

Turkish Journal of Computer and Mathematics Education Vol.13 No. 01(2022), 190-197

190

Research Article

GPU-Based Parallel Algorithm for Wideband Signal Timing Recovery

Parnia Haji Faraji

Department of Electrical and Computer Engineering

University of British Columbia

parnia@ece.ubc.ca

Mohammad Hasan Shammakhi

Department of Electrical Engineering

Amirkabir University of Technology

mh.shammakhi@aut.ac.ir

Mohsen Hosseinzadeh

Department of Electrical Engineering
 Amirkabir University of Technology

m.hosseinzadeh83@aut.ac.ir

Milad Mohammadi Bidhandi

Department of Electrical Engineering
Amirkabir University of Technology

mealadmmb@aut.ac.ir

Abstract
Symbol timing recovery is a complex calculation process that detects and corrects timing error in a coherent

receiver. This paper presents a new implementation of GPU-based symbol timing recovery based on the parallel

version of Gardner’s method to minimize the timing error. Gardner’s method utilizes a sequential process that relies

on feedback error. The proposed method is a fast parallel implementation method on a GPU for time-error detection
(TED) using the parallel timing recovery structure of sample signal blocks which makes fast error detection

possible. We calculate the interpolation filter coefficients before timing recovery to detect the timing error of the

symbols. We then compare the performance of timing recovery for different parallel techniques on different GPUs

to minimize error and improve processing speed, up to 100 times, compared to Gardner's method. Performance

evaluations show that we achieved a very high rate of timing recovery (50 Msymb/sec on GTX 1050 Ti) by

optimizing the GPU implementation.

Keywords: Gardner’s method, timing recovery, GPU, Cuda, synchronization, coherent receiver, digital

communication

Introduction
In a telecommunication receiver, synchronization between transmitter and receiver is required in order to recover the
correct symbols. In analog systems, the synchronization could be in a feed-forward or a feed-backward path by
reproducing a time waveform from the input signal, so the phase and frequency of the local clock with the received
signal will be synced [1]. When data is transmitted over a wireless channel, the synchronization is lost due to
different types of noise, including phase noise, receiver thermal noise, fading and frequency offset. Therefore, a
timing recovery subsystem is required to sample data at the right moment and detect its peak for correct
simultaneous timing recovery (STR) [2]. One-time sampling at the receiver is ineffective due to the noise, such as
Gaussian white noise. Therefore, the receiver noise could get diminished using an adaptive filter and increase the
signal-to-noise ratio (SNR) of a sampled point (due to increased correlation). The goal is to get the best SNR while
avoiding inter symbol interference. To maximize the SNR for detection, the demodulator must form an inner
multiplication between the input signal and the reference signal [3]. This means that the locally generated reference
signal must be synchronized with the received signal, then we need a proper timing recovery to extract the output
symbol to compensate for the difference between the transmitter and receiver clock so that the symbol is extracted
correctly. Because the transmitter’s DAC and the receiver’s ADC have different sampling times and they work
independently of each other, there is a mismatch in sampling time that must be compensated for on the receiver side.
For decades, engineers have tried to design and implement intelligent receivers. With technology advancement, the
timing recovery process was transferred to the digital domain, although the concepts in the analog and digital
domains are the same [4]. The timing recovery process uses a delay-locked loop (DLL) which has three main
components: Timing error detection process (TED), Loop filter (LF) for phase and frequency offset detection, and a
controlled oscillator, such as a numerically controlled oscillator (NCO) in order to regulate the sampling time so that
the peak of the input signal corresponds to the reference signal. There are several widely used methods for TED that
will be discussed shortly, such as the Gardner method [5], Müller-Müller algorithm (M&M) [6], early-late algorithm
(ELGA) [2], and Maximum probability (ML) - based on TED [7].

It is desired to apply TED with parallel tasks while maintaining the highest SNR and accuracy with the lowest

possible sampling rate to speed up timing recovery by using data independence characteristics. Therefore, our

method is focused on a Gardner-based TED [3]. ML method searches for correlation output peaks using the
derivation of match filter (DMF). ELGA (early-late) is the former model of TED which finds the derivative by

approximation using the early, prompt and late. This provides a relatively low-complexity structure for a high-

performance system, which is crucial in terms of designing an efficient transceiver from a resource point of view.

However, it has complex calculations. It needs three SPS and high-order filters. M&M requires only one SPS, but

Turkish Journal of Computer and Mathematics Education Vol.13 No. 01(2022), 190-197

191

Research Article

the carrier recovery must be done before STR [8]. STR interpolation methods have been well discussed in the past.

Due to the fact that the delay between the transmitter and the receiver clocks has a fractional part, the target timing

recovery algorithm requires an Interpolation filter that could come in different types. The cubic spline method is one

of the most efficient ones [9].

The Graphics processing unit (GPU) is a satisfactory computing resource in systems that are capable of
simultaneous and parallel processing. Interpolation of symbols and the interpolation computation of the input data

for input data are independent of each other. This fact makes it possible to use various forms of parallelization

within the GPU to speed up the overall processing performance, which ultimately results in increasing the speed of

overall error detection owing to obtaining timing recovery error directly from its output [3]. Also, symbols

independence and their timing error computations independence reduce the detection time while the accuracy and

efficiency (throughput) of the system remains intact.

To fit the repetitive and compatible nature ofDLLs, this paper presents a specific breakthrough in GPU

programming. With the precise implementation and the availability of a large number of threads and cores in the

GPU, it is also possible to perform STR on multiple input samples. Instead of sample-by-sample processing in

traditional digital receivers, our methodsuggests block processing for several symbols simultaneously to further

improve throughput, which is very desirable for modern wireless communication systems. The rest of the article is

organized as follows:Section two discusses the details of a Gardner-based TED and presents an overview of the
NVIDIA CUDA programming language. In section three the proposed design of TED on GPUs is explained.

Section four describes the detailed design and implementation of our method, with a summary of our results.

Finally, section five concludes the paper.

Background and Related Work
Gardner’s Method

Gardner is an algorithm that detectstiming error for data streams. This algorithm includes interpolation, timing error

detection and loop filter sections. The Gardner timing recovery algorithm requires two samples per symbol to be

completed and it needs to know the previous symbol’s timing in order to estimate the timing error of the current
symbol.

Once the timing error 𝑒 is computed, the Gardner timing adjustment algorithm is performed. If 𝑒 = 0,no timing

adjustment is required for the next symbol, If 𝑒 < 0, a timing advance is required for the next symbol, and If 𝑒 > 0,

a timing delay is required for the next symbol.

The block diagram of Gardner's algorithm is shown inFigure 1. The Gardner algorithm is used in a closed control

loop fashion in the component. This method is a non-data-aided feedback method that is independent of carrier

phase recovery. It is used for baseband systems and modulated carrier systems. The Gardner method is similar to the

early-late gate method but this method performs better in systems with high SNR values since it has lower self noise

than the early-late method.

The Gardner algorithm is a sequential algorithm that depends on the error,due to timing recovery of previous
symbols to extract each symbol,also, the loop filter used in the Gardner algorithm is of second-order which corrects

the sampling error via the PI controller[1].

Figure 1.Elements of digital timing recovery of Gardner algorithm.

The computer fractional interval section is responsible for determining symbol delays relative to ADC output

samples. AsFigure 2depicts, the symbol k is at the point 𝑘𝑇𝑗 . The closest sampled points are 𝜇
𝑘
𝑇𝑆,(𝜇𝑘 −

1)𝑇𝑠 , 𝜇𝑘 + 1 𝑇𝑠 and (𝜇𝑘 + 2)𝑇𝑠. Using cubic interpolation, the value of the symbol 𝑘 is estimated based on these

four samples. The timing recovery error is then calculated based on the Gardner criterion. The error is calculated as (

1)[2].

Turkish Journal of Computer and Mathematics Education Vol.13 No. 01(2022), 190-197

192

Research Article

Figure 2.Sample time relations[3]

𝐸 𝑟 = 𝑥𝑑
2 𝑟𝑇 + 𝜏 = 𝑥2 𝜏 + 𝑟𝑇 + 𝑥2(𝜏 + (𝑟 − 1/2)𝑇) − 2𝑥(𝜏 + 𝑟𝑇)𝑥(𝜏 + 𝑟 −

1

2
 𝑇)

𝑢𝑡 𝑟 = 𝑥 𝜏 + 𝑟 − 1/2 𝑇 𝑥 𝜏 + 𝑟𝑇 − 𝑥 𝜏 + 𝑟 − 1 𝑇

(1)

After calculating the error, the jitter value is calculated in terms of 𝑡𝑒𝑑 and 𝑡𝑒𝑑. The value of 𝜇𝑛𝑒𝑤 based on jitter

is then calculated as (2)[4].

𝑡𝑒𝑑 = 𝑟𝑒𝑎𝑙 𝑐𝑜𝑛𝑗 𝑥 𝑟 −
1

2
 𝑥 𝑟 − 𝑥 𝑟 − 1

𝑗𝑖𝑡𝑡𝑒𝑟 = 𝑎 ∗ 𝑡𝑒𝑑 + 𝑏 ∗ 𝑡𝑒𝑑 ;

𝜇𝑘 = 𝑖𝑛𝑡[𝑘
𝑇𝑖
𝑇𝑠

]

𝜇𝑘 = 𝑘
𝑇𝑖
𝑇𝑠
−𝑚𝑘

(2)

Following this method, the position of the symbol is obtained[5].

CUDA

In November 2006, NVIDIA® CUDA® (CUDA or Compute Unified Device Architecture) introduced a parallel

computing platform and general programming model that is available for software developers as a variety of

functions in programming languages. It uses the parallel computing engine in NVIDIA GPUs to solve many

complex computing problems in a more efficient way than CPUs in parallel processing.[6]

GPUs have been used in the past for computer graphics, but with the development of GPU technology in recent
years, they are used for a wider range of applications, especially those involving large array processing and data

matrices. Modern GPU platforms consist of one or more processor cores and one or more GPUs with powerful

arithmetic resources that can run a large number of threads (computationally) at the same time.

The NVIDIA GTX 1050 TI hardware used in ourtests has 216 processor cores, providing a total of more than

165,000 active threads. GPUs process active threads simultaneously, and to increase the efficiency of such

simultaneous execution, several threads can be allocated separately and perform various calculations until fully

executed. To optimize our design, not only we use the memory hierarchy in GPUs, especially using register, shared

memory (SM) and constant memory (CM), but also we utilized multiple existing processors (MP).[7] To make

effective use of the GPU platform, the implementation should be in a way that the GPU threads are kept as busy as

possible. This means that independent parallel execution opportunities must be identified and distributed in the GPU

for efficient use of resources. In our platform, data transfer between the CPU and the GPU is done via the PCI
Express bus.Although this kind of data transferring reaches high-speed rates, the power consumption is too large.

Therefore, prior to transferring the results to the CPU, such transmissions must be diminished by maximum

processing on the GPU.[6]

Proposed Method
Our design is based on the Gardner method shown in Figure 1. The main problem with Gardner's algorithm is its

sequential nature. This characteristic limits the number of parallel paths that can be used to implement the algorithm

onGPU and FPGA hardware.Even though, the modern CPUs which have the ability to perform multiple operations

Turkish Journal of Computer and Mathematics Education Vol.13 No. 01(2022), 190-197

193

Research Article

simultaneously, due to the fact that in the Gardner algorithm the current data which is being processed is dependent

on the former data, There is need to perform operations sequentially. The time-consuming interpolation operation to

reach the target points in the Gardner algorithm increases the extraction time of each symbol. Our first step is to

separate the interpolation operations as much as possible to increase the timing recovery processing rate. This

technique doubles the system rate on our target hardware.
As Gardner's article points out, extracting symbols from samples requires incorrect interpolation of data. The cubic

spline is the most efficient algorithm in terms of memory required to calculate and interpolate the desired points. As
shown in Figure 2the neighbor samples of the output symbols are used to make the calculation more accurate. To

calculate the signal value at the point 𝑚𝑘𝑇𝑠 + 𝜇𝑘𝑇𝑠,(3)is used.The signal value at this point is obtained by replacing

𝑥 with 𝜇𝑘 .

The right part of the (3)is derived using the errors obtainedof the previous data.The prediction of candidate signal

samples as 𝑠0 . 𝑠1, 𝑠2, 𝑠3 is impossible. Due to the fact that𝑠0 to 𝑠3 are four consecutive samples from the set of

sampled points of the signal, these values can be calculated in advance for all s1 data parallel and in a short time,

instead of obtaining them sequentially and calculating the coefficients in the M matrix,. In this way, calculating the

desired points has much less computational complexity.

𝑠 𝑥 = 1 𝑥1 𝑥2 𝑥3 ×

0 1 0 0
−1/3 −1/2 1 0
1/2 −1 1/2 0
−1/6 −1/2 −1/2 1/6

 ×

𝑠0

𝑠1

𝑠2

𝑠3

(3)

Therefore, we divide the timing recovery operation into two parts after applying the match filter. The first part is

related to cubic interpolator calculations while the second one uses the timing recovery and timing error calculations

according to equation(4) in order to calculate 𝐶0to 𝐶3.

𝐶0 = 𝑆1

𝐶1 = −1
3 𝑆0 −

1
2 𝑆1 + 𝑆2 −

1
4 𝑆3

𝐶2 = 1
2 𝑆0 − 𝑆1 + 1

2 𝑆2

𝐶3 = −1
6 𝑆0 −

1
2 𝑆1 −

1
2 𝑆2 + 1

6 𝑆3

(4)

So, for every 𝑆0 to 𝑆3 that will be 4 consecutive instances of the signal, we will have the corresponding 𝐶0 to 𝐶3.

Therefore, before retrieving the time and calculating the timing error, we calculate the values 𝐶0 𝑛 to 𝐶3(𝑛) for all

samples. The time required to perform this kernel on the GPU is very short and its speed will be about 1% of the

total processing time. There will be two ways in order to calculate the values of 𝐶0(𝑛) to 𝐶3 𝑛 . In the first method,

each thread is responsible for calculating the real and imaginary parts of 𝐶0 𝑛 to 𝐶3(𝑛)Therefore, we need thread as

much as the number of dataframes. This algorithm is performed as follows.

𝑤𝑕𝑖𝑙𝑒 (𝑛 < 𝑑𝑎𝑡𝑎 𝑙𝑒𝑛𝑔𝑡𝑕)

𝐶0 𝑛 = 𝑆(𝑛 − 1)

𝐶1 𝑛 = −
1

3
𝑆 𝑛 −

1

2
𝑆 𝑛 − 1 + 𝑆 𝑛 − 2 −

1

6
𝑆(𝑛 − 3)

𝐶2 𝑛 =
1

2
𝑆 𝑛 − 𝑆 𝑛 − 1 +

1

2
𝑆 𝑛 − 2

𝐶3 𝑛 = −
1

6
𝑆 𝑛 +

1

2
𝑆 𝑛 − 1 −

1

2
𝑆 𝑛 − 2 +

1

6
𝑆(𝑛 − 3)

𝑛 = 𝑛 + 𝑔𝑟𝑖𝑑𝐷𝑖𝑚 × 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚

(5)

In the second method, each thread is responsible for calculating the real and imaginary parts of one of 𝐶0 𝑛
to𝐶3 𝑛 . Then, the number of threads needed for this method is four times as much as the signal length.

Each one of the proposed methods may give us a better result depending on the number of different cores, hardware

and frame length. In the third method, each multiplication is done by one single thread.

The next steps after the preprocessing are symbol extraction and the timing recovery error calculation. As stated
in(2), The time recovery error is calculated as follows.

𝐶𝑜𝑒𝑓_𝑚𝑎𝑡𝑟𝑖𝑥

Turkish Journal of Computer and Mathematics Education Vol.13 No. 01(2022), 190-197

194

Research Article

𝑣𝑎𝑙0 = 𝐶0 + 𝑚𝑢𝑓𝑟𝑎𝑐 × (𝐶1 + 𝜇𝑓𝑟𝑎𝑐 × (𝐶2 + 𝜇𝑓𝑟𝑎𝑐 × 𝐶3)

𝑡𝑒𝑑 = 𝑟𝑒𝑎𝑙(𝑐𝑜𝑛𝑗(𝑣𝑎𝑙1) × 𝑣𝑎𝑙2 − 𝑣𝑎𝑙0)

𝑡𝑟 𝑜𝑢𝑡 = 𝑣𝑎𝑙1
𝑗𝑖𝑡𝑡𝑒𝑟 = 𝑎 × 𝑡𝑒𝑑 + 𝑏 × 𝑡𝑒𝑑𝑎𝑐𝑐

𝑡𝑒𝑑𝑎𝑐𝑐 = 𝑡𝑒𝑑𝑎𝑐𝑐 + 𝑡𝑒𝑑

𝜇𝑛𝑒𝑤 = 𝜇𝑓𝑟𝑎𝑐 +
𝑆𝑃𝑆

2
+ 𝑗𝑖𝑡𝑡𝑒𝑟

𝜇𝑓𝑟𝑎𝑐 = 𝑚𝑜𝑑 𝜇𝑛𝑒𝑤 . 1

𝑣𝑎𝑙2 = 𝑣𝑎𝑙1

𝑣𝑎𝑙1 = 𝑣𝑎𝑙0

𝑖 = 𝑖 + 𝑓𝑙𝑜𝑜𝑟(𝜇)

(6)

The goal is to parallelize the calculation of timing recovery error.To overcome this, the data is processed in groups

so that the extraction of𝑛_𝑝𝑎𝑟 symbols would be simultaneous and their timingrecovery error is calculated. Then,

based on the error obtained from the 𝑛_𝑝𝑎𝑟 symbol, the next symbols are determined. Assume that s is the position

of the last extracted symbol. The last estimated value of 𝜇 is divided into two parts 𝜇𝑓𝑟𝑎𝑐 and 𝜇𝑝𝑟𝑒 , Which are

fractional and decimal parts of 𝜇 respectively. To calculate the 𝜇of the next 𝑛_𝑝𝑟𝑒 symbols, we have:

𝑓𝑜𝑟 𝑘 = 1: 2 × 𝑁

𝜇_𝑛𝑒𝑤 𝑘 = 𝑖 + 𝜇𝑓𝑟𝑎𝑐 + 𝑘 × 𝜇𝑝𝑟𝑒

𝜇𝑓𝑟𝑎𝑐 _𝑛𝑒𝑤(𝑘) = 𝑚𝑜𝑑(𝜇𝑛𝑒𝑤 𝑘 . 1)

𝑖 𝑘 = 𝑓𝑙𝑜𝑜𝑟(𝜇𝑛𝑒𝑤 (𝑘))

(7)

In equation(7), 𝑖(𝑘) is the index number varying from 𝐶0 to 𝐶4that will be used for interpolation. Then, 𝑣𝑎𝑙 (𝑘) is

calculated as follows:

𝑣𝑎𝑙 𝑘 + 1 = 𝐶𝑢𝑏𝑖𝑐𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛(𝑆𝑘 . 𝜇𝑓𝑟𝑎𝑐 −𝑛𝑒𝑤 (𝑘))
(8)

As mentioned before, each 𝑛_𝑝𝑎𝑟 symbol of the signal is calculated simultaneously from one single reference point.

Therefore, if the estimation error for the first symbol in a block is equal to𝑒1, then the estimation error for the second

one will be accumulated, so we will have:

𝑒2 = 2𝑒1

(9)

Similarly, the error for the n_par symbol is:

𝑒𝑛_𝑝𝑎𝑟 = 𝑛_𝑝𝑎𝑟 × 𝑒1

(10)

To calculate TED for each 𝑛_𝑝𝑎𝑟 symbol, TED will be updated. The timing error of the first symbol in the block

will be 𝑡𝑒𝑑 = 𝑒1 , and the error for the second symbol will be 𝑒2 = 2 × 𝑡𝑒𝑑and finally, the error for the last symbol

will be 𝑒𝑛_𝑝𝑎𝑟 = 𝑛_𝑝𝑎𝑟 × 𝑡𝑒𝑑. So, 𝑇𝐸𝐷 is equal to equation (11):

𝑡𝑒𝑑 =

𝑒𝑖

𝑖

𝑛_𝑝𝑎𝑟
𝑖=1

𝑛𝑝𝑎𝑟

(11)

Therefore, to calculate the error values, we will have:

𝑡𝑒𝑑_𝑛𝑒𝑤 =
1

𝑛_𝑝𝑎𝑟

𝑒𝑖
𝑖

𝑛_𝑝𝑎𝑟

𝑖=1

𝑗𝑖𝑡𝑡𝑒𝑟 = 𝑛_𝑝𝑎𝑟 × 𝛼 × 𝑡𝑒𝑑𝑛𝑒𝑤 + 𝑏
× 𝑡𝑒𝑑𝑎𝑐𝑐

𝑡𝑒𝑑𝑎𝑐𝑐 = 𝑡𝑒𝑑𝑎𝑐𝑐 + 𝑡𝑒𝑑𝑛𝑒𝑤

𝜇𝑓𝑟𝑎𝑐 = 𝜇𝑓𝑟𝑎𝑐 −𝑛𝑒𝑤 (2 × 𝑛_𝑝𝑎𝑟)

(12)

These values will be used for the next block’s calculation.

Turkish Journal of Computer and Mathematics Education Vol.13 No. 01(2022), 190-197

195

Research Article

Design and Implementation
In order to compare the CPU and GPU performance, we implemented the model described first in MATLAB and

then in C ++ and CUDA. To evaluate the test results, we generated different signals from BPSK, QPSK, 8PSK,
16QAM modulations with RRC pulse shaping and different SPS (4, 8, 16) with two different Roll_of_factor (0.25

and 0.35). Finally, the N_ISI had two differentvalues of 10 and 100. One million symbols are made from all these

signals. The AWGN noise is added to the generated signal for different SNRs and then frequency offset is applied to

generated signal. We also utilized several satellite signals such as DVBS and DVBS2 protocols to evaluate the

results. They also inherently have phase and frequency offset. On the receiver side, we have used an RRC match

filter with length 𝑆𝑃𝑆 × 𝑁_𝐼𝑆𝐼 + 1, with the Roll_of_factor of 0.3.

The CPU used for the test is RYZEN 5 2500 3.4GHz (6 cores) and Core i7-10700k 3.8GHz and the GPU used in

this work is NVIDIA GTX 1050, the technical specification is shown in Table1:

Table1: Technical specifications of NVIDIA GTX 1050 graphic card

11.1 CUDA driver version/run time version

4096MBytes Total amount of global memory

768 CUDA cores

1493MHz GPU max clock rate

128-bit Memory bus width

65536 Bytes Total amount of constant memory

49152 Bytes Total amount of shared memory per block

The first kernel is run on the firststream and the process completion event of this kernel is connected to the second

stream, which is responsible for the timing recovery of the symbols and timing error detection.

Parallel Timing Recovery

As stated in Equations (6)to (12) we must assign 2 × 𝑛_𝑝𝑎𝑟 threads to the kernel. For the timing recovery, a long

stream of data needs to be processed, which means that the data must be framed and transferred to the kernel. We

choose 10000 to 1000000 symbols -depending on sps for the desired GPU. In the designed processing kernel

function, the value of 𝑖 increases until there are not as many symbols as 𝜇_𝑛𝑒𝑤 = (2 × 𝑛_𝑝𝑎𝑟) at the end of the

frame. Therefore, as soonas the processing stops, the main kernel parameters such as 𝜇, 𝑡𝑒𝑑𝑎𝑐𝑐 and the last part of

the frame are moved to the next frame so that processing can continue from the correct point while the last

processing state is kept. The Matlab and CUDA code on the algorithm is presented in [8].

Turkish Journal of Computer and Mathematics Education Vol.13 No. 01(2022), 190-197

196

Research Article

The performance of the algorithm is discussed from two different points of view. EVM (%), RMS, peak EVM (%),

and Avg EVM (dB), peak EVM (dB) and avg MER are the parameters used to measure the recovery accuracy. The

error vector magnitude or EVM is a measure used to quantify the performance of a digital radio transmitter or

receiver. An error vector is a vector in the I-Q plane between the ideal constellation point and the point received by

the receiver. The root mean square (RMS) average amplitude of the error vector, normalized to ideal signal
amplitude reference. The modulation error ratio or MER is another measure used to quantify the performance of a

digital radio transmitter or receiver in a communications system using digital modulation. The modulation error ratio

is equal to the ratio of the root mean square (RMS) power (in Watts) of the reference vector to the power (in Watts)

of the error. As shown inFigure 3, the number of symbols required to reach the knee of the ted diagram in

convergence is another parameter that determines the locking time of the algorithm.

Table 1 shows the degree of accuracy and speed in convergence.

Figure 3:Convergence speed and constellation result of the proposed method

Table 1: Comparison of accuracy and convergence speed of our proposed method andClassic Gardner

Method Classic Gardner
Parallel Gardner

N_Par =16 N_Par = 32 N_Par = 64

RMS EVM(%) 32.1 32.2 32.3 32.6

Peak EVM(%) 82.2 82.5 82.5 83.8

Avg EVM(db) -9.5 -9.5 -9.5 -9.6

Peak EVM(db) -1.7 -1.7 -1.7 -1.7

Avg MER(db) 9.5 9.5 9.5 9.6

N Symbol to Lock 1.10 ∗ 104 1.11 ∗ 104 1.15 ∗ 104 1.25 ∗ 104

The results of the implementation of the algorithm on the NVIDIA GTX 1050 for 𝑛_𝑝𝑎𝑟16, 32,64 and the maximum

processing rate are given in table 3.

Table 2: maximum symbol rate processing capability using Gardner’s algorithm and proposed method

CPU(Ryzen 2600) GPU

Method
With MF and

Interpolation

Without

MF and

Interpolation

N_Par=16 N_Par = 32 N_Par = 64

Max Symbol Rate
Process

(M symb/sec)

0.49 1.01 17.8 26.78 50.3

Turkish Journal of Computer and Mathematics Education Vol.13 No. 01(2022), 190-197

197

Research Article

As it is shown in table 3, while 𝑛_𝑝𝑎𝑟 increases, algorithm’s performance speeds up. Also, the RMS_EVM value on

the constellation goes up, which drops the accuracy of timing recovery .

Conclusion
In this paper, a novel method was introduced to increase the Gardner's timing recovery processing rate in a

telecommunication receiver. The method is fitting for hardware with parallel processing capabilities such as FPGA

and GPU. The purpose of this processing block is to recover the symbols sent on the transmitter side and to

compensate for the error caused by the independence of the transmitter and receiver clock. This method has the

ability to recover the correct transmitted symbol based on the sampled signal. It also resolves the timing error in

symbols calculation over time. Our first innovation is the use of parallelization techniques in calculating cubic

interpolation coefficients based on input data to calculate the signal at the point. We have also provided a method
for calculating the value of ted in signals. The combination of these two methods has enabled us to process

wideband signals. Our proposed method, considering 64 parallel paths in the calculation, is able to process signals

with a rate symbol equal to 50 MegaBytes per second using medium GPUs, which is 100 times higher than the

processing rate of Gardner’s method in the CPU.

Acknowledgments
This research was supported by SUNYAR Company. We thank our colleagues from Sunyar Company for assisting
in this project by helping with contributions in this research.This research was developed with funding from the
SUNYAR Company under grant SDR004-0001.

References

[1] B. E. a. F. H. C. Dick, "Architecture and simulation of timing synchronization circuits for the FPGA

implementation of narrowband waveforms," in SDR Technical Conference and Product Exposition, 2006.

[2] F. M. G. a. R. A. H. L. Erup, "Interpolation in digital modems. II. implementation and performance," IEEE

Transactions on Communications, vol. 41, no. 6, p. 998–1008, 1993.

[3] F. J. H. a. M. Rice, "Multirate digital filters for symbol timing synchronization in software defined radios,"

IEEE Journal on Selected Areas in Communications, vol. 19, no. 12, p. 2346–2357, 2001.

[4] F. H. a. M. R. C. Dick, "Synchronization in software radios-carrier and timing recovery using fpgas," in IEEE

Symposium on FPGAs for Custom Computing Machines, 2000.

[5] F. M. Gardner, Phase lock Techniques, third ed., WileyInterscience, 2005.

[6] Nvidia, NVIDIA CUDA Compute Unified Device Architecture:Programmer Guide, 2007.

[7] J. G. M. a. M. Cheng, Professional CUDA c programming, John Wiley & Sons., 2014.

[8] Mh.Shamakhi, "https://github.com/mhshammakhi/," 2020. [Online]. Available:

https://github.com/mhshammakhi/SDR_GPU/tree/main/Gardner_Parallel/.

[9] B. Sklar, Digital Communications: Fundamentals and Applications, 2001.

[10] W. L. P. a. S. S. B. S. C. Kim, "GPU-BASED ACCELERATION OF SYMBOL TIMING RECOVERY," in

Design and Architectures for Signal and Image Processing, 2012.

[11] K. M. a. M. Muller, "Timing recovery in digital synchronous data receivers," IEEE Transactions, vol. 24, no. 5,

p. 516–531, May 1976.

[12] M. R. a. J. R. J. Vesma, "Comparison of efficient interpolation techniques for symbol timing recovery," in

IEEE Global Telecommunications Conference, 1996.

[13] F. J. Harris, Multirate Signal Processing for Communication Systems, Prentice Hall, 2004.

[14] M. M. a. S. A. F. H. Meyr, Digital Communication Receivers, Synchronization, Channel Estimation, and

Signal Processing, Wiley-Interscience,, 1997.

[15] F. Gardner, "A BPSK/QPSK timing-error detector for," IEEE Transactions on Communications, vol. 34, no. 5,

p. 423–429, may 1986.

[16] M. Frerking, Digital Signal Processing In Communications Systems, Springer, 2010.

[17] U. M. a. A. N. D’Andrea, "Synchronization Techniques for Digital Receivers, Springer, 1997.," Springer,
1997.

	Abstract
	Keywords: Gardner’s method, timing recovery, GPU, Cuda, synchronization, coherent receiver, digital communication

