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Abstract: The primary objective of this research article is to present the mathematical and statistical aspects of linear models 

and their characteristic properties. Linear model is the most common modeling used in science. Actually linear models have 

many different meanings depend on the context. Linear model is often preferred than other model such as quadratic model 
because of its ability to interpret easily. In the other hand most of the real life cases have linear relationship .Modeling the 
cases using linear model will able us to determine the relative influence of one or more independent variables to the dependent 
variable. In the present talk an attempt has been made to propose the specific forms of simple and multiple linear regression 
models. In this conversation mathematical aspects of linear models have been extensively depicted. Different types of 

mathematical models are discussed here and the methods of fitting transformed models are proposed.Furthermore specific form 
of linear statistical model is presented and the crucial assumptions of general linear model are extensively discussed.At the last 
stage of this article the method of ordinary least squares estimation of parameters of a linear model has been proposed 

Keywords: Linear Regression Model, Response variable,Predictor,Discrete and continuous models, Biasedness,Non-

Stochastic data matrix 

 

1.Introduction  

Model refers to a set of functional or structural relationships between two or more characteristics. These 

characteristics may be either measuremental or non measuremental in nature. The measuremental characteristics 

which assume different values in a specified range are known as variables. Generally, a set of functional 

relationships between two or more variables may be expressed in terms of mathematical equations, which is 

called a mathematical model. This model may be either in the form of a set of linear equations (linear model) or 

in the form of a set of nonlinear equations (nonlinear model). By introducing a random error variable or a 

random disturbance term, the mathematical model becomes a statistical model or a regression model. Hence one 

may have either linear regression model or nonlinear regression model. 

Regression analysis is a statistical method to establish the relationship between variables. Regression analysis 

has a wide number of applications in almost all fields of science, including Engineering, Physical and Chemical 

Sciences; Economics, Management, Social, Life and Biological Sciences. In fact, regression analysis may be the 

most frequently used statistical technique in practice.  

 

Suppose that there exists a linear relationship between a dependent variable Y and an independent variable X. In 

the scatter diagram, if the points cluster around a straight line then the mathematical form of the linear model 

may be specified as  

i 0 1 iY X , i 1,2,...n.   
………….(1) 

where 0 is the intercept and 1  is the slope.  

Generally the data points in the scatter diagram do not fall exactly on a straight line, so equation (2.1.1) should 

be modified to account for this. Let the difference between the observed value of Y and the straight line 

 0 1X 
be an error  . It is convenient to think of   as a statistical error; that is, it is a random variable 

that accounts for the failure of the model to fit the data exactly. The error may be made up of the effects of other 

variables, measurement errors and so forth. Thus, a more plausible model may be specified as 

i 0 1 i iY X ,i 1,2,..., n.     
……(2) 

Equation (2) is called a Linear Regression Model or Linear Statistical Model. Customarily X is called the 

independent variable and Y is called the dependent variable. However, this often causes confusion with the 

concept of statistical independence, so we refer to X as the Predictor or Regressor variable and Y as the 

Response variable. Since the equation (1) involves only one Regressor variable, it is called a ‘Simple Linear 

Regression Model’ or a  ‘Two-Variable Linear Regression Model’. 
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A Three – variable Linear Regression Model may be written as 

i 0 1 1i 2 2i iY X X ,i 1,2,..., n       
………….(3) 

This linear regression model contains two regressor variables. The term linear is used because eq. (2.1.3) is a 

linear function of the unknown parameters 0 1, 
and 2.

 

In general, the response variable Y may be related to k regressor or predictor variables. The model 

i 0 1 1i 2 2i k ki iY X X ... X ,i 1,2,...n          
…….(4) 

is called a ‘Multiple Linear Regression Model’ with k independent variables. The parameters βj, j=0,1,2..,k are 

known as regression coefficients. This model describes a hyperplane in the k – dimensional space of the 

independent variables Xj’s. The parameter βj represents the expected change in the dependent variable Y per unit 

change in Xj, when all of the remaining predicted variables Xq’s (qj) are held constant. Thus, the parameters βj, 

j = 1,2,…,k are often known as ‘Partial Regression Coefficients. 

Multiple linear regression models are often used as empirical models or approximating functions. That is, the 

exact relationship between Y and X1, X2, …, Xk is unknown but over certain ranges of the independent variables, 

the linear regression model is an adequate approximation  to the true unknown function. 

 

 In practice, certain nonlinear regression models such as cubic polynomial models and response surface 

models may often still be analyzed by multiple linear regression techniques. For instance, consider  the cubic 

polynomial model 
2 3

i 0 1 i 2 i 3 i iY X X X ,i 1,2,...,n         
…………..(5) 

Let   X1 = X, X2 = X2 and  X3 = X3 then eq. (5) can be rewritten as 

i 0 1 1i 2 2i 3 3i iY X X X ,i 1,2,..., n         
…….(6) 

which is a multiple linear regression model with three independent variables 

Consider a model containing interaction effects as 

i 0 1 1i 2 2i 12 1i 2i iY X X X X ,i 1,2,..., n         
……..(7) 

Let  X3 = X1 X2 and β3 = β12 then eq (7) can be rewritten as 

i 0 1 1i 2 2i 3 3i iY X X X ,i 1,2,..., n         
…………………..(8) 

which is a multiple linear regression model with three regressors. Consider the second – order response surface 

model with interaction, 
2 2

i 0 1 1i 2 2i 11 1 22 2 12 1i 2i ii i
Y X X X X X X ,i 1,2,...,n             

……..(9) 

Let 

2 2

3 1 4 2 5 1 2 3 11 4 22X X ,X X ,X X X , ,       
and β5 = β12 then eq. (2.1.9) can be rewritten as a 

multiple linear regression model as follows: 

i 0 1 1i 2 2i 3 3i 4 4i 5 5i iY X X X X X ,i 1,2,..., n             
 

 

 

2. MATHEMATICAL ASPECTS OF LINEAR MODEL 

 The main purpose of mathematical modelling is to solve real practical problems. The success of 

mathematical modelling depends on getting things right from the start, and as in most other scientific 

endeavours, one is more likely to succeed if one adopts a methodical approach. In practice, it is found to 

complete the following steps. 

(i) Clarify the problem; 

(ii) List the factors; 

(iii) List the assumptions; and  

(iv) Formulate a precise problem statement 

An essential part of the mathematical modelling technique is to translate verbal statements about variables along 

with assumptions into precise mathematical relationships between the variables represented by symbols. Thus, 

the mathematical statements become amenable to manipulation by mathematical techniques. 

 

 For instance, the simplest model is obtained by assuming that Y is proportional to X. The corresponding 

mathematical statement is then Y   X or as a mathematical equation 0Y X
, where β0 is the constant of 

proportionality. Now, the graph of Y against X shows a straight line through the origin. 
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Another simplest model is the linear form 0 1Y X  
in which Y increases by β1 units for every unit 

increase in X and that 0Y 
 when X = 0. This also includes the situation where Y decreases as X increases. 

In that situation the parameter β1 is negative. 

Consider the situation where ‘Y decreases as X increases’ by inverse proportion 

01
Y or Y

X X


 

………………(10) 

It reveals that Y decreases more steeply with X that is the situation in the linear model. One may test the validity 

of this assumption by examining whether XY remains nearly constant. Another way is that if the plot of Ln Y 

against Ln X is a straight line of slope “-1”. 

 

 Thus, under mathematical modelling technique, first represent the variables by the mathematical symbols 

and then make the assumptions about the relationships among the variables. Further, translate the assumptions 

into mathematical equations or inequalities. 

One of the main uses of mathematical modelling is to predict the future development of the system. Such model 

relies on assuming that the rate of change of a variable Y is linked to or caused by some or all of the present 

value of Y, previous values of Y, values of other variables, the rate of change of other variables and time ‘t’. 

Here, the mathematical model describes how Y itself varies with time ‘t’. There are mainly two types of such 

mathematical models namely, 

(i) Discrete Models and (ii) Continuous Models 

DISCRETE MODELS: 

 For discrete models, one may write the form 

(ii)  

 n 1 n n 1Y f (Y ,Y ..., t)   
 It is usually known as a difference equation. The simplest type of difference equation is the first order 

linear constant coefficient equation which is given by 

n 1 0 1 nY Y   
 

A difference equation containing relationship between Yn+1 and Yn and no other Y values is known as a ‘First 

order difference equation. If the difference equation also involves Yn-1 or Yn+2, then it is said to be second order 

difference equation. 

 

 Sometimes, a linear difference equation may be in the form 

 

2

n 1 1 n 2 n 1 0Y Y Y n      
    ………………………………………(11) 

Linear difference equations involving more than one variable can be compactly expressed by using vectors and 

matrices.  

 

Simultaneous linear difference equations can be expressed in the form 

n 1 nY M Y 
 …………………………………………………..(12) 

where M is the co-efficient matrix; n 1Y   and nY
 are the vectors. 

 

 

 

The solution can be written as n o

n

Y M X
 …………………………...(13) 

CONTINUOUS MODELS 

 

 A variable, which is allowed to take any value within a range, is known as a continuous variable. One 

advantage of using continuous variables is that one may use powerful mathematical tools such as Calculus.  

 

 The linear models are the simplest continuous models. The simplest linear model relating two variables is 

characterized by mathematical equation of the form  

Y = β0 + β1X, by having a straight line graph. 

 

 Under linear interpolation, if  x1 and x2 are consecutive values of X and           x is some value between 

them, then the graph of f(x) may be approximating from  X = x1 to X = x2 by a linear model. 
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3. TYPES OF LINEAR MATHEMATICAL MODEL 

Linear Models with Several Independent Variables: 

 

 

 If the value of a dependent variable Y depends on the values of other variables X1,X2,…..,Xk  then a way 

of expressing the dependence through a linear model is of the form 

 

i 0 1 1i 2 2i k kiY X X ... X       
  …………………….........................(14)   

  

 Here Y changes by equal amounts for equal changes in any one of the independent variables. This model 

can be considered the generalization of the simple two- variable linear model 

Simultaneous Linear Models: 

 Sometimes there may be two or more dependent variables, all of which are modelled as linear functions of 

independent variables. Here, some dependent variables can be considered independent variables in some linear 

functions (or equations) of the simultaneous linear equations system. This system of simultaneous linear models 

can be solved by using matrix methods such as Cramer’s Rule, Inverse Matrix method etc. 

 

 

Piecewise Linear Models: 

 

 It is a model that does not have to be represented by the same single formula for all values of the 

independent variable X. Here, two different linear expressions agree at some value of  X, so there is no sudden 

jump ( discontinuity) at the changeover point, usually X may be a discrete variable in this model, sometimes, one 

may model a non-linear function approximately by a piecewise linear function. 

Transformed Linear Models: 

 When a dependent variable Y does not change by equal amounts for equal changes in the independent 

variable then a linear model may not be suitable for this situation. For instance, the quadratic function or a 

second degree parabola is a simple nonlinear model. 

 
2

i 0 1 i 2 iY X X , i 1,2,...,n     
 

Three separate pieces of information are needed to determine the three parameters 0 1, 
and 2 . The value of 

2  determines whether the curve is concave upwards ( 2 >0) or concave downwards, There is a vertical axis of 

symmetry at 

1

2

X
2








 which is also the X value at which the graph has global maximum or minimum value. 

The value of the parameter 0  affects the vertical position of the curve relative to the coordinate axes. 

 

 A more general higher degree polynomial model can be written as 

 
2 3 k

i 0 1 i 2 i 3 i k iY X X X ... X ,i 1,2,......,n          
    ……………….(15) 

This model can be transformed into a general linear model as 

i 0 1 1i 2 2i 3 3i k kiY Z Z Z ... Z         
 ……………………………….(16) 

where, 

2 3 k

1 2 3 kZ X, Z X , Z X ,........Z X   
 

 Likewise, some nonlinear models such as power function model (
1

0Y X


), Exponential Model 

(
1X X

0 0 1Y e or Y
   

) etc, can be transformed into logarithmic linear models 

0 1Ln Y Ln Ln X;  
 and 

0 1 0 1Ln Y Ln X or Ln Y Ln (Ln )X      
 etc., respectively. 

When the rate of change of Y is assumed to be proportional to the difference between the present value of Y and 

some fixed value c, one may write the linear first order differential equation model as  
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Y k(c Y)  
, which has the solution 

  kt

0Y(t) c Y c e  
 …………………(17) 

with Y→ c as t → .     

 

4.FITTING OF TRANSFORMED LINEAR MODELS 

 

 In fitting of time series models or Growth curves to the time series data, the following points may be 

useful to specify the type of the model: 

 

(i) When the time series Yt is formed to be increasing or decreasing by equal absolute amounts, the straight line 

times series model is used. 

t 0 1Y t  
 …………………………………………………..…(18) 

(ii) When the time series Yt is increasing or decreasing by a constant percentage rather than a constant absolute 

amount, the logarithmic straight line  time series model is used. 

 
t

t 0 1Y  
 ……………………………………………………….(19) 

 t 0 1or Ln Y Ln Ln t  
 ………………………………………..(20) 

In this case, the data plotted on a semi-logarithmic scale graph gives a straight line graph. 

 

The approximations about the type of the curve to be fitted can be made by using the following theorem based on 

finite differences 

“The nth differences 

 n n n

t t

t

1
Y , Ln Y ,

Y

 
    

  of any general polynomial Yt of nth degree in t is constant 

and (n+1)th differences are equal to zero”. 

 

i.e., If ∆ is the difference operator given by  

 t t h tY Y Y  
, h being the interval of differencing and 

k

tY
 is the kthdifference of Ytthen for a 

polynomial Yt of nth degree in t, the theorem states that  
k

tY 
constant, k = n  

                    = 0, k > n 

The following tests based on the calculus of finite differences may be applied in choosing approximations about 

the type of curve to be fitted:  

(i) If tY 
constant, then linear model t 0 1Y   

 t may be used; 

(ii) If 
2

tY 
constant, then a second degree polynomial function model 

2

t 0 1 2Y t t    
 may be used; 

(iii) If 
 tLog Y 

 constant, then an exponential or logarithmic linear model 
1t

t 0Y e


 

or
t

t 0 1Y  
or t 0 1Ln Y Ln t  

or t 0 1Ln Y Ln (Ln )t  
 may be used; 

(iv) If
 2

tLog Y 
 constant, then second degree curve fitted to logarithms model  

2t t

t 0 1 2Y   
or 

    2

t 0 1 1Ln Y Ln Ln t Ln t    
may be used; 

(v) If 

t

t 1

Y

Y 





constant, then a modified exponential function model 

t

t 0 1 2Y    
 may be used; 

(vi) If

t

t 1

Log Y

Log Y 

 
 

   constant, then Gompertz model 

t
2

t 0 1Y


 
 or a logarithmic modified exponential 

function model  

  t

t 0 1 2Ln Y Ln Ln   
may be used; 
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(vii) If

t

t 1

1
Y

1
Y 

       
   

     constant, then logistic function model  

 
0 1

t 1t

k
Y , 0

1 e
 




 
     or 

or

0 1 t

t

1 1
1 e

Y k

          or a modified exponential function model 

t

0 1 2
t

1
Y

     
    may be used. 

where

0 1

0 1 2

1 1
, e , e

k k

     
 are constants 

(viii) If tY
 tends to decrease by a constant percentage then a modified exponential function model may be 

used; 

(ix) If tY
 shows a skewed frequency curve, then a Gompertz model or a  logarithmic modified exponential 

function model may be used. 

5. LINEAR STATISTICAL MODEL: 

Suppose there exists a linear relationship between a dependent variable Y and (k-1) independent variables X2, 

X3,……., Xk and a random error term or disturbance term  . For a sample of n observations on Y and X’s, one 

may specify linear regression model as 

 

i 1 2 2i 3 3i k ki iY X X ... X ,i 1,2,..., n.          
   ……………………(21) 

where β’s are known as regression co-efficients or unknown parameters of the linear regression model 

 

   The set of above ‘n’ linear equations can be expressed in the matrix notation as 

nx1 nxk kx1 nx1Y X     …………………………………………………(22) 

 

where

1 1 121 31 k1

22 32 k22 2 2

2n 3n knn k nnxknx1 kx1 nx1

Y 1 X X ... X

1 X X ... XY

. . . ... .. . .
Y ,X and

. . . ... .. . .

. . . ... .. . .

1 X X ... XY

 

 

 

 

      
      
      
      

         
      
      
      

              

 

Here,  Y: (nx1) vector of observations on a random dependent random variable (observation  vector) 

 

X: (nxk) matrix of known observations on a set of independent variables (Data Matrix) 

 

β: (kx1) vector of unknown parameters including intercept parameter (parametric vector)  

 

and  ε: (nx1) vector of observations on an error random variable. (Error vector or Disturbance vector) 

 

This model is known as a k- variable linear model or a general linear model (or linear statistical model) 

6 . CRUCIAL ASSUMPTIONS OF GENERAL LINEAR MODEL 

(i) Linearity Assumption: 

The basic assumption of the linear model is that the dependent variable vector or observation vector Y may be 

expressed as a linear function of the sample of observations on independent variables X’s and error vector  i.e.,  

Y = X β +  .........................................................................................(23) 

(ii) Unbiasedness Assumption 
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   nx1E O or E Y X  
 ……………………………………..……(24) 

where Onx1 is (nx1) vector of zeros 

 iE 0 i 1,2,...,n   
 

i are having zero means 

 

(iii) Assumption of Homoscedastic and Uncorrelated Errors 

  2

nE I  
  …………………………………………………(25)  

  2

i jcov , i j 1,2,...n

0, i j

      

  
  

Thus, each i distribution has the same unknown variance; the errors i and j , 
i j 

 are pairwise 

uncorrelated. 

 

Here, 
2  is unknown error variance, 

In is an  Identity matrix of order n ,i.e.,   has covariance matrix 
2

nI
 

 

(iv) Assumption of Linear Independence of Explanatory Variables X’s: 

Rank of X is k, where k<n 

Thus, there is no linear dependence among the Explanatory variables. 

 

 

(v) Assumption of Non- Stochastic Data Matrix: 

The Data matrix X is a non-stochastic matrix. 

In other words, X is a fixed known coefficients matrix. 

 

 

(vi) Assumption of Non- Measuremental Errors: 

 There are no errors involved in the explanatory variables. In other words, all the independent variables X’s are 

measured without error. Further, X is uncorrelated with   

 

(vii) Normality Assumption: 

 The error vector   follows a multivariate normal distribution with null vector nx1O as mean vector and 
2 In 

as the variance covariance matrix. Here, In is a unit matrix of order n. 

 

The Linear Statistical Model along with the above crucial assumptions is known as  

    ‘Standard Linear Statistical Model’  

or ‘Classical Linear Statistical Model’  

or ‘Gauss-Markoff Linear Statistical Model’  

or ‘Standard General Linear Model’. 

7.ORDINARY LEAST SQUARES ESTIMATION OF PARAMETERS OF LINEAR MODEL 

 

Consider the Classical Linear Regression model 

1 1 1  nx nxk kx nxY X
 ……………………………………………………….(26) 

with usual assumptions such as  
2( ) 0, ( )    nE E

 ………………………………………………………..(27)  

Write the residual sum of squares as  

   ˆ ˆ 


   e e Y X Y X
 ……………………………………………………...(28) 

     =

^ ^' '
ˆ ˆY Y X Y Y X X X      
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^ ^ ^' ' '
ˆ ˆe e Y Y 2 X Y X X Y X X Y

 
              

    

where
̂

 is the least squares estimator of 


 

By the least squares estimation method, 
̂

 minimizes the residual sum of squares e e . 

First order condition :

  ˆe e O 2X Y 2X X O
ˆ


      





 

   
ˆX X X Y  

 …………………………………………(29) 

The system (2.7.4) contains ‘n’ simultaneous linear equations, which is called the ‘System of Normal Equations’. 

Since, the system of normal equations is always consistent, these exists atleast a non zero solution of 
̂

,which 

gives the ordinary least squares (OLS) estimator of 


. 

i.e., 
 

1
̂


  X X X Y

 …………………………………………………..(30) 

 

Further, consider the OLS residual vector 

̂ e Y X
 ……………………………………………………………..(31) 

 
1

X X X X X (X )   


    
 

 
1

X X X X 


  
 

  1

nI X X X X 


  
     [In is a unit matrix of order n] 

 e M  …………………………………………………………………(32) 

where
  1

  nM I X X X X
 is a symmetric idempotent matrix such that M M=M , 

M=M and MX=O. 

Now, consider the OLS residual sum of squares  

        e e M M M
 

   

   

 

 

   



  

 



E e e E M

E trace M M is a scalar

E trace M

 

   

 2 2



  



   n

trace M E

trace M E I
 

  12

ntrace I X X X X


  
 

   
12

ntrace I trace X X X X
   

   

 2  kn trace I
 

   2  E e e n k
 

2
 

 
 

e e
or E

n k
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 2 2E S 
 

2 




e e
S

n k is an unbiased estimator of 
2 . 

8. Conclusion and Future Research 

In the above talk mathematical aspects of linear models have been extensively depicted. Different types of 

mathematical models are discussed here and the methods of fitting transformed models are proposed. 

Furthermore specific form of linear statistical model is presented and the crucial assumptions of general linear 

model are extensively discussed. At the last stage of this article the method of ordinary least squares estimation 

of parameters of a linear model has been proposed. In the context of future research one may discuss Gauss-

Markoff theorem for linear estimation andmean vector and covariance matrix of blue.   
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