
Turkish Journal of Computer and Mathematics Education Vol.12 No.1 (2021), 697-702

 697

Research Article

Odessa-512: Hybrid New Hash Function

Mr. Touraj Ostovari
a

aBachelor's degree in Computer Software Engineering from Tabriz Technical and Vocational University,

Toraj.ostovari@gmail.com

Article History: Received: 14 July 2020; Accepted: 2 January 2021; Published online: 5 February 2021

Abstract: Nowadays, security is an important matter in all computer fields. The presence of computers of different sizes in our
lives has multiplied the importance of this subject. For example, the security problem of MD5 [1] is not negligible, and it must
be replaced with a new hash algorithm as soon as possible. A lower computational speed is one of the major issues of the hash
algorithm of this study because we used multiple other hash algorithms to prevent collisions alongside the BEL [2] algorithm
for creating random bits and the divide and conquer method for moving and dividing the bit blocks during the calculations.
This hashing model completely solves the common collisions in MD5 and SHA1 [3], which we will discuss later on. This
model is on par with Keccak-512 and Blake-512 in terms of the Avalanche effect. Also, the TMTO and Birthday attacks [4]
were implemented on this model, and it successfully passed the no collision security test.

Keywords: Hash, Odessa Hash Function, One Way Function, Blake, Keccak.

Introduction

The one-way function model of this study uses the hash byte output addition as the initial value for producing

random bytes using the BEL algorithm. The current algorithm is most useful for daily usages such as the MD5

because it solves all the collisions from MD5 and increases the safety of current hash methods. The current hash

calculations use simple logical operations such as XOR and AND1. We took inspiration from the Merkle Damgard

model for our compression, and use the divide and conquer method in a part of this paper [6][7]. We present the

implementation parts of this article in a code-based manner without any mathematical proofs. The current one-

way function model is simulated using C#, and you can access its source code. The collision security results of

this paper are based on experimental and security results. We hope this article is useful for you and the future.

Implementation Method:

 Initialization:

- BitArray A = new BitArray(1024, true);

- BitArray B = new BitArray(1024, false);

- BitArray C = new BitArray(1024, false);

- BitArray D = new BitArray(1024, true);

- Long Sums;

- Long shift;

First, we define four 1024 array blocks. Blocks A and D have a Padding value of one (by default), while

blocks B and C have a Padding value of zero.

Then, the input string is read in the UTF8 format and written in the blocks from A to D in reverse. We read

and rewrite the blocks up to a maximum of 12 rounds if the user input text is larger than our 4096 block array. In

the meanwhile, we place the UTF8 character byte addition result in the Sums variable. The shift value is a variable

between 1 to 20 that reverts to 1 and goes through its incremental steps again whenever it reaches 20 during the

block initialization (fetching the user input information).

{ // Scope Begins here

SHA512 sha512 = SHA512.Create();

byte[] temp = sha512.ComputeHash(„User Input‟);

1 AND alone creates a one-way path [5].

Turkish Journal of Computer and Mathematics Education Vol.12 No.1 (2021), 697-702

 698

Research Article

for (int i = 0; i<temp.Length; i++)

 {

 Sums += (temp[i] * shift) + (long)Math.Pow(temp[i], 2);

 }

} //Scope Ends here

You can see in the semi-code above that we created a SHA512 function sample to perform the user input text

calculations and add the output bytes to the previously used Sums variable.

The following semi-codes perform the same operation for the Sums variable, but their only difference is their

simple mathematical equation.

{ // Scope Begins here

MD5 md5 = MD5.Create();

byte[] temp = md5.ComputeHash(„User Input‟);

 for (int i = 0; i<temp.Length; i++)

 {

 Sums += temp[i];

 }

} //Scope Ends here

{ // Scope Begins here

SHA1 Sha1 = SHA1.Create();

byte[] temp = Sha1.ComputeHash(„User Input‟);

 for (int i = 0; i<temp.Length; i += 2)

 {

 Sums += (temp[i] * shift) + (long)Math.Pow(temp[i], 3);

 }

} //Scope Ends here

{ // Scope Begins here

IHash hash = SHA3.CreateKeccak512();

HashResult r = hash.ComputeString(„User Input‟);

byte[] temp = r.GetBytes();

 for (int i = 0; i<temp.Length; i += 2)

 {

 Sums += (temp[i] * shift) + (long)(temp[i] + shift);

 }

} //Scope Ends here

 The Hash Function Calculations Stage

We compress the blocks similar to the Markle Damgard compressor. This is done using the following semi-

code:

for (int i = 1; i<= 24; i++)

Turkish Journal of Computer and Mathematics Education Vol.12 No.1 (2021), 697-702

 699

Research Article

 {

 Bit.lst.Length = 1024;

 Bit.BEL((Sums * i), (Sums * shift * i), 1023); // Initializing BEL Algorithm and

generates random 1024 (1023) bit

 A = A.And(Bit.lst).LeftShift(2); // A AND „Random generated bits of BEL Algorithm‟

Then 2 times logical left shift happens

 A = B.Xor(A).RightShift(1); // 1 time Logical Right Shift

 A = C.Xor(A);

 A = D.Xor(A);BitArray _C_ = new BitArray(1024, false);

 BitArray _D_ = new BitArray(1024, false);

 D = (BitArray)D.Clone();

 D = (BitArray)A.Clone();

 D = D.LeftShift(1); // 1 time Logical Left Shift

 A = (BitArray)_D_.Clone();

 A = A.RightShift(1); // 1 time Logical Right Shift

 C = (BitArray)C.Clone();

 C = (BitArray)B.Clone();

 C = (BitArray)C.LeftShift(9); // 9 times Logical Left Shift

 B = (BitArray)_C_.Clone();

 B = (BitArray)B.RightShift(9); // 9 times Logical Right Shift

}

As you can see, the block compression process goes on for 24 rounds, but the A and C blocks change their

places with the D and B blocks in every round while the logical shift occurs towards left or right.

Then, we will compress the A, B, C, and D block values in a method similar to the Markle Damgard model

using the XOR bit operator.

A = A.Xor(B).Xor(C).Xor(D);

 Divide and Conquer Stage

In this stage, the resulted block A is divided into two halves as follows:

BitArray A_ = new BitArray(512);

BitArray B_ = new BitArray(512);

In reality, 512 is our block length, and the halved block A values are inserted into the A_ and B_ halves.

 Final Calculation

Finally, we perform the simple BEL algorithm seeding formula for ten rounds (from one to ten) and use the

XOR operator on A_ and B_ block random bit results. Afterward, we XOR the A_ and B_ blocks in regards to

each other for ten rounds, similar to the Markle Damgard compressor.

 for (int i = 1; i<= 10; i++)

Turkish Journal of Computer and Mathematics Education Vol.12 No.1 (2021), 697-702

 700

Research Article

 {

Bit.lst.Length = 512;

Bit.BEL((Sums * shift * i), (Sums + shift * (long)Math.Pow(i, 10) * (long)Math.Pow(shift,

2)), 511);

A_ = A_.Xor(B_);

A_ = A_.Xor(Bit.lst);

B_ = B_.Xor(Bit.lst);

 }

A_ = A_.Xor(B_);

Examination:

In this section, we review the security problem and hash model of this system.

 TMTO & Birthday Attacks

The compressor hash model (one-way function) has successfully overcome a chain of 2,000 TMTO attacks

with more than 1 million hash outputs. These TMTO attacks include the Birthday Attack; therefore, our model is

immune against this type of attack.

 Collision in MD5 and SHA1

We present an example of an MD5 collision showing the Odessa hash's superiority compared to the MD5 hash.

For example, the MD5 hash has the same output for the following two images, but Odessa does not.

Figure 1.A simple image of an airplane

Figure 2. A simple image of a ship

Table 1. Table of Collision

Turkish Journal of Computer and Mathematics Education Vol.12 No.1 (2021), 697-702

 701

Research Article

Image Name Compressor Result (One-Way Function) Compressor

Name

Airplane 38DBB54A58771C86F96B8F5683421B8C226F93C6650EBFA2C48D6EBA97A

C2FEBF334D0C5B05C66B1EB9A5842DA9222F14F1EFB728D98FDBCDB065

F5590169BBB

Odessa-512

Ship 371F97B4D4A5C6A57121AB5858599E2B692AB8FCAA59EBD207022E2D77

F3E86FABEA887CB4F9C51216675F3EE677B238D5412E50FE8344323A36CA

9D4AD6E28A

Odessa-512

Ship 253DD04E87492E4FC3471DE5E776BC3D MD5

Airplane 253DD04E87492E4FC3471DE5E776BC3D MD5

You can download these images alongside the source code from the appendix.

Now, we want to analyze two files presented by Google to show the collision of SHA1.

Table 2. Table of Collision (Google Project)

File Name Compressor Result (One-Way Function) Compressor

Name

shattered-

1.pdf

07C218D4C4581BCC38E1995E5DB1ED1517A51D73AC4574A2706924F91891

DE153155B4549CC841E6155E78B9C5A33058E26C1FF5FB49F2E10C52289A

010DB50C

Odessa-512

shattered-

2.pdf

FB32CEAD1497A7A6089CFCE3E1F5B1A537B7E9E4004F4879C5FE0D6CE7

E64944DF8CBF9FDC3125AAA5C27092A16F2C4EBC831F1C0F1CDB28DB3

ACE6B95E29722

Odessa-512

shattered-

1.pdf

38762CF7F55934B34D179AE6A4C80CADCCBB7F0A SHA1

shattered-
2.pdf

38762CF7F55934B34D179AE6A4C80CADCCBB7F0A SHA1

We analyze the Avalanche effect in the following. The Avalanche value changes in the function output;

therefore, we tried to use similar inputs (least possible change) to better expose the quality of the current model.

Table 3. Table of avalanche effect changes

Input

String

Compressor Result (One-Way Function) Compressor

Name

116 123 66AD16BEE2DC257B3CFE91B7C6C06514D1D5814ED728E22739D481054

655607D0A6E6A892458BF13D535318384C3A9315909771BCE601D86A32B

3DD8605D3177

Odessa-512

132 AEA89DF1150DAB9B1112BEE1C0DD5F1CC0A40DA869F3AB4E9416B11

D933F101026B9FE2CEC9A825BDF054F247B0C36382A1A397B24823BA05

FBF855D97B99077

Odessa-512

119 123 8ae5f90863e7984d9db61a67a38907f81de3c60a48f032d7ad5c10fef3f5a30705ca

e8bb76d80bf92d3da9a7f970507254f46f1bbe22db1d2d3ae8582c9625a5

Keccak-512

132 b47f8ac1b3710912f9db1878a8eb8f370b4be589f619f6c7067ea39d08c0f69f20a

82d58ff48ef19492a2876630f25c79e17fb766979421fa07dee8c26dfbe8c

Keccak-512

121 123 bebabdca7fd8b26a157a7aeb0ea9e860669c80e5168085aca321c0fa2dd25e43210
c8e89784beffdad521347b3468037908d9eabaa458a49728c0769dace54ad

Black-512

132 4411051884fb5a322d2af81fabb3544a861388572569e363885d99c2ab911e9f2c

ad790a522d76463b6459ac17ccaa95efb949cfff91d29c898955dbd6db7891

Black-512

Conclusion:

As you can see, the current compressor (hash) function is on par with other modern models in terms of the

Avalanche effect while solving the problems from MD5 and SHA1. Therefore, it could be used as a replacement

for the MD5 and SHA1 functions.

Appendix:

Turkish Journal of Computer and Mathematics Education Vol.12 No.1 (2021), 697-702

 702

Research Article

The appendix file contains all images, documents, and source code.

https://mega.nz/file/AKgi1bzY#Mv0yw3jCDCfhl_ZqaV6rXfO0YdIp9ByILiR8kwKiyGY.

References

1. Mendel F., Rechberger C., Schläffer M. (2009) MD5 Is Weaker Than Weak: Attacks on Concatenated

Combiners. In: Matsui M. (eds) Advances in Cryptology – ASIACRYPT 2009. ASIACRYPT 2009.

Lecture Notes in Computer Science, vol 5912. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-

3-642-10366-7_9

2. K. M. M. Kumar and N. R. Sunitha, "Hybrid cryptographically secure pseudo-random bit generator,"

2016 2nd International Conference on Contemporary Computing and Informatics (IC3I), 2016, pp. 296-

301, doi: 10.1109/IC3I.2016.7917978.

3. http://shattered.io/

4. http://www.cs.haifa.ac.il/~orrd/HashFuncSeminar/Lecture3.pdf

5. Milad Jafari Barani &Favad Jalili, Cryptography Concepts, Second Print, Naghos Publication, Tehran,

2018.

6. EynollahJafarnezadGhomi, Data Structures in C, Eleventh Print, OlomRayaneh Publication, Tehran,

2013.

7. Mehrdad Tavana& Saeed Haratian, Algorithm Design Principles, Second Print, Parseh Publication,

Tehran, 2010.

8. Behrouz A. Forouzan, Cryptography and Network Security, First Edition, McGraw-Hill, 2007.

9. Henk C. A. van Tilborg and Sushil Jajodia, “Encyclopedia of Cryptography and Security”, Springer,

2011.

10. Bruce Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C, Second Edition,

John Wiley & Sons, 1996.

	Introduction
	References

