REGULAR NUMBER OF SUBDIVISION OF LINE GRAPH OF A GRAPH

Kalshetti Swati Mallinath ${ }^{(1)}$ and Vishwas ${ }^{(2)}$
Department of Mathematics, Sharnbasva University, Kalaburagi
Email id: swati28.kalshetti@gmail.com and Email id: vishwasrmath@gmail.com

Abstract

The regular number of subdivision of line graph is the minimum number of subsets in to which the set of edges of $L[S(G)]$ are partitioned such that subgraph induced by all the subset is regular and is denoted as $r_{L S}(G)$. Here we introduced few results on $r_{L S}(G)$ expressed in terms of components of G.

Keywords: : Line Graph, Regular Graph, Subdivision Graphs, Regular number of Subdivision of Line Graphs.
Mathematics Subject Classification: 05C76.

1. Introduction

Here we take into account a simple, finite, non-trivial graphs. Usually p and q gives the count of vertices and edges of a G and the maximum degree of a vertex in G is written as $\Delta(G)$.For any real number $x,\lceil x\rceil$ denotes the smaller integer not less than x and $\lfloor x\rfloor$ denotes the greatest integer not greater than x.A vertex v is called cutvertex if removing it from G increases the number of components 'A graph G is called trivial if it has no edges. The maximum distance between any two vertices in G is called the diameter, denoted by $\operatorname{diam}(G)$. Moreover a connected acyclic graph is said to be tree. A leaf of an unrooted tree is a node of vertex with degree 1.A vertex of a graph is said to be pendant if its neighborhood contains exactly one vertex. The parameters which are not defined in this paper possibly found in [3]. The concept of Regular Number of a Graph was studied Ashwini Ganesan and Radha R Iyer in [1]. The concept of Line graphs of Subdivision Graphs was studied by Sunilkumar M Hosmani in [11].

2. MAIN RESULTS:

Theorem 1: For any Wheel W_{p} for $p \geq 4$

$$
\begin{array}{ll}
r_{L S}\left(W_{p}\right)=2 & \text { for } p=4 \\
r_{L S}\left(W_{p}\right)=3 & \text { for } p>4
\end{array}
$$

Proof: For any wheel $W_{p}, p \geq 4$, we discuss with below two cases for $p=4$ and $p>4$ Case1: For a wheel W_{p}, if $p=4$, Then we have the edge set of subdivision of W_{p} as $\mathrm{S}\left[W_{4}\right]=E_{1} \cup E_{2}$ where $E_{1}=\left\{e_{1}, e_{2}, e_{3}, \ldots \ldots \ldots . ., e_{6}\right\}$ the set of edges lies in the interior on embedding in any plane (see fig 1(a)) In $L\left[S\left(W_{4}\right)\right], E_{1} \cup E_{2}=\mathrm{V}\left[L\left(S\left(w_{4}\right)\right)\right]$.
Now we have minimum edge partition of
$L\left[S\left(w_{4}\right)\right]$, is $F_{1}=\left\{\left(e_{1} e_{1}^{\prime}, e_{1}^{\prime} e_{6}, e_{6} e_{1}\right),\left(e_{2}^{\prime} e_{3}^{\prime}, e_{3}^{\prime} e_{6}^{\prime}, e_{6}^{\prime}, e_{2}^{\prime}\right),\left(e_{2} e_{3}, e_{3} e_{4}^{\prime}, e_{4}^{\prime} e_{2}\right),\left(e_{4} e_{5}, e_{5} e_{5}^{\prime}, e_{5}^{\prime} e_{4}\right)\right\}$ and $F_{2}=\left\{\left(e_{1} e_{2}\right),\left(e_{3} e_{4}\right),\left(e_{4} e_{5}\right),\left(e_{5}, e_{6}\right),\left(e_{1}^{\prime} e_{2}^{\prime}\right),\left(e_{3}^{\prime} e_{4}^{\prime}\right),\left(e_{5}^{\prime} e_{6}^{\prime}\right)\right\}$,
where $\left\langle F_{1}\right\rangle$ has a 2-regular and $\left\langle F_{1}\right\rangle$ has 1-regular. Clearly $r_{L S}\left(w_{4}\right)=\left|F_{1}, F_{2}\right|=2$ (see fig 1(b))

Figure 1(a)

Figure 1 (b)
Case 2: For a wheel $W_{p}, p \geq 4$, we have the subdivision of w_{p} as $S\left(W_{p}\right)$ has the edge set such as $\mathrm{E}\left[S\left(W_{p}\right)\right]=$ $E_{1} \cup E_{2} \cup E_{3}$.
Now the edge set $E_{1}=\left\{e_{1}, e_{2}, e_{4}, e_{5}, e_{6}, \ldots \ldots \ldots \ldots \ldots, e_{m-1}, e_{m}\right\}$;
$E_{2}=\left\{e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}, e_{4}^{\prime}, e_{5}^{\prime}, e_{6}^{\prime} \ldots \ldots \ldots \ldots \ldots ., e_{m-1}^{\prime}, e_{m}^{\prime}\right\}$ and
$E_{3}=\left\{e_{1}^{\prime \prime}, e_{2}^{\prime \prime}, e_{3}^{\prime \prime}, e_{4}^{\prime \prime}, e_{5}^{\prime \prime}, e_{6}^{\prime \prime}, \ldots \ldots, e_{m-1}^{\prime \prime}, e_{m}^{\prime \prime}\right\}$

Figure 2 (a)
See fig 2(a). In $\left.\left[S\left(w_{p}\right)\right], V\left[L\left(s_{w p}\right)\right)\right]=E_{1} \cup E_{2} \cup E_{3}$.
Now $F_{1}=\left\{e_{1} e_{2}, e_{3} e_{4}, e_{5} e_{6}, e_{7} e_{8}, \ldots, e_{m-1} e_{m}, e_{1}^{\prime} e_{1}^{\prime \prime}, e_{2}^{\prime} e_{2}^{\prime \prime}, e_{3}^{\prime} e_{3}^{\prime \prime}\right.$.,$\left.e_{m-1}^{\prime} e_{m-1}^{\prime \prime}\right\}$
$F_{2}=\left\{e_{1} e_{1}^{\prime} e_{m}, e_{2} e_{2}^{\prime} e_{3}, e_{4} e_{3}^{\prime} e_{5}, \ldots \ldots ., e_{m-1} e_{m-1}^{\prime} e_{m-2}\right\}, F_{3}=\left\{e_{1}^{\prime \prime}, e_{2}^{\prime \prime}, e_{3}^{\prime \prime}, \ldots \ldots ., e_{m-1}^{\prime \prime}\right\}$ (see fig 2(b))
where each component of F_{1} is K_{2} and is 1-regular .For the set F_{2}, each component is K_{3} and is 2-regular For the set F_{3}, the $\left\langle F_{3}\right\rangle$ is a complete graph K_{p} and is $p-1$ regular.
Clearly $\quad r_{L s}\left[w_{p}\right], p>4=\left|F_{1}, F_{2}, F_{3}\right|=3$.
$L\left[S\left(W_{p}\right)\right]:$ for $p \geq 5$

Figure 2 (b)
Theorem 2: For complete graph k_{p} with $p \geq 3$ vertices, $r_{S L}\left(k_{p}\right)=2$,
Proof: For $p=2, S\left[K_{2}\right]=K_{1,2}$ and $L\left[S\left(K_{2}\right)\right]=K_{2}$ Hence $r_{L S}\left(K_{2}\right) \neq 2$. For $p=3, S\left(K_{3}\right)=C_{6}$ and $r_{L S}\left(C_{6}\right)=2$. For $K_{p}, p \geq 5$ we have $\frac{p(p-1)}{2}$ edges. Let $V\left[K_{p}\right]=\left\{v_{1}, v_{2}, v_{3}, \ldots ., v_{p}\right\}$ and $V\left[S\left(k_{p}\right)\right]=V\left[K_{p}\right] \cup\left\{\frac{p(p-1)}{2}\right\}$, where degree of each vertex in $\left\{\frac{p(p-1)}{2}\right\} \in V\left[S\left(k_{p}\right)\right]$ is two (see figure 1 (a)). Since the number of edges incident to each vertex of $v_{i} \in V\left(K_{p}\right) \subseteq V\left[S\left(K_{p}\right)\right]$ is $p-1$ Now in $L\left[S\left(w_{p}\right)\right]$ these edges form an induced sub graph k_{p-1} The number of complete induced subgraphs K_{p-1} are p suppose $H=E\left[L\left(S\left(w_{p}\right)\right)\right]-E\left[p . K_{p-1}\right], p \geq 5$, then each component of H is K_{2} which are edge disjoint subgraphs. Hence $F_{1}=\left\{p . k_{p-1}\right\}$ and $F_{2}=\{p(p-1)\}$ where each component of F_{1} is K_{p-1} also each component of F_{2} is K_{2} (see fig 1 (b)).
Hence $\mathrm{r}_{L s}\left(K_{p}\right)=\left|F_{1}, F_{2}\right|=2$.

Figure 1 (a)

Figure 1 (b) copies of k_{p-1}
Theorem 3: For any star $K_{1, p}$ with $\mathrm{p} \geq 2$ vertices $r_{L S}\left[K_{1, p}\right]=2$.
Proof: Let $G=K_{1, p}, p \geq 2$ and $v=\Delta(G)$ in $K_{1, p}$. Now the edge set of $K_{1, p}$ be $v v_{1}, v v_{2}, v v_{3}, \ldots \ldots . v v_{m}$. In $S\left[K_{1, p}\right]$ edge set be $\left\{v v_{1}^{\prime}, v_{1}^{\prime} v\right\},\left\{v_{2} v_{2}^{\prime}, v_{2}^{\prime} v_{2}\right\}, \ldots \ldots \ldots .,\left\{v v_{m}^{\prime}, v_{m}^{\prime} v_{m}\right\}$
such that in each set the edges are consecutive edges. Now the $E\left[S\left(K_{1, p}\right)\right]=\left\{v v_{1}^{\prime}=e_{1}^{\prime}, v_{1}^{\prime} v_{1}=e_{1}, v v_{2}^{\prime}=\right.$ $e 2, v 2, v=e 3, \ldots \ldots, v v m,=e m, v m, v m=e m$.
In forming $L\left[S\left(K_{1, p}\right)\right], V\left[L\left(S\left(K_{1, p}\right)\right)\right]=\left\{e_{1}^{\prime} e_{1}, e_{2}^{\prime}, e_{2}, e_{3}^{\prime}, e_{3}, \ldots \ldots, e_{m}^{\prime}, e_{m}\right\}$.
Now in $L\left[S\left(K_{1, p}\right)\right.$, the set $S=\left\{e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}, \ldots \ldots, e_{m}^{\prime}\right\}$
gives $\langle S\rangle$ as K_{m} which is regular. Hence $F_{1}=\left\{e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}, \ldots ., e_{m}^{\prime}\right\}$ and $F_{2}=\left\{e_{1}^{\prime} e_{1}, e_{2}^{\prime} e_{2}, e_{3}^{\prime} e_{3}, \ldots . ., e_{m}^{\prime} e_{m}\right\}$,
Where $e_{1}^{\prime} e_{1}=e_{2}^{\prime} e_{2}=e_{3}^{\prime} e_{3}=K_{2}$ Hence $r_{L S}\left(K_{1, n}\right)=\left|F_{1}, F_{2}\right|=2$.
Theorem 4: For any wheel w_{p}, with $p \geq 4$ vertices, $r_{L S}\left(W_{p}\right) \leq r_{L}\left(W_{p}\right)$.
Proof: Let $v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots \ldots \ldots . . v_{p}$ be the vertex set of W_{p} in which $\Delta\left(W_{p}\right)=v_{p}$ and $\operatorname{deg} v_{i}=3$,
$1 \leq i \leq p-1$ suppose $e_{1}, e_{2}, e_{3}, \ldots, e_{p-1}, e_{1}^{\prime}, e_{2}^{\prime}, \ldots ., e_{p-1}^{\prime}$ be the edges of W_{p}, Such that $e_{i}=v_{i} v_{i+1}, 1 \leq i \leq p-$ $2, e_{p-1}=v_{1} v_{p-1}$ and $e_{i}^{\prime}=v_{j} v_{p}$ for $1 \leq i \leq p-1 \operatorname{in} L\left[W_{p}\right],\left\{e_{1}, e_{2}, e_{3}, \ldots \ldots \ldots, e_{p-1}, e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}, \ldots \ldots \ldots . ., e_{p-1}^{\prime}\right\}=$ $V\left[L\left(W_{p}\right)\right]$ which corresponds to the $\mathrm{E}\left[W_{p}\right]$. Let $F_{1}=\left\{e_{1}, e_{2}, e_{3}, \ldots \ldots \ldots \ldots, e_{p-1}, e_{p-2}, e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}, \ldots \ldots \ldots, e_{p-2}^{\prime}, e_{p-1}^{\prime}\right\}$ in whichdeg $\left(e_{i}\right)=4=\operatorname{deg}\left(e_{j}^{\prime}\right), \forall e_{i} e_{j} \in F_{1}$ and $\left\langle F_{1}\right\rangle$ is 4-regular.Similarly for
$F_{2}=\left\{e_{1}^{\prime}, e_{3}^{\prime}, e_{5}^{\prime}, \ldots \ldots ., e_{p-1}^{\prime}, e_{2}^{\prime}, e_{4}^{\prime}, e_{6}^{\prime}, \ldots \ldots \ldots, e_{p-6}^{\prime}, e_{p-3}^{\prime}, e_{1}^{\prime}\right\} ; \forall e_{k}^{\prime} \in F_{2}, \operatorname{deg}\left(e^{\prime} k\right)=p-4$;
$1 \leq k \leq p-3$ then $\left\langle F_{2}\right\rangle$ is $p-4$ regular. Hence $r_{L}\left(W_{p}\right)=\left|F_{1}, F_{2}\right|=2$.
For the graph W_{p} and by Theorem 1
$r_{L S}\left(W_{p}\right) \leq r_{L}\left(W_{p}\right)$.
Theorem 5: For any non-trivial tree $T, r_{L S}(T) \leq \Delta(T)$.
Proof: Suppose T be a non trivial tree T, then T has maximum degree vertex v such that $\operatorname{deg}(v)=\Delta(T)$. Let $A=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots \ldots \ldots, v_{n}\right\}$ be the intermediate vertices and $v \notin A$.Hence $\operatorname{deg}\left(v_{1}\right)<\operatorname{deg}(v) \forall v_{i} \in A, 1 \leq$ $i \leq n$ and $V(T)=A \cup\{v\}$. In $S[T], E[S(T)]=2 q(T)=V[L(S(T))]$. Now in $L[S(T)]$, each block is a complete induced sub graph of $L[S(T)]$. Since $\operatorname{deg}(v)=\Delta(T)=\Delta[S(T)]$.
Now we discuss the following cases:
Case1: Suppose the degree of each vertex in A have similar degree such that $\operatorname{deg}\left(v_{i}\right)<\operatorname{deg}(v), \forall v_{i} \epsilon A$ and $v \in \Delta[S(T)]$, then in $L[S(T)]$ each block is complete .Let $\left\{B_{1}, B_{2}, \ldots . ., B_{n}\right\}$ be the block set which are complete r regular, $1 \leq r \leq n$ and denote it as $F_{1}=\left\{B_{1}, B_{2}, \ldots \ldots \ldots \ldots, B_{n}\right\}$. Now the edges which are incident to v forms a complete block B_{n+1} with $r+1$ regular.Hence $F_{2}=\left\{B_{n+1}\right\}$. Since T is a tree, in $L\{S(T)\}$, the set $C=$ $\left\{B_{1}^{\prime}, B_{2}^{\prime}, B_{3}^{\prime}, \ldots \ldots \ldots \ldots, B_{m}^{\prime}\right\}$ where each block is complete and is K_{2}. Thus the minimum regular partition of $L[S(T)]=\left|F_{1}, F_{2}, F_{3}\right|=3$.
Clearly $r_{L S}(T)<\Delta(T)$.
Case2: Suppose the degree of each vertex in $\mathrm{A} \cup\{v\}$ is alike then in $S(T)$ they preserve the same degree and $N\left(v_{j}\right)=v_{k}, \forall v_{j} \in A \cup\{v\} ; v_{k} \in V[S(T)]$ such that $\operatorname{deg}\left(v_{k}\right)=2$. In $L[S(T)] ; F_{1}=\left\{B_{1}, B_{2}, \ldots \ldots \ldots \ldots, B_{n}, B_{v}\right\}$ be the block set and each is r-regular complete disjoint sub graphs of $L[S(T)]$. Let $F_{2}=\left\{B_{1}^{\prime}, B_{2}^{\prime}, B_{3}^{\prime} \ldots \ldots \ldots, B_{K}^{\prime}\right\}$ be
the set of blocks that forms bridges of $L[S(T)]$ or end blocks which are K_{2} of $L[S(T)]$. Hence the minimal edge partition of $L[S(T)]$ are F_{1} and F_{2} thus $r_{L S}(T)=\left|F_{1}, F_{2}\right|=2$ and gives $r_{L S}(T)=\Delta(T)$.
Case3: Suppose $\operatorname{deg} v_{i} \leq \operatorname{deg} v_{2} \leq, \ldots \ldots \ldots . \leq \operatorname{deg} v_{n}$ for the set $A=\left\{v_{1}, v_{2}, \ldots \ldots \ldots, v_{n}\right\}$ and $\operatorname{deg} v=\Delta(T)$ then in $S(T), \forall v_{i} \epsilon A \cup\{v\}, N\left(v_{i}\right)=v_{j}, 1 \leq j \leq A \cup\{v\}$, Thus $\operatorname{deg}\left(v_{j}\right)=2$.
In $L[S(T)]$ each block is complete sub graph of $L[S(T)]$ with proper that the set of blocks in $L[S(T)]$ are $k_{2}, k_{3}, k_{4}, k_{5}, \ldots \ldots \ldots, k_{p}$.
The minimal edge partition of $L[S(T)]$ is denoted as $F_{1}=\left\{K_{2}\right\}, F_{2}=\left\{K_{3}\right\}, \ldots \ldots \ldots \ldots, F_{p}=\left\{k_{p}\right\}$ Hence $r_{L s}(T)=$ $\left|F_{1}, F_{2}, \ldots \ldots \ldots \ldots, F_{p}\right|=\Delta(T)-1$ Thus $r_{L s}(T)<\Delta(T)$. By considering all the three cases, we have $r_{L s}(T) \leq$ $\Delta(T)$.

Theorem 6: For any graph G, for $p \geq 4 r_{L S}(G) \leq p-2$.
Proof: Suppose $p \leq 3$ for $G=K_{2}, L[S(G)]=G$. Then $r_{L S}(G)=1>p-2$, a contradiction for $p=3$, then G is either $K_{1,2}$ or C_{3} Assume $G=K_{1,2}$. Then $L[S(G)]=p_{4}$. clearly $r_{L s}(G)=2>p-2$. For $=C_{3}, r_{L s}\left(C_{3}\right)=2>p-$ 2 again a contradiction. Hence $p \geq 4$.we consider the following cases:
Case1: Suppose $G=T$ and $B=\left\{v_{1} v_{2}, v_{3} \ldots \ldots \ldots, v_{n}\right\}$ be the set of non-end vertices with $\operatorname{deg}\left(v_{1}\right) \geq \operatorname{deg}\left(v_{2}\right) \geq$ $, \ldots \ldots \ldots \ldots, \geq \operatorname{deg}\left(v_{n}\right)$. Again we have the following sub cases.
Sub case 1.1: Assume $\operatorname{deg}\left(v_{1}\right)=\operatorname{deg}\left(v_{2}\right)=\ldots \ldots=\operatorname{deg}\left(v_{n}\right)$ Let $C=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots, v_{m}\right\}$ be vertex set with $\operatorname{deg}\left(v_{1}\right)=2,1 \leq i \leq m$ in $S(G)$ In $L[S(G)]$ each block is complete with same regularity. Further the edges incident to the vertices of C are exactly two, thus these edges gives K_{2} as an induced sub graph with $m K_{2}$ copies in $L[S(G)]$.Hence minimal regular edge partition $F_{1}=\{B\}, F_{2}=\left\{m K_{2}\right\}$.
Thus $\mathrm{r}_{L S}(G)=\left|F_{1}, F_{2}\right| \leq p-2$ gives $\mathrm{r}_{L S}(G) \leq p-2$.
Sub case 1.2: Assume $\operatorname{deg}\left(v_{1}\right)>\operatorname{deg}\left(v_{2}\right) \ldots \ldots \ldots \ldots \ldots \ldots \operatorname{deg}\left(v_{n}\right)$ for the set B then in $[S(G)]$, the edges that are incident to the corresponding vertices of B gives the different edge disjoint induced regular subgraphs. Hence the minimal edge regular partitions are as
$\left\{F_{1}, F_{2}, F_{3}, \ldots \ldots \ldots \ldots, F_{n}\right\}$ with respect to these the set $\{B\}$. Further as in sub case 1.1, the remaining edge disjoint induced subgraphs gives the partition $F_{2}=\left\{m K_{2}\right\}$
Thus $\mathrm{r}_{L S}(G)=\left|F_{1}, F_{2}\right| \leq p-2$ gives
$r_{L S}(G) \leq p-2$.
Case2:Suppose $G \neq T$. Then it produces more than one block that does not belongs to any edge .Now for $L[S(G)]$, the same argument will exists as in the above cases. Hence the partition $\left\{F_{1}, F_{2}, F_{3}, \ldots, F_{m}\right\}$ be the edge partition of $L[S(G)]$, such that $\left|\left\{F_{1}, F_{2}, F_{3}, \ldots, F_{m}\right\}\right| \leq p-2$.

Theorem 7: For every r-regular graph G with $r \geq 2, \mathrm{r}_{L S}(G)=1$.
Proof: For any graph G, if G is r-regular, then $L(G)$ is $\mathrm{r}+1$ regular. If G is r-regular and $S(G)$ is not regular, but edge degree of each is r-regular. Now in $L[S(G)], E[S(G)]=V[L(G)]$, since edge degree of each edge in $S(G)$ is r, then $\operatorname{deg}\left(v_{i}\right)=r ; \forall v_{i} \in L[S(G)]$.Hence by theorem1, $\mathrm{r}_{L S}(G)$ has exactly one partition of edges .Clearly $r_{L S}(G)=1$.

Theorem 8: For any graph $G=\mathrm{P}_{\mathrm{p}}$ with $p \geq 3$ vertices, $r_{L s}\left(\mathrm{P}_{\mathrm{p}}\right)=2$.
Proof: Suppose $G=\mathrm{P}_{\mathrm{P}}$ with $p \geq 3$ then $E\left[\mathrm{P}_{\mathrm{p}}\right]=p-1$. In $S\left(\mathrm{P}_{\mathrm{p}}\right), E\left[S\left(\mathrm{P}_{\mathrm{p}}\right)\right]=2(p-1)=V\left[L\left[S\left(\mathrm{P}_{\mathrm{p}}\right)\right]\right]$. Since $E[L(G)]=2(p-1)-1=2 p-3$, we have $E[L(G)]=\left\{e_{1}, e_{2}, e_{3}, e_{4}, \ldots \ldots \ldots \ldots \ldots, e_{2 p-3}\right\}$ which gives $F_{1}=$ $\left\{e_{1}, e_{3}, e_{5}, \ldots \ldots \ldots \ldots \ldots, e_{2 p-3}\right\}$ and $F_{2=}\left\{e_{2}, e_{4}, e_{6}, \ldots \ldots \ldots \ldots \ldots \ldots . e_{2(p-1)}\right\}$.
Clearly $r_{L s}\left(P_{p}\right)=\left|F_{1}, F_{2}\right|=2$ with $p \geq 3$.

Conclusion:

The beginning of the regular number of some families of Line subdivision of graphs was carried out, and few results and bounds were discussed. we have defined and verified some results of it. Now we conclude that the above theorems are of some trends in Regular number of line subdivision of a graph are cycle or complete block graphs and it's satisfied for isomorphic.

Acknowledgement:

We sincerely thank Dr.M.H Muddebihal for encouragement and constant support in completing the Research work. Author's wishes to thank Dr.Laxmi Maka, Dean Sharnbasva University, klb as she have been a source of constant inspiration throughout our research work.

References

(1.) Ashwin Ganesan and Radha R. Iyer, 'The regular number of a graph' Journal of Discrete Mathematical Sciences and cryptography volume 15, Issue 2-3, 149-157 (2012)
(2.) C.Berge, Theory of Graphs and its Applications, Methuen, London, (1962)
(3.) F.Harary, Graph Theory, Addison - Wesley Reading mass, (1969)
(4.) H.Aram, S.M.Sheikholeslami, O. Favaron, 'Domination subdivision numbers of Trees', Discrete Mathematics vol 309, Issue 4, pages 622-628 (2009)
(5.) M.H.Muddebihal and Kalshetti.Swati.M,' Connected Lict Domination in graphs', Ultra Scientist vol 24(3) A, 459-468 (2012).
(6.) O, Ore, Theory of Graphs, Amer. Math.soc.colloq. publ. 38, providence, RI (1962).
(7.) R.B.Allann\& R. Laskar, On Domination and some related topics in Graph Theory, proc ${ }^{9 t h}$ S.E. conf on combinatorics, Graph Theory and computing .Boca Ralton, Utilitas Mathematica, Winnipeg (1978),43-48.
(8.) R.P.Gupta, Indepedence and covering numbers of Line Graphs and Total Graphs, proof Techniques in Graph Theory (ed.F.Harary, Academic press, Newyork, (1969), 61-62
(9.) S. Arumugam and S. Velammal,' Edge Domination in Graphs', Taiwanese J. of Mathematics, 2(2), 173-179 (1998)
(10.) S.R. Jayaram, 'Line domination in graphs', Graphs and combinatorics, 3 (1987),357-363
(11.) Sunilkumar M Hosamani, on 'Topological properties of the Line graphs of subdivision Graphs of certain Nanostructure - II. Global Journal of Science Frontier Research: F Mathematics and Decision Sciences Vol, 17, Issue 4 version 1.0 (2017)
(12.) Susilawati, EdyTribBaskoro, RinoviaSimanjuntok,'Total Vertex-Irregularit Labellings for Subdivision of several classes of Trees’, 1877-0509 © 2015 published by Elsevier B.V doi:10.1016/j.procs.2015.12.085
(13.) T.W,Haynes, S.T.Hedetniemi and P.J.Slater, 'Fundamentals of Domination in Graphs', MarcelDekker, Inc, Newyork, (1998)
(14.) V.R.Kulli and B.Janakiram, 'The maximal domination number of a graph', Graph Theory notes of Newyork, Newyork Academy of Science, 33 (1997), 11-13.
(15.) V.R. Kulli,B.janakiram and Radha R Iyer, Indian Journal of Discrete Mathematical Sciences \&Cryptography vol, 4 (2001), No1, PP. 57-64© Academic Forum

