ik(y(tk_)), k=1,.., (1.1)
y() = o(t), t € (—,0]

whereg € R, ¢ € C, = C([—,0],E), B(t,s):] x (—o0,0] - E is given function, A is the infinitesimal
generator of a Cy- semi group {S(t)};50.0x E C(E,E),k =1,....ma =ty <ty < <t, <,

Ayle—e, =y — y (), y (&) = limy, o+ y(t, +h),y(t;) = lim,, o+ y(t, — h)represent the left and right
limits of y(¢t) at t =t, and E is a Banach space with the norm ||. ||.

If

PC = {y: (0,®) — E:y(t;),y(t{) existwithy(t,) = y(t;),yx € C(, E),k = 0, ...}, which is a Banch space
with the norm

lyllpc = max{llyyllc:k =0, ..},
Where y, is the restriction of y toJ, = [t,,t;] and J;, = (tg, tes1 k=1, ...
Set
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Q={y:(—w,0) > E:y € PCNC,}.
With the norm

llyllq = max{llyllpc, ll@llc,}
and

llollc, = supflle@®ll, t € (—oo,a]}.

This paper is organized as follows: In Section 2, we will recall briefly some basic definitions, some fixed point
theorems and preliminary facts which will be needed in the following sections.

In Section 3, we give one of our main existence results for solutions of (1.1), with the proof based on Banach
fixed point theorem.

In Section 4, we give other existence results for solutions of (1.1), with the proof based on Leray-Schauder
alternative fixed point theorem.

In Section 5, the study the stability of the system (1.1).

2. Preliminaries

In what follows we introduce definitions, notations, and preliminary facts which are used in the sequel.

Definition 2.2[10]A one-parameter family S(t) of bounded linear operators on aBanach space E is aCgy-
semigroup (or strongly continuous) on E if

(i) S(t)oS(s) = S(t + s); for t; s > 0; (semi group property),
(ii) S(0) = I, (the identity on E),
(iii) the map t - S(t)x is strongly continuous for each x € E | i.e:

lti_r)rol S(Hhx =x, VX €EE.
A semi group of bounded linear operators S(t), is uniformly continuous if
lim[S()) —1Il = 0.
Here | denotes the identity operators in E.
Theorem 2.3[10]If S(t) is a Cy-semigroup, then there exist w = 0 and M > 1 such that
ISIlp k) < Mexp(wt) for 0 <t < oo,

Definition 2.4[10] Let S(t) be a semi group of class C, defined on E. The infinitesimal generator A of S(t) is
the linear operator defined by

S(h)x —x

A0 = =

,forx € D(A),

whereD(4) = {x € D(A)/lim *®*= exists in E}.

h

Proposition 2.5[10]The infinitesimal generator A is a closed, linear and densely defined operator in E. If
x € D(A), then S(t)(x) is a C'-map and

dgtS(t)x = A(S(®)x) = S()(A(X)) on [0, ).

3. Uniqueness of mild solutions
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This section is devoted to the existence results for problem (1.1). Before starting and proving this result, we
give the definition of its mild solution.

Definition 3.1. We say that a function y € Q is a mild solution of problem (1.1) if
y(®© = ¢(),t € (—,c]and

y(©) =S(t—c)<p(c)+f S(t—s) (f

S

B(s,r)y(r)dr)ds+ > s-tn(w),  tel

o<ty <t
Let us introduce the following hypotheses:

(A;) A is the generator of a strongly continuous semi groupS(t),t € J which is compact fort > 0 in the
Banach space E.

LetM > 1 be such that
IS < Mforallt € J.

(Az) Foreacht € ], B(t,s) is measurable on [o,t] andB(t) = SUPse(—e,q) 1B (L, $)ll
is bounded andf: B(s)ds < oo,

(A3) There exist constantsc, = 0 such that

I, (y) — I, < ¢ lly — yl, foreachk = 1,...,m,Vy,y € E.

We will let [(t) = MM, ., B(t), L(t) = f;i(s), 0 < t <ty < My, andll. |, denote the Bielecki-type
norm on Q defined by

lyllg, = sup e ™ [l y(s) II,t € J.
O<s<t

Theorem 3.2Assume that conditions(A;)- (A3) hold, if6 < 1; where

0=-+MY7 c <1, (3.1)
then, the problem (1.1) has a unique mild solution..

Proof:Transform the problem (1.1) into a fixed point problem. Consider the operator
N : Q — Qdefined by:

—00

NOI© =0 == o))+ [ 5= ([ Bryar)as+ Y se-unbe) ¢ € s
AN = p(0), t € (~e0,0].

Note that a fixed point of N is a mild solution of (1.1). We will show that N is a contraction. Indeed,
considery,y € Q. Thus, fort € J, we have:

IN (y)— NI <l ftS(t —5) (fs B(s,r)(y(r) — 37(r))dr> dsll

—00

+ Z 1S(t — e (y(£) — L (7)) I

o<tp<t
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<l ftS(t —5) (fs sup IB(s,P)lly(r) —y(r) IIdr) dsll

—oo TE(—0,0]

+ Z ISt — )L (y(t)) = L(FED) I

o<tp<t

< Mf 1B (s)II fs ly(r) — y()ldrds + M Z ly(t,) — y(E)l,

o<tp<t

fors € (—oo; t], we have:

a

fs ly(r) — y(@)ldr =f ly(r) — y()ldr + ftlly(r) —y(r)ldr

—o0
t

= fs lp(r) — e(r)ldr +f ly(r) —y(@)ldr

—0

= [* Iy - y(@)ldr.
Then

IN(y)()— NG < th 1B (s)Il Jtlly(r) — y(r)ldrds

[oe]

+MZ e Iy (&) — (eI
k=1

<M L t IB(s)llly(s) — y(s)I L tdrds
+M§: ¢ lly(t,) — ¥ ()l
ks M J tIIB(s)IIIIy(s) — §()I(t — o)ds
+M§: ¢ ly(t,) — y (&)l
<M j kt;v;m IB(s)lllly(s) — y(s)lds
+M§: ¢ ly(t,) — y(E )l
=1

t
< Mf My 1 IB(s)lle ™S e O]y (s) — y(s)lds
a

(o]

+MZ e ly(ty) = 7t

k=1
t

< MM, | IB(s)I sup e @ lly(s) — y(s)le™E)ds

o O<S<t
(o0}

+Mz ey () = F(t)!
=1

1 £
<=ly —ynB*f I(s)e™® ds
T [

+MZ e Iy (ty) = ()]
k=1
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1 t
<-=ly —ynBJ (e ds
T g
MY g ly() = 7!
k=1

1 (o]
<=l = Flp, (O — )+ MZ e Iy () — §(E)
k=1

1 (o]
<=lly—ylzet® + MZ ¢ ly(t) — y ()L,
T k=1
Thus

1 (o]
e OING) () — NF)(OI < - ly —ylg, + M Z c, e LOlly(t,) — ().
k=1
Therefore

1 (o]
ING) = N@lg, < = +M > a |y =l
k=1

Since 6 < 1, N is a contraction. By the Banach fixed point theorem, we conclude thatN has a unique fixed
pointin Q and the problem (1.1) has a unique mild solution.

4. Existence of mild solutions
In this section, we prove existence results, for the problem (1.1) by using the Leray-Schauder alternative fixed
point theorem. Let us introduce the following hypotheses:

(H,) There exist positive constants ¢;, k = 1; ..., such that:

I I <cp, forally € Q and Z cp < 0.
k=1

(H,) There exists a constant K, > 0, such that:

LB lpldr)ds < K, .

Throughout this section, we assume S(t); t € Jwhich is compact for t > 0 in the
Banach space E.

Theorem 4.1.Assume that conditions (A,), (A;),(H;) and (H,)hold, then the problem (1.1) has at least one
mild solution.

Proof:Transform the problem (1.1) into a fixed point problem. Consider the operator N defined in proof of
Theorem 3.1. In order to apply the Leray-Schauder alternative fixed point theorem, we first show that N is
completely continuous. The proof will be given in several steps.

Step 1:N is continuous.

Let {y,} a sequence such thaty, - yin Q. Then
ING)® = NGO

t S

< fS(t—s)( fB(s,r) (yn(r) —y(r))dr) ds

o —00

+ ) IS =l (v ®0) ~ ko]

o<tp<t
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<

<M

fIIS(t— S)IIB(S)< fllyn(r) —y@|ldr + fllyn(r) —y(r)lldr> ds

t S

f S(t—s)< f FERLCRIIIAD —y(r)ndr> ds

(~o0,0

<

o —00

£ IS = el (5 (60) = e

a<tp<t

<

fIIS(t —s)IIB(s) < f”}In ) -y |Idr> ds

£ IS =l (3 (60) = G|

a<tp<t

£ s =l (60) = e

o<tp<t

f B(s)< f lo@ — @@l dr + j ||yn(r>—y(r)||dr>ds

o<t <t

+ Z M“Ik(le (tk)) - Ik(y(tk))” - 0,asn — oo,
k=1

f B(s) ( f lya () — y(r)ndr) ds

Thus N is continuous.

Step 2:N maps bounded sets into bounded sets in Q.

Indeed, it is enough to show that for any g > 0 there exists a positive constant £ such that for each

y € B, = {u € Q:llull,; < q}, we have IN(y)Il,,. < . Then we have for each t < M,

ING)®OIl <

<

fS(t—s) (JS B(s, Dy(Ddr)ds|| + Z ISt = el I Gl
[ S(t—s)( [ s s IIy(r)IIdr>ds £ > IS - ol G
o —0 ré(-eo,0] o<tp<t

o<tp<t

<[ ||sct—s)||||B(s)||< | ||y(r)||dr>ds+ D lise - sl el

<m| (ns(s)n(f llollar + [ ||y(r>||dr)>ds+ 2. ML)l

o<tp<t

<M E”B(S)” (f:;llw(r)ll dr) ds + M f:IIB(s)Il (f:lly(r)ll dr) ds + z,:llllk(y“k))”

<[ B [ Howiards+u [ B ¢ [ Nyl drds + wy o

> t t
< MK, +Mz cr +Mf [IB(s)I (f qdr)ds
k=1 g [

+ ) M) - L@
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t
<MKy + MY G+ qMMy, [ IB)Ids = ¢
k=1 4

Step 3:N maps bounded sets into equicontinuous sets of

Letl; ,l; €], Iy <1, and B, be a bounded set of Q asin Step 2. Let y € B, then for each t € J,we have
ING(A) = NI < [|(SU) —SUD)e@)]|

11—8
+ f s, =) - 5@,

f B(s, D)y(0))

dr)ds
N f (||(S(12 _9 =50, -9)] f 1BGs, Dyl dr) s
l1—¢

+ [ asa, -l | 1B ny@ianas
11 —o0

£ IS0, = 1) = 50 — )l [ (y@))|

o<tp<ly

+ ISz — )Ty EDII-

l1<ty<ly
The right-hand side tends to zero as [, — [; =0, and ¢ sufficiently small, since S(t) is a strongly continuous
operator and the compactness of S(t) for t > 0 implies the continuity in the uniform operator topology. As a
consequence of Steps 1-3, and the Arzela-Ascoli theorem, we can conclude that N: Q — Q is continuous and
completely continuous.

Step 4:(A priori bounds on solutions)

Let y be a possible solution of the equation y = AN (y) with y,

JtS(t —5s) (JS B(s,1r) y(r)dr) ds

<M||<p(a)||+j ||S(t—s)||(j

= ¢ for some A € (0,1). Then

Z ISt =t |1 (y )l

o<ty <t

ly®Il < IS — o))l +

sup IBGsDllyeldr) s+ " e =6l I (el

< Milp@l+ [ Ise- 11BN (| ty@iar)as+ Y 1se- iG]
< Mlp(o)l+m [ (nB(s)n(f lo@ldr + | ||y(r)||dr)>ds+ 2. M@l

o<ty <t

< Mllp@I+M [ (BN [ lloelands+M [ B [ lyelands

+ 0 ML)

o<ty <t
had t
<M (ngo(a)u + Kot ) c,:> MM,y [ IBOIy s
k=1 o

We consider the function p(t) defined by:
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B(t) = supflly(s)ll:o <s <tht€].
Let t* € (—oo,t] be such that u(t) = [ly(t*)Il. This implies that, for each t € [a, ),

Iy(Oll < ¢+ MMy, | IB@IlECs)lds,

wherec =M(llo ()l + Ko + X5q ci)-

Let us take the right-hand side of the above inequality as v (t). Then we have u(t) < v (t) for all t € J. From
the definition ofv, we get v(o) = ¢ and v (t) = M M, [IB(O)]|B(t) < M M, [IB(s)llv(t), This implies, for
eacht €],

v(t) du t
f — < MMka B(s)ds
Cc u a

then

v()< cexp (MMka B(s)ds).

a

Thus, there exists a constant K* > 0 such that:

a(t) < v(t*) < cexp (MMkHJ B(s)ds) < K"

We have:
lyllg < max{llellc,, K*} = K,
Set
U={yeQ:llyll,c <K; <K;+1}L

We see that N: U — Q is continuous and completely continuous. From this choice of U, there isno y € U
such that y = AN(t), for some A1 € (0,1). As a consequence of the nonlinear alternative of Leray-Schauder type
[184], we deduce that N has a fixed point y € U. Hence, N has a fixed point y that is a solution to problem (1.1).

5. Stability result

This section is devoted to the study of the stability of the solution for problem (1.1). Before starting and
proving this result, we give the definition of its mild solution.

Definition 5.1. The trivial mild solution of system (1.1) is said to be stable if for every

€ > 0and t, € R, there exists §(t,, €) such that ¢,, ¢, € C, two initial values and the solution y;(t, ty, ¢;) of
(1.1) where the initial valueg;,i = 1,2withll @; — @, lic, < 8,then Il y1(t, to, 1) — y2(t, to, ;) II< efor
allt = ¢,

For the next theorem we replace the condition (H,)by:
There exists a constant K, > 0, such that:

LB lp@)ldr)ds < Ky g I, . (5.1)

Theorem 5.1Assume that conditions (A,), (A,),and (5.1) hold.

If
k=1

then the zero solution of the problem (1.1) is stable.
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Proof:
Let y; (¢, ty, ;) be a solution of the system (1.1) where the initial value ¢;,i = 1,2, for t € J, we have

yi(t,o,91) =St —0)p,(0) + f St —s) (f B(s,r)y,(r,0,9,) dr) d+ Z St =t )l 1 (t, 0, 01)),

—00

o<tp<t

yZ(t' g, q)Z) = S(t - 0-)4)2(0) +f S(t - S) (f B(S;T)J’z(r; g, (pZ) dT') d+ Z S(t - tk)lk(yZ(tk'U' ‘Pz))

- o<ty <t

We have

yi(t,0,01) = y,(t; 03 ;) = St — ), (0) — 9, (0))

+f S(t - S) |:f B(S'r)(yl(r' g, (pl) - yz(r; o, (pZ)) dr] dS
+ Xo<tp<e S = )T 01 (6, 0, 01)) = L (V2 (tr, 0, 92)).
Then
I y1(t,0,01) — ¥2(t 0, 0) I St — 0) (@1 (0) — @5 () |l
+Mj B(s) (j o) — @, (M)l dr) ds

+Mj B(S) (j ” yl(r'o-'(pl) _yZ(r'O-' (pZ) " d?") dS

IR EACHADERACRASY

o<t <t

<Ml @(0) — @(0) | +MKy | o1 — @3 I,
t N

+[ 86 [ 13000 - 0,00 Ndr s
a a

+ Z e 1yt 0,01) — y2 (b, 0,02) I
o<tp<t

Thus

Ay (&0, 01) =yt 0,02) IS ML+ Kp) I o1 — 3 |,

t s
+Mf B(S)j ly,(r,o,01) —y,(r,0,9,) lldrds
g g
S MA+Ky) o —, I,
t
M, [ B 15,(5,0,0) = v2(5,0,02) 1 ds.

ag

Hence

(1 +K,)
191(6,0,00) =y, 05 92) IS === ¢ =2 Il

MM
=L [TB(S) 11 y1(5,0,01) = y2(5,0,9,) Il ds

t
< ll 91(0) — 92(0) Il +e., f B(s) I 1(r, 0, 91) — y2(r 0,03 Il ds,

ag

with
c, = 1;1{0 andc,, = %
In the same way in Step 4, we find

t
Il y1(t,0,00) —y2(t; 05 @) IS c. o — 2 |, exp (cf B(s)ds>.

g

Lete > 0and § = ———————; then from the above inequality, we obtain
c.exp (c** fa B(s)ds )

I y1(t,0,01) —y2(&; 03 ;) II< ewith || @; — @, Il < &, i.e., the zero solution is stable
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