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Abstract: Precipitation is a condensation process on water from the atmosphere that causes rain. Rain has positive and 
negative impacts on society, especially because of global warming. Estimating precipitation at specific locations is needed to 
mitigate the negative consequences. Utilizing satellite data is the best way to estimate precipitation, but it has a coarse 
resolution. Therefore, a study was conducted on spatial downscaling for increasing spatial resolution of precipitation data from 
the tropical rainfall measuring mission satellite using machine learning in Riau Province, Indonesia. We compared machine 
learning models namelydecision trees, multiple linear regression, support vector machines, and random forest to downscale the 
data. We used variables like normalized difference vegetation index, digital elevation model, and land cover as the input for the 
model. Also, we validated the result with the measurement of the rain gauge station at Riau Province Indonesia. Based on the 
study, we found that the decision tree is the best model to downscale the precipitation data in Riau Province with the mean 
square error value of 0.00048 and the R2 value of 0.67107. We found that the digital elevation model is the most important 
variable in downscaling the precipitation data. 

Keywords: Big data, machine learning, precipitation, remote sensing, spatial downscaling. 
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1. Introduction 

Precipitation is a condensation process on water from the atmosphere. This process has caused the water from 

the atmosphere to fall to the earth's surface. This falling water is called rain. Rain has so many positive impacts on 

all creatures. But there are also negative impacts because of global warming. A study conducted by Tabari (2020) 

showed that the global warming process causes a higher intensity of bad weather throughout the region. The data 

from NOAA (https://www.epa.gov/climate-indicators/climate-change-indicators-heavy-precipitation) also showed 

that the percentage of precipitation is increasing each year by around 0.5 percent. This impact is causing 

phenomena like crop failure, ground erosion, and flood. Those phenomena can affect a tremendous loss for 

society (Bell et al., 2016). With the increasing intensity of precipitation, a method for calculating the precipitation 

intensity is needed. 

There are two methods for retrieving the precipitation data. The first method is to retrieve the data from the 

rain gauge station. The advantage of this method is it can calculate the precipitation value accurately. But the 

disadvantage of this method is the amount of data is limited. In other words, some locations cannot be calculated 

(Zhan et al., 2018). The second method is to gather the data from the satellite. Tropical Rainfall Measuring 

Mission (TRMM) is one of the satellites that measure precipitation. The satellite can capture precipitation with a 

spatial resolution of 25 KM. It means that one pixel of the image captures information with an area size of 25 

kilometers. The advantage of this method is that the satellite can measure precipitation values throughout the all-

region. Because of the coarse resolution, the satellite cannot measure the precipitation precisely (Mahmud et al., 

2018). For retrieving the precise value, a method for increasing the spatial resolution is needed. The method is 

called spatial downscaling. This studyproposes to apply the machine-learning-based spatial downscaling method 

for measuring precipitation in Riau Province, Indonesia. The final output from the research is to gather and 

validate the final map with the spatial resolution by 1 km. 

2.Review of Related Studies 

Jing et al., (2016) implemented a downscaling algorithm to downscale the precipitation data from the TRMM 

satellite. The machine learning model like Random Forests (RF), Support Vector Machine (SVM), and 

Exponential Regression (ER) were compared. Those models used variables Normalized Difference Vegetation 

Index (NDVI), Land Surface Temperature (LST), and the Digital Elevation Model (DEM). The experiment 

showed that the SVM model outperformed all machine learning models when the inputs were the NDVI and 

DEM. The RF model outperformed all models when the LST was included in the model.Liu et al., (2018) used a 

machine learning model to downscale the soil moisture data. The experiment used data includingLand Surface 

Temperature (LST) and Digital Elevation Model (DEM) to learn associations between them and the soil moisture 
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data. From the experiment, the k-Nearest Neighbours (KNN) model was the best model to downscale the 

data.Elnashar et al., (2020) compared Gradient Boosting (GB), Support Vector Machine (SVM), and Artificial 

Neural Network (ANN) to downscale the precipitation data. Vegetation index, topography, and geolocation were 

used to train the model. The experiment showed the ANN model outperformed all algorithms to downscale the 

precipitation data.Yan & Bai, (2020) compared RF, SVM, and KNN models to downscale the soil moisture data. 

Those models took vegetation index, land cover, topography, and LST data to learn patterns with the soil moisture 

data. The experiment showed the RF model outperformed all machine learning models.Xu et al., (2021) proposed 

a downscaling model that combines the RF model and kriging to downscale the LST data. The model learned 

patterns between the Sentinel-2A data and the LST data. The proposed model was compared with an NDVI-based 

model called Thermal Sharpening Method (TsHARP). The result showed that the proposed model outperforms the 

TsHARP model. Lezama Valdes et al., (2021) used machine learning algorithms like Random Forest, gradient 

boosting, and artificial neural networks to downscale the LST data. The model took surface information and 

learned patterns from them with the LST variable. From the experiment, the random forest model outperformed 

all models that were tested. 

3.Methods 

3.1. Research Workflow 

In general, the research steps started from gathering the data, preprocessing the data, modeling the data, to 

validating the result (Figure 1).  

Figure.1.Research workflow. 

 

3.2. Data Source 

The data weregathered from the Google Earth Engine (GEE) platform. GEE is a cloud-based platform for 

analyzing spatial data, whether vector or raster data. GEE contains a computational platform for processing spatial 

data. It also has a data catalog that gathers all publicly available spatial data. Those datasets are ready to use, 

allowing to focus on specific application research (Gorelick et al., 2017). To specify the research scope, we 

collectthe data from 2018. We picked five spatial data. Those data are the precipitation data, the Digital Elevation 

Model (DEM), the Normalized Difference Vegetation Index (NDVI), the land cover data, and vector data of the 

Riau Province border.  

We retrieved precipitation datafrom the Tropical Rainfall Measuring Mission (TRMM) satellite. This satellite 

gathered information about precipitation in a 25 km spatial resolution from January 1998 until December 

2019(Adler et al., 2003).Currently, the data collection is handled by a satellite called Global Precipitation 

Measurement (GPM). We used the 3B43 version of the satellite to gather the annual precipitation data. Because 

the data was updated monthly, we aggregated it using the average method to retrieve the yearly data.  
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We retrieved DEM datafrom Shuttle Radar Topography Mission (SRTM). The data contains 90-meter-

resolution elevation data, and it captures only once in February 2000(Jarvis et al., 2008). Because there is only 

one elevation data, we only picked and left it without aggregating the data. 

We collected NDVI datafrom MODIS with the code of MOD13A2(Kamel, 2015). NDVI is an index that 

estimates the density of vegetated areas(Gessesse & Melesse, 2019). With this sensor, we got the NDVI data 

without calculating it first. The data has a 500 meters resolution, and the satellite captures the data every 16 days. 

For getting the annual NDVI, we aggregated it using the average method.  

We obtained land cover datafrom MODIS with the code MCD12Q1(Damien, 2019). The data is derived from 

the classification result of MODIS Terra and Aqua reflectance data. It has a spatial resolution of 500 meters and is 

produced every year from January 2001 until January 2020. There are five different types of land cover that are 

captured by MODIS. This study used type 1 land cover, where the classes are based on the International 

Geosphere-Biosphere Programme (IGBP) proposed land cover classes. Because the data arealready yearly, we 

only picked the data and left it without any aggregation steps. 

Table.1.Description of for each class(Damien, 2019). 

Value Description 

1 Evergreen Needleleaf Forests: dominated by evergreen conifer trees (canopy >2m). Tree cover >60%. 

2 Evergreen Broadleaf Forests: dominated by evergreen broadleaf and palmate trees (canopy >2m). Tree 

cover >60%. 

3 Deciduous Needleleaf Forests: dominated by deciduous needleleaf (larch) trees (canopy >2m). Tree 

cover >60%. 

4 Deciduous Broadleaf Forests: dominated by deciduous broadleaf trees (canopy >2m). Tree cover 

>60%. 

5 Mixed Forests: dominated by neither deciduous nor evergreen (40-60% of each) tree type (canopy 

>2m). Tree cover >60%. 

6 Closed Shrublands: dominated by woody perennials (1-2m height) >60% cover. 

7 Open Shrublands: dominated by woody perennials (1-2m height) 10-60% cover. 

8 Woody Savannas: tree cover 30-60% (canopy >2m). 

9 Savannas: tree cover 10-30% (canopy >2m). 

10 Grasslands: dominated by herbaceous annuals (<2m). 

11 Permanent Wetlands: permanently inundated lands with 30-60% water cover and >10% vegetated 

cover. 

12 Croplands: at least 60% of area is cultivated cropland. 

13 Urban and Built-up Lands: at least 30% impervious surface area including building materials, asphalt, 

and vehicles. 

14 Cropland/Natural Vegetation Mosaics: mosaics of small-scale cultivation 40-60% with natural tree, 

shrub, or herbaceous vegetation. 

15 Permanent Snow and Ice: at least 60% of area is covered by snow and ice for at least 10 months of the 

year. 

16 Barren: at least 60% of area is non-vegetated barren (sand, rock, soil) areas with less than 10% 

vegetation. 

17 Water Bodies: at least 60% of area is covered by permanent water bodies. 

We retrieved land borderfrom the GADM website (https://gadm.org/data.html). GADM is a database of 

administrative areas from all countries. In Indonesia, there are several levels of administrative areas. For this case, 

we collecteddata on a province level, which in this case we took the Riau Province data.  

Table.2.Satellite data description. 

Product Name Spatial 

Resolution 

Temporal 

Resolution 

Measurement Unit 

TRMM 3B43: Monthly Precipitation Estimates 27830 meters Monthly mm/year 

SRTM Digital Elevation Data Version 4 90 meters - m 

MODIS Combined 16-Day NDVI 463.313 meters 16 Days - 

MODIS Land Cover Type Yearly Global 500m 500 meters Yearly - 
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3.3. Data Preparation 

After we gathered the data, we prepared the data before building the downscaling model. We reprojected each 

of them with the reference projection. In this case, we used the EPSG:4326 projection for each data. After we 

reprojected the data, we resampled the data into two spatial resolutions. Those resolutions are 25 KM and 1 KM. 
The reason for resampling the satellite images is because each data contained different spatial resolutions. 

Therefore, we resampled the data into 25 KM and 1 KM for modeling and downscaling purpose, respectively. All 

steps were done using the GEE platform. 

 
Figure.2. Satellite images in 25 KM resolution. 

 

Figure.3.Resampled satellite images in 1 KM resolution. 

 

3.4. Model Implementation 

For the experiment, we compared machine learning models like Random Forest (RF), Support Vector 

Machine (SVM), Multiple Linear Regression (MLR), and Decision Tree (DT). We implemented all models using 

the scikit-learn library(Pedregosa et al., 2011).Random Forest is an ensemble-based machine learning model. The 

algorithm generates a collection of trees, where each tree contains a random vector that is trained using a sample 

of the dataset. Each tree outputs a prediction result. And the final prediction will be determined using a voting 

method and pick the majority prediction(Breiman, 2001). 

Support Vector Machine (SVM) is a machine learning model that tries to create a decision vector that can 

separate data with different classes. The algorithm chooses a vector that has a maximum margin. The margin is 

calculated between the vector and the outmost data for each class. Therefore, the model can have optimal 

performance(Bishop, 2006). 

Multiple linear regression is a machine learning model that tries to learn relationships between the dependent 

variable y with the independent variable x. Multiple linear regression is an extension to simple linear regression 

where it has more than one independent variable. The model will fit a line inside the data. Therefore, the model 

can generalize to the unseen data. 

Decision Tree is a machine learning model that segments the data into several regions. The tree is generated 

by adding a rule as the first node from all possible variables. Then, the model adds the branch that represents the 

rule recursively until the tree cannot be divided anymore. One of the advantages of this model is the 

interpretability of the prediction process. Rather than getting the predictions only, the model also shows the rule 

behind the results(James et al., 2013). 
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3.5. Hyperparameter Tuning 

The proposed model still used the default hyperparameters. Therefore, we did the hyperparameter tuning 

process. Hyperparameter is a parameter that is adjustable before running the model. By tuning the 

hyperparameters, the model can reach higher accuracy. We used the grid search method for finding the optimal 

hyperparameters. We used the GridSearchCV function from the scikit-learn library to tune the 

hyperparameters(Pedregosa et al., 2011). From the hyperparameter tuning process, we chose the best machine 

learning model. With the best model, we used it to downscale the satellite data with the spatial resolution of 1 

KM.  

Table. 3.Hyperparameter combinations. 

Model 

 

Hyperparameter Range of value 

Decision Tree Max Depth [2, 3, 5, 10, 20] 

Minimum Samples Leaf [5, 10, 20, 50, 100] 

Support Vector Machine C [0.1, 1, 10, 100, 1000] 

Gamma [1, 0.1, 0.01, 0.001, 0.0001] 

Kernel rbf 

Random Forest Number of Estimators [5, 20, 50, 100] 

Max Features [auto, sqrt] 

Max Depth [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120] 

Minimum Samples Split [2, 6, 10] 

Minimum Samples Leaf [1, 3, 4] 

Bootstrap [true, false] 

 

To determine the best model, we used metrics like Mean Squared Error (MSE) and Coefficient of 

Determination (R2 score) for validating the model's performance. MSE is a metric that calculates the average of 

squares of errors, where the error is the difference between the predicted and the actual value. If the MSE value is 

closer to 0, the model has a great performance. R2 score calculates the proportion of variance from the dependent 

variable (y), and it tells the goodness of fit. In other words, the value measures how well the model predicts the 

unseen data. If the value is closer to 1, the model performs well(James et al., 2013). 

3.6. Result Validation 

We validated the downscaled image with the data from the Indonesian Bureau of Meteorology and 

Geophysics (BMKG) website (http://dataonline.bmkg.go.id/home). In Riau Province Indonesia, there are three 

rain gauge stations, and each station locates in Pekanbaru, Kampar, and Japura. Because the data from BMKG is 

point-based, we sampled the downscaled result based on the coordinates from each station. We used QGIS to 

retrieve the downscaled result. 

Table. 4.Details about the weather station. 

Station’s Name Location Latitude Longitude Elevation 

Stasiun Meteorologi Sultan Syarif Kasim II Pekanbaru 0.45924 101.44743 39 

Stasiun Klimatologi Kampar Kampar 0.40700 101.21700 15 

Stasiun Meteorologi Japura Japura -0.33000 102.32000 19 

 

4. Results 

4.1. Data Exploration 

Before implementing the downscaling model, we explored the dataset we used for this research. First, we 

observed scatter plots between input variables like NDVI and DEM with the output variable, which is the 

precipitation variable. Next, we analyzed the impacts of each land cover class on the precipitation value. Lastly, 

we checked the distributions of the precipitation value. 
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Figure. 4.  NDVI and precipitation. 

 

Figure. 5. DEM and precipitation. 

 

 

We geta positive correlation between the NDVI variable and the precipitation variable. The scatter values are 

spreading but tend to have a linear relationship on both. As the number of NDVI gets higher, the precipitation 

value follows it.  

We also observed that the DEM variable is positively correlated to the precipitation variable. Although the 

precipitation values have a large variance when the DEM is closer to zero, the relationship between DEM and 

precipitation is linear as both numbers get higher. The higher the DEM value has, the higher the precipitation 

value becomes. 

Figure. 6. Precipitation based on the land cover class. 

 

Based on the boxplot above, we observedthat each land cover class has a different variance of precipitation 

value but with an almost similar median value to it. In sequence, class 2, 8, 11, 14, and 17 represents forest, 

savannas, wetlands, cropland, and water bodies. We foundthat class 2 tends to have a larger variance than all land 
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cover classes. Class 8 tends to have a right-skewed distribution. Class 11 has a slightly left-skewed distribution to 

it while having an outlier below. Class 14 does not have any distribution and has a median value slightly below 

0.275. Class 17 tends to have a left-skewed distribution while having an outlier at the above part (Figure 6). 

Figure. 7.Distribution of precipitation. 

 

Based on the histogram above, we saw that the curve shape of the precipitation's distribution tends to be 

normal. Because the distribution was not skewed, we did not apply any preprocessing steps to make the normal 

distribution. 

4.2. Hyperparameter Tuning 

We did the hyperparameter tuning to our proposed machine learning model, except for multiple linear 

regression. We used 10-fold cross validation to measure the model's performance while choosing the best 

hyperparameters simultaneously. Based on the process, the best hyperparameter for the decision tree is 2 and 10 

for max depth and minimum samples leaf, respectively. Support vector machine runs optimally with 

hyperparameter values of 0.1, 1, and rbf for C, gamma, and kernel, respectively. Lastly, the random forest 

algorithm runs optimally with hyperparameter values of 5 for the number of estimators, auto for max features, 10 

for max depth, 10 for minimum samples split, 4 for minimum samples leaf, and true for bootstrap. 

Table. 5.The best hyperparameter value for each model. 

Model Hyperparameter Value 

Decision Tree Max Depth 2 

Minimum Samples Leaf 10 

Support Vector Machine C 0.1 

Gamma 1 

Kernel rbf 

Random Forest Number of Estimators 5 

Max Features auto 

Max Depth 10 

Minimum Samples Split 10 

Minimum Samples Leaf 4 

Bootstrap True 

 

4.3 Model Evaluation 

Along with the hyperparameter tuning process, we evaluated the performance results of each model. We used 

metrics like mean squared error (MSE) and the R2 value to determine the best model. In the end, we chose the 

best model for downscaling the TRMM satellite image. 
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Table. 6.The performance of each model. 

Model MSE R
2
 

Random Forest (RF) 0.00071 0.51952 

Support Vector Machine (SVM) 0.00192 -0.30248 

Decision Tree (DT) 0.00048 0.67107 

Multiple Linear Regression (MLR) 0.00088 0.40327 

 

Based on the table above, we observedthat the decision tree model had the best performance with its MSE 

value of 0.00048 and the R2 value of 0.67107. Following that model, the random forest had the second-best 

performance with its MSE value of 0.00071 and R2 value of 0.51952. The multiple linear regression had the third-

best performance with its MSE value of 0.00088 and R2 value of 0.40327. The support vector machine had the 

worst result of all models. Besides that, the model also had an anomaly result, in which the R2 value is negative. 

Therefore, we selectthe decision tree model for downscaling the TRMM satellite image based on the performance 

result. 

4.4. Model’s Feature Importance 

Besides modeling the data, we also checked the feature importance from the best model, which is the decision 

tree model. We did this to make sure the model could explain the reason behind each prediction. We used the 

SHAP library for visualizing the variable contributions to the prediction result. 

Figure. 8.The variable importance from the model. 

 

There are two visualizations we created. The first one is the feature importance bar chart. Based on the chart 

above, we saw that the DEM variable had the most significant contribution to the prediction result, where the 

variable had a 0.03 score of SHAP value. The land cover variable placed second with a SHAP value of 0.01. 

Interestingly, the NDVI was in the last position. It was because the NDVI variable had a SHAP value score of 0. 

Figure. 9.Variable importance on each data cluster. 

 

The second chart is the heat map chart. It describes the impact of each variable on the data that aredivided 

into several clusters. Based on the chart above, Weconcludethat if an observation contained a high value of the 

DEM variable, the precipitation value tends to be higher. As the DEM value became lower, the lower the 

precipitation value was. The land cover tends to work differently. If the DEM value was in the middle, like on the 

center cluster, the impact from the land cover variable tends to be higher and lower if the DEM variable gets a 
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lower value. The SHAP value of NDVI tends to be neutral. Therefore, the NDVI didn't impact the prediction 

result. 

4.5. Result Validation 

After evaluating the model, we used it to downscale the TRMM satellite by taking the proposed inputs like 

NDVI, DEM, and Land Cover. By having the result, we sampled the data based on the coordinates of the existing 

rain gauge station in Riau Province, Indonesia, to gather the downscaled precipitation data. Based on our 

modeling result, we found an error between the real and downscaled precipitation value. Figure 10 shows the 

downscaling result from the random forest model. 

Figure. 10. Result of downscaling process from the TRMM satellite image. 

 

In Pekanbaru, the real precipitation value is 0.1 mm/year, while the downscaled result is 0.31386 mm/year. 

While in Kampar and Japura, both have the same actual precipitation value, which is 0 mm/year, and the same 

downscaled annual precipitation with the precipitation value is 0.31386 mm/year. Besides the modeling process, 

one of the reasons why the data have such an error margin is there are lots of missing values from all stations, 

whether the reason is that the station didn't measure all the times, which leads to bias on the result. Also, the 

number of rain gauge stations in Riau Province is not spatially distributed. Therefore, we cannot be certain of the 

evaluation result to determine whether the downscaling result is suitable to complement the ground station 

measurement. To mitigate this, we recommend enlarging the study area. Also, to look at how well the model 

performs, we recommend applying the downscaling process in a monthly term to see whether the model is robust 

to a monthly scale. 

Table. 7.Actual and downscaled precipitation data. 

Station’s Name Location Actual 

Precipitation 

Downscaled 

Precipitation  

Stasiun Meteorologi Sultan Syarif Kasim II Pekanbaru 0.1 0.31386 

Stasiun Klimatologi Kampar Kampar 0 0.31386 

Stasiun Meteorologi Japura Japura 0 0.31386 

 

5. Conclusion 

The study succeeds in applying the spatial downscaling process using machine learning models in Riau 

Province, Indonesia. We found the decision tree model has the best performance with the MSE value of 0.00048 

and the R2 value of 0.67107. We also found that the DEM variable is the most important variable on the 

downscaling process, followed by the NDVI and the land cover variable. Although there are errors in the 

validation result, the downscaled result has a prospect for complementing results with the rain gauge stations. For 

further research, we recommend expanding the study area because of the inadequate amount of rain gauge station 

and study about the effect of the downscaling model in a monthly term. 



Irfan Alghani Khalid, Imas Sukaesih Sitanggang 

 

 

16  

References  

Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., 

Bolvin, D., Gruber, A., Susskind, J., Arkin, P., & Nelkin, E. (2003). The Version-2 Global Precipitation 

Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present). Journal of Hydrometeorology, 
4(6), 1147–1167. https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2 

Bell, J., Herring, S., Jantarasami, L., Adrianopoli, C., Benedict, K., Conlon, K., Escobar, V., Hess, J., Luvall, J., 

Pérez García-Pando, C., Quattrochi, D., Runkle, J., & Iii, S. (2016). Ch. 4: Impacts of Extreme Events on 

Human Health (pp. 99–128). https://doi.org/10.7930/J0BZ63ZV 

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-

Verlag. 

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324 

Damien, S.-M. (2019). MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006 

[Data set]. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MCD12Q1.006 

Elnashar, A., Zeng, H., Wu, B., Zhang, N., Tian, F., Zhang, M., Zhu, W., Yan, N., Chen, Z., Sun, Z., Wu, X., & 

Li, Y. (2020). Downscaling TRMM Monthly Precipitation Using Google Earth Engine and Google Cloud 

Computing. Remote Sensing, 12(23), 3860. https://doi.org/10.3390/rs12233860 
Gessesse, A. A., & Melesse, A. M. (2019). Chapter 8—Temporal relationships between time series CHIRPS-

rainfall estimation and eMODIS-NDVI satellite images in Amhara Region, Ethiopia. In A. M. Melesse, W. 

Abtew, & G. Senay (Eds.), Extreme Hydrology and Climate Variability (pp. 81–92). Elsevier. 

https://doi.org/10.1016/B978-0-12-815998-9.00008-7 

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: 

Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. 

https://doi.org/10.1016/j.rse.2017.06.031 

James, G., Witten, D., Hastie, T., & Tibshirani, R. (Eds.). (2013). An introduction to statistical learning: With 

applications in R. Springer. 

Jarvis, A., Reuter, H., Nelson, A., & Guevara, E. (2008). Hole-filled SRTM for the globe version 3, from the 

CGIAR-CSI SRTM 90m database. See Http://Srtm. Csi. Cgiar. Org. 
Jing, W., Yang, Y., Yue, X., & Zhao, X. (2016). A Spatial Downscaling Algorithm for Satellite-Based 

Precipitation over the Tibetan Plateau Based on NDVI, DEM, and Land Surface Temperature. Remote 

Sensing, 8(8), 655. https://doi.org/10.3390/rs8080655 

Kamel, D. (2015). MOD13A2 MODIS/Terra Vegetation Indices 16-Day L3 Global 1km SIN Grid V006 [Data set]. 

NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MOD13A2.006 

Lezama Valdes, L.-M., Katurji, M., & Meyer, H. (2021). A Machine Learning Based Downscaling Approach to 

Produce High Spatio-Temporal Resolution Land Surface Temperature of the Antarctic Dry Valleys from 

MODIS Data. Remote Sensing, 13(22), 4673. https://doi.org/10.3390/rs13224673 

Liu, Y., Yang, Y., Jing, W., & Yue, X. (2018). Comparison of Different Machine Learning Approaches for 

Monthly Satellite-Based Soil Moisture Downscaling over Northeast China. Remote Sensing, 10(1), 31. 

https://doi.org/10.3390/rs10010031 

Mahmud, Mohd., Hashim, M., Matsuyama, H., Numata, S., & Hosaka, T. (2018). Spatial Downscaling of Satellite 
Precipitation Data in Humid Tropics Using a Site-Specific Seasonal Coefficient. Water, 10(4), 409. 

https://doi.org/10.3390/w10040409 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., 

Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, 

E. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825–2830. 

Tabari, H. (2020). Climate change impact on flood and extreme precipitation increases with water availability. 

Scientific Reports, 10(1), 13768. https://doi.org/10.1038/s41598-020-70816-2 

Xu, S., Zhao, Q., Yin, K., He, G., Zhang, Z., Wang, G., Wen, M., & Zhang, N. (2021). Spatial Downscaling of 

Land Surface Temperature Based on a Multi-Factor Geographically Weighted Machine Learning Model. 

Remote Sensing, 13(6), 1186. https://doi.org/10.3390/rs13061186 

Yan, R., & Bai, J. (2020). A New Approach for Soil Moisture Downscaling in the Presence of Seasonal 
Difference. Remote Sensing, 12(17), 2818. https://doi.org/10.3390/rs12172818 

Zhan, C., Han, J., Hu, S., Liu, L., & Dong, Y. (2018). Spatial Downscaling of GPM Annual and Monthly 

Precipitation Using Regression-Based Algorithms in a Mountainous Area. Advances in Meteorology, 2018, 

1506017. https://doi.org/10.1155/2018/1506017 

 


	Irfan Alghani Khalid a, Imas Sukaesih Sitangganga
	1. Introduction
	2.Review of Related Studies
	3.Methods
	3.1. Research Workflow
	3.2. Data Source
	3.3. Data Preparation
	3.4. Model Implementation
	3.5. Hyperparameter Tuning
	To determine the best model, we used metrics like Mean Squared Error (MSE) and Coefficient of Determination (R2 score) for validating the model's performance. MSE is a metric that calculates the average of squares of errors, where the error is the dif...
	3.6. Result Validation
	4. Results
	4.1. Data Exploration
	4.2. Hyperparameter Tuning
	4.3 Model Evaluation
	4.4. Model’s Feature Importance
	/
	4.5. Result Validation
	5. Conclusion
	References

