NANO IDEAL GENERALISED CLOSED SETS IN NANO IDEAL TOPOLOGICAL SPACES

Dr. J. Arul Jesti *1 And J. Joycy Renuka *2

*1 Assistant Professor, Department of Mathematics, St. Mary's College (Autonomous), Thoothukudi-628001, Tamil Nadu, India *2 Passarah Sahalar, St. Mary's College (Autonomous), Thoothukudi 628001

*2 Research Scholar, St. Mary's College (Autonomous), Thoothukudi-628001, Tamil Nadu, India

ABSTRACT

The purpose of this paper is to define and study a new class of closed sets called *NIgsemi*^{*}- closed sets in nano ideal topological spaces. Basic properties of *NIgsemi*^{*} - closed sets are analyzed and we compared it with some existing closed sets in nano ideal topological spaces. **Key words:***NIgsemi*^{*}- closed set, closed sets in nano ideal topology, *NIgsemi*^{*}- open set, nano topology.

1. INTRODUCTION

The concept of ideal topological space was introduced by kuratowski [9]. Also he defined the local functions in ideal topological spaces. In 1990, Jankovic and Hamlett [4] investigated further properties of ideal topological spaces. The notion of *I*-open sets was introduced by Jankovic et al. [5] and it was investigated by Abd El-Monsef [11]. Later, many authors introduced several open sets and generalized open sets in ideal topological spaces such as *pre I*-open sets[2], *semi I*-open sets [6], α -*I*-open sets[6], α *g*-*I*-open sets [23] and *gp*-*I*-open sets [23].

In 2013, Lellis Thivagar and Carmel Richard[12] established the field of nano topological spaces which was defined in terms of approximations and boundary region of a subset of an universe using an equivalence relation on it and also defined nano closed sets, nano-interior and nano-closure. K.Bhuvaneswari et al. [9] introduced and studied the concept of nano generalised closed sets in nano topological spaces. Later Many researchers like [3],[9] obtained several generalizations of nano open sets. In 2012, Robert et. Al [1,2] introduced the class of *semi**-open sets and *semi**-closed sets in Topological Spaces. In 2015, Paulraj Gnanachandra [19] introduced the notion of *nano semi**-open sets and *nano semi**-closed sets in terms of nano generalised closure and nano generalised interior in Nano Topological Spaces. In 2020 [18], further properties of *nano semi**-open sets were investigated.

M. Parimala et al. [14, 15, 17] introduced the concept of nano ideal topological spaces and investigated some of its basic properties. In 2018, M.Parimala and Jafari [15] introduced the notion of *nano I*-open sets and studied several properties. Further she defined nIg - open sets and nIg- closed sets in Nano Ideal Topological Spaces.

In this paper, we introduce a new type of generalized closed and open sets called *NIgsemi*^{*}-closed set and *NIgsemi*^{*}-open set in nano ideal topological spaces and investigate the relationships between this set with other sets in nano topological spaces and nano ideal topological spaces. Characterizations and properties of *NIgsemi*^{*}-closed sets and *NIgsemi*^{*}-closed sets and *NIgsemi*^{*}-closed sets are studied.

2. PRELIMINARIES

Throughout this paper $(U, \tau_R(X))$ (or U) represent nano topological spaces on whichno separation axioms are assumed unless otherwise mentioned. For a subset A of a space $(U, \tau_R(X))$, $N \ cl(A)$ and $N \ int(A)$ denote the nano closure of A and the nano interior of A respectively. We recall the following definitions, which will be used in the sequel.

Definition 2.1 ([12]). Let U be a non-empty finite set of objects called the universe and R be an equivalence relation on U named as indiscernibility relation. Then U is divided into disjoint equivalence classes. Elements belonging to the same equivalence class are said to be indiscernible with one another. The pair (U, R) is said to be the *approximation space*. Let $X \subseteq U$. Then,

(i) The lower approximation of X with respect to R is the set of all objects which can be for certain classified as X with respect to R and is denoted by $L_R(X)$. That is, $L_R(X) = \bigcup \{R(x): R(x) \subseteq X, x \in U\}$ where R(x) denotes the equivalence class determined by $x \in U$. (ii) The upper approximation of X with respect to R is the set of all objects which can be precibe a provide a for the provide the provide the R(X).

possibly classified as X with respect to R and is denoted by $U_R(X)$. That is, $U_R(X) = \bigcup \{R(x): R(x) \cap X \neq \varphi, x \in U\}$.

(iii) The boundary region of X with respect to R is the set of all objects which can be classified neither as X nor as not -X with respect to R and is denoted by $B_R(X)$. $B_R(X) = U_R(X) - L_R(X)$.

Property 2.2 ([12]). If (U, R) is an approximation space and $X, Y \subseteq U$, then

- (i) $L_R(X) \subseteq X \subseteq U_R(X)$
- (ii) $L_R(\varphi) = U_R(\varphi) = \varphi$
- (iii) $L_R(U) = U_R(U) = U$
- (iv) $U_R(X \cup Y) = U_R(X) \cup U_R(Y)$
- (v) $U_R(X \cap Y) \subseteq U_R(X) \cap U_RY$)
- (vi) $L_R X \cup Y \supseteq L_R(X) \cup L_R(Y)$
- (vii) $L_R(X \cap Y) = L_R(X) \cap L_R(Y)$
- (viii) $L_R(X) \subseteq L_R(Y)$ and $U_R(X) \subseteq U_R(Y)$ whenever $X \subseteq Y$
- (ix) $U(X^c) = [L_R(X)]^c$ and $L_R(X^c) = [U_R(X)]^c$
- (x) $U_R[U_R(X)] = L_R[U_R(X)] = U_R(X)$
- (xi) $L_R[L_R(X)] = U_R[L_R(X)] = L_R(X)$

Definition 2.3 ([12]). Let *U* be the universe, *R* be an equivalence relation on *U* and $\tau_R(X) = \{U, \varphi, L_R(X), U_R(X), B_R(X)\}$, where $X \subseteq U$ and by the property 2.2, $\tau_R(X)$ satisfies the following axioms:

(i) U and $\varphi \in \tau_R(X)$.

(ii) The union of the elements of any sub-collection of $\tau_R(X)$ is in $\tau_R(X)$.

(iii) The intersection of the elements of any finite subcollection of $\tau_R(X)$ is in $\tau_R(X)$.

Therefore, $\tau_R(X)$ is a topology on U called the **nano topology** on U with respect to X. We call $(U, \tau_R(X))$ as the nano topological space. The elements of $\tau_R(X)$ are called nano open sets (briefly *n*-open sets). The complement of a nano open set is called a *nano closed set* (briefly *n*-closed set)

Definition 2.4 [9]. Let $(U, \tau_R(X))$ be a nano topological space and $A \subseteq U$. Then A is said to be *ng-closed set* if $ncl(A) \subseteq B$ whenever $A \subseteq B \subseteq \tau_R(X)$. The complement of an *ng*-closed set is called a *ng*-open set.

Definition 2.5 [19] If $(U, \tau_R(X))$ is a Nano topological space with respect to X where $X \subseteq U$ and if $A \subseteq U$, then the nano generalized interior of A is defined as union of all nano g – open subsets of A and its denoted by $Nint^*(A)$. The nano generalized closure of A is defined as the insertion of all nano g – closed sets containing A and it is denoted by $Ncl^*(A)$.

Lemma 2.6. [19] Let A be a subset of U. Then the following properties hold.

- (i) $Nint(A) \subseteq Nint^*(A)$.
- (ii) $Ncl^*(A) \subseteq Ncl(A)$.

(iii) $\bigcup Ncl^*(G_{\alpha}) \subseteq Ncl^*(\bigcup G_{\alpha})$, where each G_{α} is nano g-closed.

Definition 2.7.[19] A subset A of a topological space $(U, \tau_R(X))$ is said to be *nano semi*-open* [2] (briefly *n-semi** open) if there is a nano open set G in U such that $G \subseteq A \subseteq$

 $Ncl^*(G)$ or equivalently if $A \subseteq Ncl^*(Nint(A))$. The complement of nano semi*-open set is nano semi*-closed.

Definition 2.8.[19] Let *A* be a subset of a nano topological space.

- (i) The *nano semi* *-closure of A, $Ns^*cl(A) = \bigcap \{F: A \subseteq F, F \text{ is nano semi}^*\text{-closed}\}$
- (ii) The nano semi*-interior of $A, Ns^*int(A) = \bigcup \{G: G \subseteq A, G \text{ is nano semi*-open}\}.$

Theorem 2.9.[18] Every nano open set is *nano semi* *-open.

Definition 2.10[10]. An **ideal I** on a topological space (X, τ) is a nonempty collection of subsets of X, which satisfies the following two conditions:

- (i) If $A \in I$ and $B \subseteq A$ implies $B \in I$
- (ii) If $A \in I$ and $B \in I$, then $A \cup B \in I$

Definition 2.11[10] **An ideal topological space** is a topological space (X, τ) with an ideal I on X and it is denoted by (X, τ, I) . Given a topological space (X, τ) with an ideal I on X and if $\rho(X)$ is the set of all subsets of X, a set operator $(*) : \rho(X) \to \rho(X)$, called a local function of A with respect to τ and I, is defined as follows: for $A \subseteq X, A^*(I, \tau) = \{x \in X / U \cap A \notin I \text{ for every } U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau / x \in U\}$. We simply write A^* instead of $A^*(I, \tau)$.

Definition 2.12[22] For every Ideal topological space (X, τ, I) , there exists a topology $\tau^*(I)$, finer than τ , generated by $\beta(I, \tau) = \{U - i/U \in \tau \& i \in I\}$. But in general (I, τ) is not always a topology. Additionally $cl^*(A) = A \cup A^*$ defines a **kuratowski closure operator** for $\tau^*(I)$. If $A \subseteq X$, cl(A) and int(A) will, respectively, denote the closure and interior of A in (X, τ) and $int^*(A)$ denote the interior of A in (X, τ^*) .

Definition 2.13 A subset A of an ideal space (X, τ, I) is *-closed (resp. *-dense in itself) if $A^* \subseteq A$ (resp. $A \subseteq A^*$).

Definition 2.14 [7] Given a space (X, τ, I) and $A \subseteq X$, A is said to be **I open** if $A \subseteq intA *$. We denoted by $IO(X, \tau) = \{A \subseteq X, A \subseteq int(A^*)\}$ or simply write I.O for IO(X, T) when there is no chance for confusion

Definition 2.15[17] Let (U, \mathcal{N}) be a nano topological space, where $\mathcal{N} = \tau_{\mathcal{D}}(X)$. A nano topological spaces (U, \mathcal{N}) with an ideal *I* on *U* is called a *nano idealtopological space* and is denoted by (U, \mathcal{N}, I) . Let (U, \mathcal{N}) be a nano topological space and $G_n(x) = \{G_n : x \in G_n, G_n \in \mathcal{N}\}$ be the family of nano open sets which contain x

Definition 2.16 [17]. Let (U, \mathcal{N}, I) be a nano ideal topological space with an ideal I on U, where $\mathcal{N} = \tau_R(X)$ and $(.)_n^*$ be a set operator from P(U) to P(U). (P(U) is the set of all subsets of U). For a subset $A \subset U$, $A_n^*(I, \mathcal{N}) = \{x \in U : G_n \cap A \in I, \text{ for every } G_n \in G_n(x)\}$, where $G_n(x) = \{G_n \mid x \in G_n, G_n \in \mathcal{N}\}$ is called *the nano local function* (briefly, *n*-local function) of A with respect to I and N. We will simply write A_n^* for $A_n^*(I, \mathcal{N})$.

Theorem 2.17 ([17]). Let (U, \mathcal{N}) be a nano topological space with ideals I, I' on U and A, B be subsets of U. Then

- (i) $A \subseteq B \Rightarrow A_n^* \subseteq B_n^*$,
- (ii) $I \subseteq I' \Rightarrow A_n^*(I') \subseteq A_n^*(I),$

(iii) $A_n^* = n - cl(A_n^*) \subseteq n - cl(A)$ (A_n^* is a nano closed subset of n - cl(A)),

(iv) $(A_n^*)_n^* \subseteq A_n^*$,

(v) $A_n^* \cup B_n^* = (A \cup B)_n^*$

(vi) $A_n^* - B_n^* = (A - B)_n^* - B_n^* \subseteq (A - B)_n^*$,

- (vii) $V \in N \Rightarrow V \cap A_n^* = V \cap (V \cap A)_n^* \subseteq (V \cap A)_n^*$ and
- (viii) $J \in I \Rightarrow (A \cup J)_n^* = A_n^* = (A J)n_n^*$.

Theorem 2.18 ([17]). If (U, \mathcal{N}, I) is a nano topological space with an ideal I and $A \subseteq A_n^*$, then $A_n^* = n - cl(A_n^*) = n - cl(A)$.

Definition 2.19 ([17]). Let (U, \mathcal{N}) be a nano topological space with an ideal I on U. The set operator n- cl^* is called a **nano*-closure** and is defined as n- $cl^*(A) = A \cup A_n^*$ for $A \subseteq X$. It can be easily observed that n- $cl^*(A) \subseteq n$ -cl(A).

Theorem 2.20 [17]. The set operator $n - cl^*$ satisfies the following conditions:

- (i) $A \subseteq n cl^*(A)$,
- (ii) $n-cl^*(\varphi) = \varphi$ and $n-cl^*(U) = U$,
- (iii) If $A \subset B$, then $n cl^*(A) \subseteq n cl^*(B)$,
- (iv) $n cl^*(A) \cup n cl^*(B) = n cl^*(A \cup B).$
- (v) $n-cl^*(n-cl^*(A)) = n-cl^*(A).$

Definition 2.21[17]. An ideal *I* in a space (U, \mathcal{N}, I) is called \mathcal{N} -codense ideal if $\mathcal{N} \cap I = \{\varphi\}$.

Definition 2.22 [17]. A subset *A* of a nano ideal topological space (U, \mathcal{N}, I) is *n* *-dense in itself (resp. *n* *-perfect and *n* *-closed) if $A \subseteq A_n^*$ (resp. $A = A_n^*$, $A_n^* \subseteq A$).

Lemma 2.23 [17]. Let (U, \mathcal{N}, I) be a nano ideal topological space and $A \subseteq U$. If A is $n \ast$ -dense in itself, then $A_n^* = n \cdot cl(A_n^*) = n \cdot cl(A) = n \cdot cl^*(A)$.

Definition 2.24. [13,15,20] A subset A of space (U, \mathcal{N}, I) is said to be

- 1. *NI* open if $A \subseteq N$ int (A_n^*) .
- 2. $NI\alpha$ -open if $A \subseteq N$ int $(Ncl^*(Nint(A)))$
- 3. $NI\beta$ -open if $A \subseteq Ncl^*(N int(Ncl^*(A)))$
- 4. *NIsemi*-open if $A \subseteq Ncl^*(N int(A))$
- 5. *NI pre*-open if $A \subseteq N$ int(*Ncl*^{*}(*A*)).
- 6. *NI regular* open if $A = N int(Ncl^*(A))$

The complements of the above mentioned sets are called their respective closed sets.

Definition 2.25[8] A subset A of space (U, \mathcal{N}, I) is said to be

- 1. a nano ideal generalized closed set $(NI_g closed)$ if $NIcl(A) \subseteq Z$ whenever $A \subseteq Z$ and Z is nano open.
- 2. a nano ideal generalized α closed set $(NI_{g\alpha} \text{closed})$ if $NI\alpha cl(A) \subseteq Z$ whenever $A \subseteq Z$ and Z is nano open.
- 3. a nano ideal generalized β closed set ($NI_{g\beta}$ closed) if $NI\beta cl(A) \subseteq Z$ whenever $A \subseteq Z$ and Z is nano open.
- 4. a nano ideal generalized *semi* closed set (NI_{gs} closed) if $NIscl(A) \subseteq Z$ whenever $A \subseteq Z$ and Z is nano open
- 5. a nano ideal generalized *pre* closed set (NI_{gp} closed) if $NIpcl(A) \subseteq Z$ whenever $A \subseteq Z$ and Z is nano open.
- 6. (x) a nano ideal generalized *regular* closed set (NI_{gr} closed) if $NIrcl(A) \subseteq Z$ whenever $A \subseteq Z$ and Z is nano open.

3. NANO IDEAL GENERALISED SEMI*-CLOSED SETS

Definition 3.1. A subset A of a nano ideal topological space (U, \mathcal{N}, I) is said to be *nano ideal generalized semi*-closed* (briefly, *NIgsemi*-closed*) if $A_n^* \subseteq V$ whenever $A \subseteq V$ and V is *nano semi*-open*.

Definition 3.2 A subset A of a nano ideal topological space (U, \mathcal{N}, I) is said to be *nano ideal* generalized semi*-open (briefly, *NIgsemi**-open) if X – A is *NIgsemi**-closed.

Example 3.3. Let $U = \{a, b, c, d\}$ be the universe, $X = \{a, d\} \subset U$, $U/R = \{\{a\}, \{d\}, \{b, c\}\}$ and $\mathcal{N} = \{U, \varphi, \{a, d\}\}$ and the ideal I = $\{\varphi, \{a\}\}$. Then *NIgsemi**-closed =

 $\{U, \varphi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{c, d\}, \{a, c\}, \{b, d\}, \{a, b, c\}, \{b, c, d\}, \{a, b, d\}, \{a, c, d\}\}$ **Theorem 3.4.** If *A* and *B* are *NIgsemi**-closed, then $A \cup B$ is *NIgsemi**closed. **Proof.** Let A and B are $NIgsemi^*$ - closed sets . Then $A_n^* \subseteq V$ where $A \subseteq V$ and V is *nano semi**-open and $B_n^* \subseteq V$ where $B \subseteq V$ and V is *nano semi**- open . Since A and B are subsets of V, $(A_n^* \cup B_n^*) = (A \cup B)_n^*$ is a subset of V and V is *nano semi**- open. which implies that $(A \cup B)$ is $NIgsemi^*$ - closed.

Remark 3.5. The Intersection of two *NIgsemi**-closed sets need not be *NIgsemi**-closed set which is shown in the following example.

Example 3.6. Let $U = \{a, b, c, d\}$ be the universe, $X = \{c\} \subset U, U/R = \{\{a\}, \{b\}, \{c, d\}\}$ and $\mathcal{N} = \{U, \varphi, \{c, d\}\}$ and the ideal $I = \{\varphi, \{c\}\}$. $NIgsemi^*$ -closed =

 $\{U, \varphi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, d\}, \{a, c\}, \{b, d\}, \{a, b, c\}, \{b, c, d\}, \{a, b, d\}, \{a, c, d\}\}$

Let $A = \{a, d\}$ and $B = \{b, d\}$ be *NIgsemi**-closed sets. $A \cap B = \{d\}$ is not a *NIgsemi**-closed set.

Theorem 3.7. If (U, \mathcal{N}, I) is a nano ideal topological space and $A \subseteq X$, then A is $NIgsemi^*$ -closed if and only if $n-cl^*(A) \subseteq V$ whenever $A \subseteq V$ and V isnano semi^*- open in U.

Proof. Necessity: Since A is *NIgsemi*^{*}-closed, we have $A_n^* \subseteq V$ whenever $A \subseteq V$ and V is *n-semi*^{*}open in U. Now *n-cl*^{*}(A) = $A \cup A_n^* \subseteq V$ whenever $A \subseteq V$ and V is *n*-open in U. Sufficiency: Let $A \subseteq V$ and V be *nano semi*^{*}- open in U. By hypothesis $n - cl^*(A) \subseteq V$. Since $n - cl^*(A) = A \cup A_n^* \subseteq V$.

The following theorem gives characterizations of NIgsemi*-closed sets.

Theorem 3.8. If (U, \mathcal{N}, I) is any nano ideal topological space and $A \subseteq U$, then the following are equivalent.

(1) A isNIgsemi*-closed,

(2) n- $cl^*(A) \subseteq V$ whenever $A \subseteq V$ and V is *nano semi**-open in U,

(3) For all $x \in n$ - $cl^*(A)$, n- $semi^*cl({x}) \cap A \neq \emptyset$.

(4) n- $cl^*(A) - A$ contains no nonempty *nano semi*^{*}-closed set,

 $(5)A_n^* - A$ contains no nonempty *nano semi**-closed set.

Proof. (1) \Rightarrow (2) If A is *NIgsemi*^{*}-closed, then $A_n^* \subseteq V$ whenever $A \subseteq V$ and V is *nano semi*^{*}-open in U and so $n - cl^*(A) = A \cup A_n^* \subseteq V$ whenever $A \subseteq V$ and V is *nano semi*^{*}-open in U. This proves (2).

(2) \Rightarrow (3) Suppose $x \in n$ - $cl^*(A)$. If n- $semi^*cl(\{x\}) \cap A = \emptyset$, then $A \subseteq U - n$ - $semi^*cl(\{x\})$. By (2), n- $cl^*(\{x\}) \subseteq U - n$ - $semi^*cl(\{x\})$ and hence n- $cl^*(A) \cap \{x\} = \varphi$, a contradiction, since $x \in n$ - $cl^*(A)$.

 $(3)\Rightarrow(4)$ Suppose $F \subseteq n - cl^*(A) - A$, F is nano semi*-closed and $x \in F$. Since $F \subseteq U - A$, $F \cap A = \varphi$. We have $n - semi^*cl(\{x\}) \cap A = \emptyset$ because F is nano semi*-closed and $x \in F$. From (3), this is a contradiction. Therefore $n - cl^*(A) - A$ contains no nonempty $n - semi^*$ closed set.

(4) \Rightarrow (5) Since $n - cl^*(A) - A = (A \cup A_n^*) - A = (A \cup A_n^*) \cap A^C = (A \cap A^C) \cup (A_n^* \cap A^C) = A_n^* \cap A^C = A_n^* - A$. Therefore $A_n^* - A$ contains no nonempty *nano semi*^{*}- closed set.

 $(5)\Rightarrow(1)$ Let $A \subseteq V$ where V is nano semi^{*}- open set. Therefore $U-V \subseteq U-A$ and so $A_n^* \cap (U-V) \subseteq A_n^* \cap (U-A) = A_n^* \cap A^C = A_n^* - A$. Therefore $A_n^* \cap (U-V) \subseteq A_n^* - A$. Since A_n^* is always n-closed set, so A_n^* is nano semi^{*}-closed set and so $A_n^* \cap (U-V)$ is a nano semi^{*} -closed set contained in $A_n^* - A$. Therefore $A_n^* \cap (U-V) = \emptyset$ and hence $A_n^* \subseteq V$. Therefore A is NIgsemi^{*}-closed

Corollary 3.9. Let (U, \mathcal{N}, I) be a nano ideal topological space and $A \subseteq U$ is an *NIgsemi*^{*}-closed set, then the following are equivalent:

- (i) A is an n^* -closed set.
- (ii) $n-cl^*(A) A$ is an $n-semi^*$ closed set.

(iii) $A_n^* - A$ is an *n*-semi^{*} closed set.

Proof. (i) \Rightarrow (ii) If A is n^* -closed, then $A_n^* \subseteq A$ and so $n - cl^*(A) - A = \varphi$. Hence $n - cl^*(A) - A$ is n-semi^{*}closed.

(ii) \Rightarrow (iii) Since n- $cl^*(A) - A = A_n^* - A$, it is clear.

(iii) \Rightarrow (i) If $A_n^* - A$ is $n - semi^*$ closed and A is $n - semi^*$ closed, from Theorem 3.5(v), $A_n^* - A = \varphi$ and so A is n^* -closed.

Theorem 3.10. If A is *NIgsemi*^{*}-closed and $A \subseteq B \subseteq A_n^*$, then B is *n-semi*^{*}closed.

Proof. Let $B \subseteq V$ where V is n-semi^{*}open in \mathcal{N} . Then $A \subseteq B$ implies $A \subseteq V$. Since A is $NIgsemi^*$ -closed, $A_n^* \subseteq V$. Also $B \subseteq A_n^*$ implies $B_n^* \subseteq A_n^*$. Thus $B_n^* \subseteq V$ and so B is $NIgsemi^*$ -closed.

Theorem 3.11. Let (U, \mathcal{N}, I) be a nano ideal space. Then every subset of U is *NIgsemi*^{*}-closed if and only if every *n-semi*^{*}open set is n^* -closed.

Proof: Suppose every subset of U is $NIgsemi^*$ -closed. If $G \subseteq U, U$ is *n-semi**open then G is $NIgsemi^*$ -closed and so $(G)_n^* \subseteq G$. Hence G is n^* -closed. Conversely, suppose that every *n-semi**open set is n^* -closed. If G is *n-semi**open set such that $A \subseteq G \subseteq U$ then $(A)_n^* \subseteq (G)_n^* \subseteq G$ and so A is $NIgsemi^*$ -closed.

Theorem 3.12. If (U, \mathcal{N}, I) is any nano ideal topological space where $I = \{\varphi\}$, then A is *NIgsemi*^{*}-closed if and only if A is *ng*-closed.

Proof. The proof follows from the fact that for $I = \{\varphi\}, A_n^* = n - cl(A) \supset A$ and so every subset of *U* is n^* -dense in itself.

Theorem 3.13. Let (U, \mathcal{N}, I) be a nano ideal topological space. Then every subset of U is $NIgsemi^*$ -closed if and only if every *n*-semi^{*}open set is n^* -closed.

Proof. Suppose every subset of U is $NIgsemi^*$ -closed. If V is n-semi^* open, then V is $NIgsemi^*$ -closed and so $V_n^* \subseteq V$. Hence V is n^* -closed. Conversely, suppose that every n-semi^* open set is n^* -closed. If $A \subseteq U$ and V is an n-semi^* open set such that $A \subseteq V$, then $A_n^* \subseteq V_n^*$ and so A is $NIgsemi^*$ -closed.

Theorem 3.14. Let (U, \mathcal{N}, I) be an nano ideal topological space. For every $A \in I, A$ is *NIgsemi*^{*}-closed.

Proof. Let $A \subseteq U$ where U is n-semi^{*} open set. Since $A_n^* = \emptyset$ for every $A \in I$, then ncl^{*}(A) = $A \cup A_n^* = A \subseteq U$. Therefore, by Theorem 3.7, A isNIgsemi^{*}-closed.

Theorem 3.15. If (U, \mathcal{N}, I) is an nano ideal topological space, then A_n^* is always *NIgsemi*^{*}-closed for every subset A of U.

Proof. Let $A_n^* \subseteq U$ where U is n-semi^{*} open. Since $(A_n^*)_n^* \subseteq A_n^*$, we have $(A_n^*)_n^* \subseteq U$ whenever $A_n^* \subseteq U$ and U is n-semi^{*} open. Hence A_n^* is $NIgsemi^*$ -closed

Theorem 3.16. Let (U, \mathcal{N}, I) be an nano ideal topological space and $A \subseteq K$. Then A is $NIgsemi^*$ -closed if and only if A = F - M where F is n^* -closed and M contains no nonempty *n*-semi^{*} closed set.

Proof. If A is $NIgsemi^*$ -closed, then by Theorem 3.8 (5), $M = A_n^* - A$ contains no nonempty *n*-semi*closed set. If $F = ncl^*(A)$, then F is n^* -closed such that $F - M = (A \cup A_n^*) - (A_n^* - A) = (A \cup A_n^*) \cap (A_n^* \cap A^c)^c = (A \cup A_n^*) \cap ((A_n^*)^c \cup A) = (A \cup A_n^*) \cap (A \cup (A_n^*)^c) = A \cup ((A_n^* \cap A^c)^c \cap (A_n^*)^c) = A.$

Conversely, suppose A = F - M where F is n^* - closed and M contains no nonempty n-semi*closed set. Let V be an n-semi*open set such that $A \subseteq V$. Then $F - M \subseteq V$ which implies that $F \cap (U - V) \subseteq M$. Now $A \subseteq F$ and $F_n^* \subseteq F$ then $A_n^* \subseteq F_n^*$ and so $A_n^* \cap (U - V) \subseteq F_n^* \cap (U - V) \subseteq F \cap (U - V) \subseteq M$. By hypothesis, since $A_n^* \cap (U - V)$ is n-semi*closed, $A_n^* \cap (U - V) = \emptyset$ and so $A_n^* \subseteq V$. Hence A is *NIgsemi**-closed.

Theorem 3.17. Let (U, \mathcal{N}, I) be an nano ideal topological space and $A \subseteq U$. If $A \subseteq B \subseteq A_n^*$, then $A_n^* = B_n^*$ and B is n^* -dense in itself.

Proof. Since $A \subseteq B$, then $A_n^* \subseteq B_n^*$ and since $B \subseteq A_n^*$, then $B_n^* \subseteq (A_n^*)_n^* \subseteq A_n^*$ by Theorem 2.17 (4). Therefore $A_n^* = B_n^*$ and $B \subseteq A_n^* \subseteq B_n^*$. Hence proved.

Theorem 3.18. Let (U, \mathcal{N}, I) be an nano ideal topological space. If A and B are subsets of U such that $A \subseteq B \subseteq n\text{-}cl^*(A)$ and A is *NIgsemi**-closed, then B is *NIgsemi**-closed.

Proof. Since A is $NIgsemi^*$ -closed, then by Theorem 3.8 (4), $n-cl^*(A) - A$ contains no nonempty n-semi * closed set. Since $n-cl^*(B) - B \subseteq n-cl^*(A) - A, n-cl^*(B) - B$ contains no nonempty n-semi * closed set and so by Theorem 3.8 (4), B is $NIgsemi^*$ -closed

Theorem 3.19. If (U, \mathcal{N}, I) is any nano ideal topological space, then everynano ideal generalised closed is *NIgsemi*^{*}-closed set but not conversely.

Proof. Let (U, \mathcal{N}, I) be an nano ideal topological space.Let $A \subseteq U$ and U is *nano semi*^{*}open. If A is nano ideal generalised closed set then $A_n^* \subseteq V$ whenever $A \subseteq V$ and V is *nano*open set. We know the fact that every nano open set is *n-semi*^{*}open. Therefore $A_n^* \subseteq V \subseteq U$. Hence every nano ideal generalised closed is *NIgsemi*^{*}-closed set

Theorem 3.20. If (U, \mathcal{N}, I) is any nano ideal topological space, then every *ng*-closed set is $NIgsemi^*$ -closed but not conversely

Proof. Let V be any nano open set containing A.Since every nano open set is n-semi^{*}open, V be any n-semi^{*} open set containing A. ASince A is ng-closed, n-cl(A) \subseteq V. By Theorem 2.17(iii), we have $A_n^* \subseteq V$. Then A is NIgsemi^{*}- closed set.

Example 3.21. Let $U = \{a,b,c,d\}$, with $U/R = \{\{b\},\{d\},\{a,c\}\}\$ and $X = \{a,d\}$. Then the Nano topology $\mathcal{N} = \{\phi, U, \{d\}, \{a,c\}, \{a.c.d\}\}\$ and $I = \{\phi, \{d\}\}\$. Then *NIgsemi**-closed sets are $\{\phi, U, \{b\}, \{d\}, \{a,b\}, \{b,c\}, \{b,d\}, \{a,b,c\}, \{b,c,d\}, \{a,b,d\}\}\$ and *ng*-closed sets are $\{\phi, U, \{b\}, \{a,b,c\}, \{b,c,d\}, \{a,b,d\}.\$ Since $\{d\}$ is *NIgsemi**-closed but it is not *ng*-closed, every nano generalised closed set is *NIgsemi**-closed

Theorem 3.22. Let (U, \mathcal{N}, I) be a nano ideal topological space. Every n*-closed set is $NIgsemi^*$ -closed.

Proof. Let A be a subset of X and A be n*-closed. Assume that $A \subseteq V$ and V is *n-semi**open. Since A is n*-closed, we have $A_n^* \subseteq A$ and so A is *NIgsemi**-closed.

Example 3.23. Let $U = \{a,b,c,d\}$, with U/ R= $\{\{a\},\{b\},\{c,d\}\}$ and X= $\{c\}$. Then the Nano topology $\mathcal{N} = \{\phi, U, \{c,d\}\}$ and $I = \{\phi, \{c\}\}$. Then *NIgsemi** -closed sets = $\{\phi, U, \{a\}, \{b\}, \{c\}, \{a,c\}, \{a,c\}, \{a,d\}, \{b,c\}, \{a,b,c\}, \{b,c,d\}, \{a,b,d\}, \{a,c,d\}\}$ and n^* - closed sets are $\{\phi, U, \{a,b\}, \{a,b,c\}\}$. It is clear that every n*-closed set is *NIgsemi**-closed.

For the relationship related to several sets defined in this paper, we have the following diagram:

The following theorem gives a characterization of *NIgsemi**-open sets.

Theorem 2.31. Let be an nano ideal topological space and $A \subseteq K$. Then A is *NIgsemi*^{*}-open if $a(U, \mathcal{N}, I)$ nd only if $F \subseteq n$ -int^{*}(A) whenever F is n-semi^{*}closed and $F \subseteq A$.

Proof. Suppose A is *NIgsemi*^{*}-open. If F is *n-semi*^{*}closed and $F \subseteq A$, then $U - A \subseteq U - F$ and so $n-cl^*(U - A) \subseteq U - F$ by Theorem 2.4 (2). Therefore $F \subseteq U - n-cl^*(U - A) = n-int^*(A)$. Hence $F \subseteq n-int^*(A)$.

Conversely, suppose the condition holds. Let V be a *n-semi*^{*}open set such that $U - A \subseteq V$. Then $U - V \subseteq A$ and so $U - V \subseteq n$ -int^{*}(A). Therefore n- $cl^*(U - A) \subseteq V$. By Theorem 2.4 (2), U - A is *NIgsemi*^{*}-closed. Hence A is *NIgsemi*^{*}-open.

Theorem 3.18. Let (U, \mathcal{N}, I) be a nano ideal topological space and $A \subseteq U$. Then A is $NIgsemi^*$ -open if and only if $F \subseteq n$ -int^{*}(A) whenever F is closed and $F \subseteq A$.

Proof. Suppose A is *NIgsemi*^{*}-open. If F is closed and $F \subseteq A$, then $U - A \subseteq U - F$ and so $n - cl^*(U - A) \subseteq U - F$. Therefore, $F \subseteq n - int^*(A)$.

Conversely, suppose the condition holds. Let V be an open set such that $U - A \subseteq V$. Then $U - V \subseteq A$ and so $U - V \subseteq n$ -int^{*} (A) which implies that n-cl^{*}(U - A) $\subseteq V$. Therefore, U - A is NIgsemi^{*}-closed and so A is NIgsemi^{*}-open.

The following theorem gives a property of *NIgsemi**-closed.

Theorem 2.33. Let (U, \mathcal{N}, I) be an nano ideal topological space and $A \subseteq U$. If A is $NIgsemi^*$ -open and n-int^{*} $(A) \subseteq B \subseteq A$, then B is $NIgsemi^*$ -open.

Proof. Since A is $NIgsemi^*$ -open, then U-A is $NIgsemi^*$ -closed. By Theorem 2.4 (4), $n-cl^*(U-A) - (U-A)$ contains no nonempty $n-semi^*$ closed set. Since $n-int^*(A) \subseteq n-int^*(B)$ which implies that $n-cl^*(U-B) \subseteq n-cl^*(U-A)$ and so $n-cl * (U-B) - (U-B) \subseteq n-cl^*(U-A) - (U-A)$. Hence B is $NIgsemi^*$ -open.

The following theorem gives a characterization of *NIgsemi*^{*}-closed sets in terms of *NIgsemi*^{*}-open sets.

Theorem 2.34. Let (U, \mathcal{N}, I) be an nano ideal topological space and $A \subseteq U$. Then the following are equivalent.

(1) A is NIgsemi*-open

(2) $A \cup (U - A_n^*)$ is *NIgsemi*^{*}-closed,

(3) $A_n^* - A$ is *NIgsemi**-open.

Proof. (1)=>(2) Suppose A is NIgsemi^{*}-open. If V is any $n - semi^*$ open set such that $A \cup (U - A_n^*) \subseteq V$, then $U - V \subseteq U - (A \cup (U - A_n^*)) = U \cap (A \cup (A_n^*)^c)^c = A_n^* \cap A^c = A_n^* - A$. Since A is NIgsemi^{*}-closed, by Theorem 2.4 (5), it follows that $U - V = \emptyset$ and so U = V. Therefore $A \cup (U - A_n^*) \subseteq V$ which implies that $A \cup (U - A_n^*) \subseteq U$ and so $(A \cup (U - A_n^*)_n^* \subseteq U_n^* \subseteq U = V$. Hence $A \cup (U - A_n^*)$ is NIgsemi^{*}-closed.

 $(2) \Rightarrow (1)$ Suppose $A \cup (U - A_n^*)$ is $NIgsemi^*$ -closed. If F is any n-semi * closed set such that $F \subseteq A_n^* - A$, then $F \subseteq A_n^*$ and F is not a subset of A which implies that $U - A_n^* \subseteq U - F$ and $A \subseteq U - F$. Therefore $A \cup (U - A_n^*) \subseteq A \cup (U - F) = U - F$ and U - F is n-semi * open. Since $(A \cup (U - A_n^*))_n^* \subseteq K - F$ which implies that $A_n^* \cup (U - A_n^*))_n^* \subseteq U - F$ and so $A_n^* \subseteq U - F$ which implies that $F \subseteq U - A_n^*$. Since $F \subseteq A_n^*$, it follows that $F = \emptyset$. Hence A is $NIgsemi^*$ -open.

(2) \Leftrightarrow (3) Since $U - (A_n^* - A) = U \cap (A_n^* \cap A^c)^c = U \cap ((A_n^*)^c \cup A) = (U \cap (A_n^*)^c) \cup (U \cap A) = A \cup (U - A_n^*)$ is *NIgsemi**-closed. Hence $A_n^* - A$ is *NIgsemi**-open

CONCLUSIONWe defined the concept of *N1gsemi**-open sets and *N1gsemi**-closed sets in nano ideal topological spaces. We also discussed some of their properties with suitable examples. We hope that this paper is just a beginning of a new structure. It will inspire many to contribute to the cultivation of nano ideal topology in the field of Mathematics.

REFERENCES

[1] A. Robert and S. Pious Missier, "On Semi*-closed sets", AJEM, 1(4) (2012), pp 173 - 176.

[2] A. Robert and S. Pious Missier, "On Semi*-open sets", Int.J.Math. and Soft Comp., 2(2) (2012), pp 95 -102

[3] C. R. Parvathy and S. Praveena, "On nano generalized pre regular closed sets in nano topological spaces", IOSR Journal of Mathematics, 13 (2)(2017), pp 56-60

[4] D. Jankovic and T. R. Hamlett, "Compatible extensions of ideals", Boll. Un. Mat. Ital., (7)6-B (1992)

[5] D. Jankovic and T. R. Hamlett, "New topologies from old via ideals", Amer. Math. Monthly, 97(4) (1990), pp 295-310.

[6]E . Hatir and T. Noiri, "On decomposition of continuity via Idealization" Acta Math.Hungar, 96 (4) (2002), pp 341-349

[7] E. Hayashi, "Topologies defined by local properties", Math. Ann., 156 (1964), pp 205–215.

[8] G. Gincy and Dr. C. Janaki, "Nano Ideal α -Regular Closed Sets in Nano Ideal Topological Spaced", International Journal of Mathematical Archive, 11(1) (2020), pp 1-6

[9] K. Bhuvaneswari and K. Mythili Gnanapriya, "Nano generalized closed sets in nano topological

spaces", International Journal of Scientific and Research Publications, 4(5), May(2014), pp 1–3. [10] K. Kuratowski, Topology, Vol. I, Academic Press (New York, 1966).

[11] M. E. Abd El-Monsef, E. F. Lashien and A. A. Nasef, "On I-open sets and I-continuous functions", Kyungpook Math. J., 32 (1992), pp 21–30.

[12] M. LellisThivagar and Carmel Richard, "On Nano forms of weakly open sets" International Journal of Mathematics and Statistics Invention 1(1)(2013), pp 31-37

[13] M.Lellis Thivagar and V.Sutha Devi, "New sort of operators in nano ideal topology", Ultra Scientist Vol.28 (1) A (2016), pp 51-64.

[14] M. Parimala and R. Perumal, "Weaker form of open sets in nano ideal topological spaces", Global Journal of Pure and Applied Mathematics (GJPAM), 12(1) (2016), pp 302–305

[15] M. Parimala, S. Jafari, "On Some New Notions in Nano Ideal Topological Spaces", Eurasian Bulletin Of Mathematics Ebm, vol. 1, no. 3 (2018), pp 85-93

[16] M. Parimala, S. Jafari and S. Murali, "nano ideal generalized closed sets in nano ideal topological spaces", annales univ. sci. Budapest 61 (2018), pp 111–119

[17] M. Parimala, T. Noiri and S. Jafari, "New types of nano topological spacess via nano ideals" (communicated)

[18] Paulraj Gnanachandra, "A New Notion Of Open Sets In Nano Topology", International Journal of Grid and Distributed Computing, vol. 13, no. 2, (2020), pp 2311-2317

[19] P.Gnanachandra and K.Surya, "A study on nano semi*-closed sets and their Applications",
Proceedings of UGC Sponsored National Seminar on Recent Trends in Mathematics, GVNC, (2015), pp77-80.

[20] Rajasekaran and O. Nethaji, "Simple forms of nano open sets in an ideal nano topological spaces", Journal of New Theory, 24(2018), pp 35-43.

[21] Rishwanth M Parimala and Saeid Jafari "On some new notions in nano ideal topological spaces" IBJM (2018), vol.1, no. 3, pp 85-92.

[22] R. Vaidyanathaswamy, "The localization theory in set topology", Proc. Indian Acad. Sci., 20 (1945), pp 51–61.

[23] T Noiri, Rajamani M and Inthumathi V, "On decomposition of g-continuity via idealization", Bull.Cal.Math.Soc 99 (4) (2007), pp 415-424.