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1.  Introduction 

The degree of approximation of the functions in Lipschitz spaces using single and product summability means 

has been studied by the authors. But so far nothing seems to happen in the direction of the present work. So, we 

established a theorem on degree of approximation of the conjugate function corresponding to the Lip    and 

weighted   )(, tLr   class through the product sum of the conjugated Fourier series. 

Let 


 0n

nu be a given infinite series with a sequence of its n th partial sum .ns .The change is defined as the 

nth partial sum of (C.I) the sum and is given by 
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An infinite series 


0n

nu    with partial sum  ns   is then said to be summable by (R,q) the method for a fixed 

number s.A product of transform )1,(C  of  qR, defines  qRC ,)1,(  transform and denotes by
q

nn RC1
 

transform. 
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)(xg   be periodic and integral with period 2 in the sense of Lebesgue. The Fourier series is given by 
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The conjugate series of (1.1) is define as  
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A signal (function) Lipg  is define as , 
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When 0 then  )(, tLW r  coincides with  rtLip ,)( and when
 tt )( then
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Degree of approximation )(gEn is define by 

𝐸𝑛 = min 𝑔 − 𝑇𝑛 𝑟  

                                                                                  (1.4) 

Where  )(xTn  is the trigonometric polynomial of power degree n. 
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The following notation is used: 
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2. Main theorem 
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Where   is an arbitrary number such that  01)1( s , ,1
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

sr
the condition (2.3) and (2.4) holds 

equally in x and 
q

nn RC1
 is  qRC ,)1,(  the means of the conjugated Fourier series (1.2). 

 

2.  Lemmas:  
The following lemmas are necessary for our proof of main theorem: 
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4. Proof 
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Denoting   qRC ,)1,(  transform of  xgsn ; as  
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Which is  the complete proof of the theorem. 
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 5. Corollary  

Following corollary becomes particular case of our main theorem. 

 

 

 

 

 

 

5.1. Corollary 

If 0  and ,)(  tt   then the degree of approximation of a function is given by 
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5.2. Corollary 

If r  in above corollary (5.1), then for 10  is given by  
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5.3. Corollary  

If 0  , 
 tt )( and nqn  ,1 , then the degree of approximation of a function 

  10,,   rLipg , is given by  
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5.4 .Corollary 

If r in above corollary (5.3), then for 10  , we have   
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6. Applications 

These approximations have wide applications in signal analysis [12] and digital signal processing [13]. 

Engineers and scientists use the properties of the Fourier approximation to design digital filters. In particular and 

Moustakides [13] presented a new L2 based method for designing finite impulse response digital filters and 

obtained corresponding optimal estimates with improved performance. 
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