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Abstract: The present investigation is on linear analytical study of thermohaline convective instability in micropolar ferrofluid 
using perturbation technique. The fluid layer is heated from below and salted from above. The theory of linear stability is used 

to reduce the non-linear effects on governing equations and normal mode analysis is taken to study. The critical magnetic 
thermal Rayleigh number NSC is obtained for sufficient large value of M1 and an oscillatory instability is determined. The 

parameters 1N   and 5 'N are analyzed for stabilizing behavior and 3 'N ,   and M3 give the destabilizing behavior. The results 

are depicted graphically. 
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1. Introduction  

Ferrofluids are colloidal suspension of fine magnetic mono domain nano-particles in non - conducting liquids. 

Such types of ferrofluids have wonderful applications in science and technology. Generally, the ferrofluids are 

used for cancer treatment in the biomedicine field.  An excellent introduction and reviews of this extremely 

interesting monograph has been given by Rosensweig [1]. In his monograph, the fascinating information is 

introduced on magnetization. The convection in ferromagnetic fluid is analyzed in various aspects by 

Chandrasekhar [2]. Finlayson [3] has been investigated the convection in ferrofluid in single component fluid 

with uniform magnetic fluid. This investigation is extended to porous medium by Vaidyanathan et al. [4]. In non-

presence of buoyancy effects, the thermoconvective instability in ferrofluid is given by Lalas and Carmi [5].  

The micropolar fluids respond to spin inertia and micro-rotational motions. It can support couple stress and 

distributed body couples. Eringen [6] introduced the micropolar fluids theory. This theory has been developed by 

Eringen [7] on thermal effect. An excellent reviews and applications of this fluids theory can be obtained in by 

Ariman et al. [8] and Eringen [9]. Later, Ahmadi [10] employed firstly the energy method on convective 

instability of micropolar fluid with use of stability analysis. Pérez-Garcia and Rubi [11] analyzed the micropolar 

fluids with the effects of overstable motions. Narasimma Murty [12] examined the instability of the Bénard 

convection in a micropolar fluid using linear stability analysis.   

In the effect of porous media, the double-diffusive convection is of greatest interest in mechanical and chemical 

engineering. In some special case, sodium chloride and temperature field are involving and this is often called as 

thermohaline convection. Thermohaline convection in a ferrofluid has been analyzed by Vaidyanathan et al. [13] 

with two-component fluid. The presence of porous medium on ferrothermohaline convection has been given by 

Vaidyanathan et al. [14].  

The theoretical investigation of a micropolar ferromagnetic two component fluid in non-presence of Darcy 

porous effect has been undertaken by Sunil et al. [15]. The Soret effect is investigated on two component 

ferrofluid by Vaidyanathan et al. [16] and this is continued to large and small porous effect by Sekar et al. [17, 

18]. Reena and Rana [19] have been analyzed the thermosolutal convective instability of micropolar rotating 

fluids in a porous effect. They used the Darcy model. Chand [20] studied the porous effect on triple-diffusive 

convective instability in micropolar ferromagnetic fluid.   

In present investigation, our intension is to consider salinity gradient on magnetization and magnetic potential 

equation and thermal convection problem in micropolar fluid of Eringen extend to the thermohaline convection 

in micropolar ferrofluid. Also, an effect of salinity gradient and how micropolar parameters affect the stability in 

micropolar ferromagnetic fluid heated from below and salted from above. The stationary and oscillatory 

instabilities are studied. 

2.Mathematical Formulation Of Problem 
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Fig.1 Geometrical configuration 

  

Here we consider, an infinite horizontal micropolar ferrofluid layer heated from below and salted from above. 

The fluid layer is of thickness d and the fluid is considered as an electrically non-conducting incompressible one. 

The temperature and salinity at the bottom and top surfaces 
/ 2z d

 are 0 ( ) / 2T DT
 and 0 ( ) / 2,S DS

 

respectively and 
( | / |)t dT dz 

 and 
( | / |)s dS dz 

 are maintained. The governing equations are  

 

  The continuity equation is 

. 0 q
 1 

The momentum and internal angular momentum equations are  

        2

0 . . 2p
t

    
 
           

 
q q g HB ω q

 

 

(2) 

          2

0 0. 2 2 ' ' . 'I
t

     
 
             

 
q ω q ω M H ω ω

 
(3) 

      The temperature equation is 

 2

0 , 0 1

, ,

. . .v H o s s

v H v H

DT T D
C C T K T T

T Dt t T Dt
     
        

              
         

M M H
H ω

 

(4) 

 

  The mass flux equation is  

  2

0 / . St S K S      q
 

(5) 

  We can assume the magnetization using Maxwell’s equation for non-conducting fluids [16-18] is 

= ( , , ) / .M H T S HM H
The linearized magnetic equation in term of 0 ,H

 aT
 and aS

 is  

00 2(H ) ( ) ( )a aM M H K T T K S S      
 (6) 

   The density equation of state is 

0
[1 ( ) ( )]a aSt T T S S       

 
(7) 

where q- velocity of fluid, 0  - mean density of the clean fluid, p- pressure, 


- density of the fluid, g - 

gravitational field, H-magnetic field, B-magnetic induction, 


-coupling viscosity,  -microrotation, 


-shear 

viscosity coefficient, I-moment of inertia, M-magnetization, ' -bulk spin viscosity, 
'
-shear spin viscosity, 

,v HC
-effective heat capacity at constant volume, sC

-specific heat solid material, 0 -viscosity of the fluid 

when the applied magnetic field is absent, 1K
-thermal diffusivity, T-temperature,  -micropolar heat 

conduction coefficient, S-solute concentration, sK
-concentration diffusivity, 0H

-uniform magnetic field, aT
-

average temperature, aS
-average salinity, t

-thermal expansion coefficient and s
-analogous solvent 

coefficient. 

 

  The basic state quantities are  
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M k q q

H k ω ω

 

(8) 

where subscript b − the basic state and   k̂ − unit vector vertical direction. 

 

  A small thermal disturbance is made on the system. Let us take the perturbed components of M and H be 

1 2 0 3
' ' '[ , , ( ) ]M M M z M

 and 1 2 0 3
' ' '[ , , ( ) ],H H H z H

respectively. The perturbed quantities are  

( ) ', ', ( ) ', (z) ',

( ) ', ', ', (z) ,

b b b b

b b b b

z p p z p S S S

z T T   

       

     

H H H ω ω ω

M M M q = q + q
 

(9) 

the superscript  ' denotes perturbed state.      

 

The perturbed density equation can be calculated as  

0' ( ')t sS      
 (10) 

 

1. normal mode analysis method 

 

  We undertake the perturbation quantities by use of normal modes are  

( , , , ) ( , ) exp[ ]

( , , , ) ( , ) exp[ ]

( , , , ) ( , ) exp[ ]

( , , , ) ( , ) exp[ ]

x y

x y

x y

x y

w x y z t w z t i k x i k y

x y z t z t i k x i k y

x y z t z t i k x i k y

S x y z t S z t i k x i k y

 

 

 

 

 

 
 

(11) 

  

  In Eq. (2), one can get the kth component is  

 

22
2 2 2 2 2 20 0 2 0 2

0 0 0 0 0 0 0 2 0 02

2 2 2
2 2 2 2 '0 2
0 0 0 0 0 0 32 2

'
1 1 1

' 2
1

t t S
t S

S
t S

K KK KK
k w K k k k S K k k

t z zz

K
k S g k g k S k

z z

      
      

  

 
       



           
                              

    
                 

2

2
0k w





 

   
    

(12) 

 

      Internal angular Eq. (3) can be manipulated as  

  

2 2
3 2 2

0 0 3 0 32 2
2 2 'I k w k

t z z
  

      
                     

'

' '

 

(13) 

   Eq. (4) can be calculated as  

2 22
2 0 0 0 2 0

1 0 0 1 0 2 3
1 1

t S
t t

K T K K T
C K T K k C w

t t z z

    
     

 

         
                              

'

 

(14) 

 

  The Salinity equation is  

 2 2 2
0( / ) ( / ) 'S St S w K z k S      

 
(15) 

 

  Using Vaidyanathan et al. [14], one gets 
2

20
0 22

0

(1 ) 1 0
M S

k K K
H z zz

 
 

   
      

     

(16) 

 

  The non-dimensional equations can be derived by use of normal mode method as  
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 
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
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(17) 

   
'*
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(18) 

' 2 2 1/2 1/2 *
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*
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P M P D D a T a M M M R w aN R
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
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6

*
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*
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
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R
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
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where the dimensionless quantities are 
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2. linear stability analysis 

 

The stationary and oscillatory instabilities have been studied using linear theory. The boundary conditions are   
2 *

3* * * * * 0w D w D S T      
 at * 1/ 2.z   (23) 

 

  The exact solutions satisfying above Eq. (23) are  
* * *

1 2 3

* * *4
4 3 5
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t t
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  
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    
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where 1 2 3 4, , ,X X X X
 and 5X

 are constants. Eqs. (17)–(21) can be mathematical manipulated using Eq. (23) 

as 
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  
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  To evaluate the Eigen function, determination of the co-efficient of 1 2 3 4, , ,X X X X
and 5X

 in Eqs. 

(25)–(29) is equal to zero. Using the analyses Vaidyanathan et al. [13, 14], Eqs. (25)–(29) have been adopted to 

get  
4 3 2

1 2 3 4 5 0T T T T T       
 

(30) 

 

where 
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4.1  The case of stationary instability 

 

   For steady state, we have σ = 0 at the marginal stability. Then the Eq. (30) leads to get Eigen 

value Rsc for which solution exists. Using the analyses [14]-[15], the critical magnetic Rayleigh number Rsc has 

been obtained using  

sc

Nr
R

Dr


 
(31) 

where  
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'
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 When M1 is very large, one can gets Nsc (= M1Rsc ). 

sc

Nr
N

Dr


 
(32) 

where 

  
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



    


     



'

' '

 
  Here a is denoted as critical wave number ac. Analysis of the classical results is given below: 

  Assuming 
'
3 11, 1, 0,N N   

 and 5 0N '

 in Eq. (32), one get 

  

2 2 3 2 1 1
4 4 5 6

2 2 1 2 2
5 5 3

( ) (1 )

(1 ) 1 1 / ( )
sc

sa a M M M M R
N

a M M a M

 

  

 



   


   
 

(33) 

 

which is an expression for Nsc of Vaidyanathan et al. [13].  

 Moreover, if 
1

4 6, , , 0sM M R  
 in Eq. (33), it gives Nsc of the Finlayson [3], a single component fluid. 

 

4.2 The case of oscillatory instability 
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 Taking 1 1( 0)i   
 in Eq. (30), it leads to Roc has been derived using  
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1 2 1 1 5 2 3 1 2 2 6 3 4 1 5 2 6( ) ( ( ) ) ( ) /ocR T Y T Y T Y Y Y Y Y Y Y Y Y Dr         
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3. Discussion of Results 

  In this investigation, thermohaline convection in micropolar ferrofluid layer is studied. The fluid layer is 

heated from below and salted from above and the convective system is subjected to a transverse uniform 

magnetic field. The thermal perturbations and linear stability analysis are used in the study.  Here we consider 

the free boundary conditions. The magnetic numbers M1 and M2 are considered the values 1000 and 0, 

respectively. M3 is taken from 5 to 25 (Vaidyanthan et al. [14]) and   ranges from 0.05 to 0.11 (Vaidyanthan et 

al. [14]) and Rs taken from -500 to 500. The magnetization parameters M4 and M6 are taken to be 0.1 and M5 = 

0.5 (Vaidyanthan et al. [16]). Further, N1, 
'

3N  and 
'

5N  are taken to be non-negative values which is presented by 

Eringen [21] and he assumed the clausius-Duhem inequality. Pr is taken as 0.01.  

         The variation of  Nsc with the coupling parameter N1 is depicted in Fig. 2 (a) and (b). It is observed from 

the Fig. 2 (a) that the convective system gives stabilizing behavior, when increasing values of M3 and RS. Due to 

the increasing value of N1 from 0 to 1 and RS from -500 to 500 on the system, Nsc gets the highest values and the 

system has more stabilizing effect. But, an increasing of M3 from 5 to 25, the system shows the stabilizing effect 

and it is less pronounced. M3 analyzed for destabilizing behavior always [13-14, 16-17]. But, introducing of N1 

on M3, the system gets stabilizing effect. Fig. 2 (b) represents the plot of  Nsc versus N1 for different .  This 

figure shows that N1 has the stabilizing behavior for increasing value of .  This is because, the greater the mass 

and heat transports and more buoyancy energy, which contributes to thermal instability. Also, it is shown from 

the Fig. 2 (c) that the increase in N1 stabilizes the system for increasing of  and RS. Also, in the presence of RS 

= 500, ac is close to zero. In this moment, the system has an equilibrium state. 

  Figs. 3 (a) and (b) display the variation of Nsc versus spin diffusion parameter 3 'N
 for increasing of RS 

and M3 and ,  respectively. In Fig. 3 (a), we observe that Nsc decreases with increasing of 3 ',N
  which leads to 

destabilize the system. Moreover, when RS = 500, Nsc gets zero value. Therefore, the system has a null effect. 

From Fig. 3 (b), it is seen that as 3 'N
  increases from 2 to 8, there is a decrease in Nsc indicating destabilization 

for different .   Fig. 3 (c) shows the variation of ac versus 3 'N
  for various ,  RS and M3. When   increases 

from 0.05 to 0.1, RS increases from – 500 to 500 and M3 increases from 5 to 25, there is a decrease in ac. It is 

clear that there is a destabilization on the system which is not much pronounced and when RS = 500, there is an 

oscillation in ac.   

 Figs. 4 (a) and (b) show the variation of Nsc versus micropolar heat conduction parameter 5 'N
 for 

different M3,   and. It is clear from the Fig. 4 (a) that 5 'N
 leads to an increase in Nsc. Therefore, 5 'N

 has a 

stabilizing effect. It is very clear from the Fig. 4 (b) that increase in 5 ',N
 it is stabilizing behavior for various RS. 

Fig. 4 (c) represents the critical wave number ac versus the 5 'N
 for various physical parameter ,  RS and M3. In 

this figure 5 'N
 shows a stabilizing behavior. In such situation also the system ha no effect when RS = 500.                
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 The increase in non-buoyancy magnetization parameter M3 is obtained to cause large destabilization, 

because both thermal and magnetic mechanisms favor destabilization. This can be studied from Figs. 5 (a) and 

(b) in which the increase in M3 and ,  decrease in Nsc and ac, respectively.  

 From Fig. 6 (a), it is seen that an increase in RS, decrease in Nsc. An increase of RS would means that the 

system is salted from above. Also, when RS = 500 and   (=0.05, 0.07, 0.09), the Nsc gets small values. But for 

the value   = 0.11, suddenly Nsc gets highest value. In this moment, the convective system gets stabilizing 

effect. Fig. 6 (b) shows the variation of ac versus RS for different .  When RS increases from -500 to 500, there is 

a decrease in ac promoting instability. When the highest value of RS (=500) the system tends to the same effect. 

That is, the system converges to the small values. But, when the highest values of   (=0.11), the system has an 

equilibrium position. 

 

4. Conclusion 

  In the present analysis, the results of a theoretical study on thermohaline convection in a micropolar 

ferrofluid are considered with free boundary conditions. We conclude that the effect of non-buoyancy 

magnetization M3, salinity effect RS, spin diffusion parameter 3 'N
 have destabilizing behavior and the effect of 

coupling parameter N1 and the micropolar heat conduction parameter 5 'N
 have a stabilizing effect due to the 

microrotation on the onset of convection. 
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Fig.  2 (a). Variation of Nsc versus N1 for different M3 and 

RS, 3 5' 2, ' 0.2N N 
 and
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Fig. 2(b). Variation of Nsc versus N1 for different 

, 3 5' 2, ' 0.2,N N 
 M3 = 5 and  RS = -500. 
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Fig.  2 (c). Variation of ac versus N1 for different RS  and ,  3 5' 2, ' 0.2N N 
and M3 = 5. 
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Fig.  3 (c) – Variation of ac versus 3 'N
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