Inverse isolate domination on four-regular graphs withgirth 3 and girth 4

C. Jayasekaran ${ }^{1}$, A. Vijila Rani ${ }^{2}$
${ }^{1}$ Associate Professor, Department of Mathematics, Pioneer Kumaraswamy College

Nagercoil 629003, Tamil Nadu, India.
${ }^{2}$ Research Scholar, Reg. No.: 19113132092001, Department of Mathematics, Pioneer Kumaraswamy College, Nagercoil 629003, Tamil Nadu, India.

Afliated to Manonmaniam Sundaranar University, Abishekapatti,
Tirunelveli 627 012, Tamil Nadu, India
email: jayacpkc@gmail.com ${ }^{\text { }}$, vijilarani3@gmail.com ${ }^{2}$

Abstract

Let G be non-trivial graph. A subset S of the vertex set $V(G)$ of a graph G is called a isolate dominating set of G if every vertex in $\mathrm{V}-\mathrm{S}$ is adjacent to a vertex in S such that $\delta(<S>)=0$. The minimum cardinality of an isolate dominating set is called the isolate domination number and is denoted by $\gamma_{0}(G)$. If $V-S$ contains a dominating set S^{\prime} of G, then S^{\prime} is called an inverse isolate dominating set with respect to S . The minimum cardinality of an inverse isolate dominating set is called an inverse isolate dominating number and is denoted by $\gamma_{0}{ }^{-1}(\mathrm{G})$. In this paper we investigate the inverse isolate dominating number of 4 -regular graph on n vertices with girth 3and girth 4.

Keywords : Domination, Isolate domination, Inverse domination, 4-regular graph, girth. Subject Classification Number: 05C15, 05C69.

1. Introduction

By a graph, we mean a finite, undirected graph with neither loops nor multiple edges. For graph theoretic terminology, we refer to the book by Chartrand and Lesniak [2]. All graphs in this paper are assumed to be non-trivial.

In a graph $G=(V, E)$, the degree of a vertex v is defined to be the number of edges incident with v and is denoted by deg v. The minimum of $\{\operatorname{deg} v: v \in V(G)\}$ is denoted by $\delta(\mathrm{G})$ and the maximum of $\{\operatorname{deg} v: v \in V(G)\}$ is denoted by $\Delta(G)$. The subgraph induced by a set S of vertices of a graph G is denoted by $\langle S\rangle$ with $V(\langle S\rangle)=S$ and $E(\langle S\rangle)=\{u v \in E(G) / u, v \in S\}$. The study of domination and related subset problems is one of the fastest growing area in graph theory. For a detailed survey of domination one can see [5, 7] and [9]. For a set $\sigma \subseteq \mathrm{V}$, the switching of G by σ is the graph $\mathrm{G}^{\sigma}\left(\mathrm{V}, \mathrm{E}^{\prime}\right)$, which is obtained from G by removing all edges between σ and its complement $\mathrm{V}-\sigma$ and adding as edges all non-edges between σ andV -
σ [12]. A graph G is $\mathrm{r}-$ regular if each vertex in G has degree r . The Corona product of two graphs G and H is defined as the graph obtained by taking one copy of G and $|V(G)|$ copies of H and joining the i-th vertex of G to every vertex in the i-th copy of $\mathrm{H}[3]$. The concept of rooted product graph was introduced in 1978by Godsil and McKay [4]. Given the graph of order $\mathrm{n}(\mathrm{G})$ and a graph H withthe rooted product, $\mathrm{G}^{\circ} \mathrm{v} \mathrm{H}$ is defined as the graph obtained from G and H by taking one copy of G and $n(G)$ copies of H and identifying the $i^{\text {th }}$ vertex of G with the root vertex v in the $\mathrm{i}^{\text {th }}$ copy of H for every $\mathrm{i} \in\{1,2, \ldots, \mathrm{n}(\mathrm{G})\}$.

In this sequence, the notion of isolate domination was introduced in [11] as a new basis domination parameter. An isolate dominating set of a graph G is a dominating set S of G such that $\delta(<S>)=0$ and the isolate domination number denoted by $\gamma_{0}(G)$, is the minimum cardinality of an isolate dominating set of G. The purpose of this paper is to discuss about some concept of Inverse Isolate dominating number of 4-regular graphs with girth 3 and 4.
Definition 1. 1.[8]Let S be a minimum isolate dominating set of a graph G . If $\mathrm{V}-\mathrm{S}$ contains a dominating set S^{\prime} such that $\delta\left(\left\langle S^{\prime}\right\rangle\right)=0$, then S^{\prime} is called an inverse isolate dominating set with respect to S . If $\left.\delta\left(\left\langle S^{\prime}\right\rangle\right)\right\rangle 0$, then we call S^{\prime} as weak inverse isolate a dominating set of G . The minimum cardinality of an inverse isolate dominating set is called an inverse isolate domination number and is denoted by $\gamma_{0}^{-1}(\mathrm{G})$ and the minimum cardinality of a weak inverse isolate dominating set is called a weak inverse isolate domination number and is denoted by $\gamma_{w 0}^{-1}(\mathrm{G})$.
Definition 1. 2.[10]If v_{1} is adjacent to $\mathrm{v}_{\mathrm{n}-1}, \mathrm{v}_{\mathrm{n}}, \mathrm{v}_{2}, \mathrm{v}_{3} ; \mathrm{v}_{2}$ is adjacent $\operatorname{tov}_{\mathrm{n}}, \mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{4} ; \mathrm{v}_{\mathrm{i}}$ is adjacent tov $\mathrm{v}_{\mathrm{i}-2}, \mathrm{v}_{\mathrm{i}-1}, \mathrm{v}_{\mathrm{i}+1}, \mathrm{v}_{\mathrm{i}+2}$ where $\mathrm{i}=3$ to $\mathrm{n}-2, \mathrm{v}_{\mathrm{n}-1}$ is adjacent to $\mathrm{v}_{\mathrm{n}-3}, \mathrm{v}_{\mathrm{n}-2}, \mathrm{v}_{\mathrm{n}}, \mathrm{v}_{1}$ and v_{n} is adjacent to $v_{n-2}, v_{n-1}, v_{1}, v_{2}$ such that $v_{1} v_{2} \ldots v_{n}$ forms a cycle, then clearly each vertex is of degree 4 and $n \geq 6$. Thus from the construction, we have a 4 -regular graph with girth 3 on n vertices and 2 n edges. We denote $\mathrm{G}(\mathrm{n}, 4,3)$ for $4-$ regular graph on n vertices with girth 3 .
Example 1. 3. Consider the graph $G(8,4,3)$ given in figure 1.1. Clearly $S=\{1,5\}$ is a minimum isolate dominating set. Then minimum inverse dominating sets with respect to S are $\{2,6\},\{2$, $7\},\{3,6\},\{3,7\},\{3,8\},\{4,7\}$ and $\{4,8\}$.

Fig 1. 1G($8,4,3)$

Definition 1. 4.[10] If v_{1} is adjacent $\operatorname{tov}_{n-2}, v_{n}, v_{2}, v_{4} ; v_{2}$ is adjacent tov $v_{n-1}, v_{1}, v_{3}, v_{5} ; v_{i}$ is adjacent tov $\mathrm{v}_{\mathrm{i}-3}, \mathrm{v}_{\mathrm{i}-1}, \mathrm{v}_{\mathrm{i}+1}, \mathrm{v}_{\mathrm{i}+3}$ where $\mathrm{i}=4$ to $\mathrm{n}-1, \mathrm{v}_{\mathrm{n}-1}$ is adjacent tov $\mathrm{v}_{\mathrm{n}-4}, \mathrm{v}_{\mathrm{n}-2}, \mathrm{v}_{\mathrm{n}}, \mathrm{v}_{2}$ and v_{n} is adjacent to $\mathrm{v}_{\mathrm{n}-3}, \mathrm{v}_{\mathrm{n}-1}, \mathrm{v}_{1}, \mathrm{v}_{3}$ such that $\mathrm{v}_{1} \mathrm{v}_{2} \ldots \mathrm{v}_{\mathrm{n}}$ forms a cycle, then clearly each vertex is of degree 4 and $n \geq 7$. Thus from the construction, we have a 4 -regular graph on girth 4 with n vertices and 2 n edges. We denote $\mathrm{G}(\mathrm{n}, 4,4)$ for 4 -regular graph on n vertices with girth 4 .
Example 1. 5.Consider the graph $G(10,4,4)$ given in figure 1.2.Clearly $S=\{1,6\}$ is a minimum isolate dominating set. Then minimum inverse dominating sets with respect to S are $\{2,7\},\{3$, $8\},\{4,9\}$ and $\{5,10\}$.

Fig 1. 2G(10, 4, 4)
We use the following results in the subsequent sufficient.
Theorem 1.6. [11] $\gamma_{0}\left(C_{n}\right)=\left[\frac{n}{3}\right]$.
Theorem 1.7. [5] If G is a graph with no isolate vertices, then the complement $\mathrm{V}-\mathrm{S}$ of every minimal dominating set S is a dominating set.

2. Inverse isolate domination on four - regular graph with girth 3

Notation: We use the notation $G(n)$ to denoteG(n, 3, 4) in this section.
Theorem 2. 1. For the graph $G(n), \gamma_{0}{ }^{-1}(G(n))=\left\{\begin{array}{l}1 \text { if } n=5 \\ {\left[\frac{n}{5}\right] \text { if } n \geq 6}\end{array}\right.$.
Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of $G(n)$ such that $v_{1} v_{2} \ldots v_{n} v_{1}$ forms a cycle. By Definition 1. 2, $n \geq 6$.Let S and S^{\prime} be anisolate dominating set and inverse isolate dominating set with respect to S respectively. By the definition of four regular graph, $n \geq 5$. If $n=5$, then $G(5)$ $\cong K_{5}$ and hence $|S|=\left|S^{\prime}\right|=1$. This implies that $\gamma_{0}{ }^{-1}(G(5))=1$. Now, we consider $n \geq 6$. If $n \equiv$ $0(\bmod 5)$, then $S=\left\{v_{i}, v_{i+5}, v_{i+10}, \ldots, v_{i+(n-5)}\right\}$ is a minimum isolate dominating set and if $n \not \equiv$ $0(\bmod 5)$, then $S=\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+5}, \mathrm{v}_{\mathrm{i}+10}, \ldots, \mathrm{v}_{\mathrm{i}+(\mathrm{n}-4)}\right\}$ is a minimum isolate dominating set. Therefore $\gamma_{0}(G(n))=\left\lceil\frac{n}{5}\right\rceil$.If $n \equiv 0(\bmod 5)$, thenS $S^{\prime}=\left\{v_{j}, v_{j+5}, v_{j+10}, \ldots, v_{j+(n-5)} / i \neq j\right\}$ is a minimum inverse dominating set with respect to S and if $n \not \equiv 0(\bmod 5)$, thenS $S^{\prime}=\left\{v_{j}, v_{j+5}, v_{j+10}, \ldots\right.$,
$\mathrm{v}_{\mathrm{j}+(\mathrm{n}-4)} / \mathrm{i} \neq \mathrm{j}$ is a minimum inverse dominating set with respect to S , all thesuffixes modulo n . In both cases S^{\prime} is a minimum inverse dominating setand $\delta\left(\left\langle S^{\prime}\right\rangle\right)=0$, which implies that S^{\prime} is an inverse isolate dominating set of $G(n)$. Clearly $|S|=\left|S^{\prime}\right|=\left\lceil\frac{n}{5}\right\rceil$. Therefore, $\gamma_{0}{ }^{-1}(G(n))=\left\lceil\frac{n}{5}\right\rceil$ for n ≥ 6. Hence the theorem.
Theorem 2. 2. For the graph $G(n), \gamma_{0}{ }^{-1}(\overline{G(n)})=\left\{\begin{array}{l}0 \text { if } n=5 \\ 3 \text { if } n \geq 6\end{array}\right.$.
Proof. Let $G(n)$ be a 4 -regular graph and hence $\overline{G(n)}$ is a ($n-5$)-regular graph. The vertex v_{i} is non adjacent to $v_{i \pm 1}$ andv $v_{i \pm 2}$ in $\overline{G(n)}$. The vertex v_{i+1} is adjacent to v_{i-2} and v_{i+2} is adjacent to v_{i-1} in $\overline{G(n)}$.If $n=5$, then $\overline{G(5)} \cong \bar{K}_{5}$. This implies that $S=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ is the unique minimum isolate dominating set of $\overline{G(5)}$ and hence the inverse isolate dominating setS ${ }^{\prime}=\varphi$. Therefore $\gamma_{0}{ }^{-1} \overline{G(5)}=0$. Let $n \geq 6$.For $1 \leq i \leq n, S=\left\{v_{i}, v_{i+1}, v_{i+2}\right\}$ is a minimum isolate dominating set of $\overline{G(n)}$ where the suffixes modulo n. Clearly $S^{\prime}=\left\{v_{j}, v_{j+1}, v_{j+2}\right\}$ where $1 \leq j \leq n$, the suffixes modulo n and $|i-j| \geq$ 3is a minimum inverse dominating set of $\overline{G(n)}$ with respect to S. Therefore $\gamma_{0}{ }^{-1}(\overline{\mathrm{G}(\mathrm{n})})=3$ for $\mathrm{n} \geq 6$.

Theorem2. 3.Let v be any vertex of $G(n)$. Then $\gamma_{0}{ }^{-1}\left(G(n)^{v}\right)=\left\{\begin{array}{l}0 \text { if } n=5 \\ 2 \text { if } 7 \leq n \leq 10 \\ 3 \text { if } n=6,11 \leq n \leq 16 \\ \left\lceil\frac{n-1}{5}\right\rceil \text { if } n \geq 17\end{array}\right.$.
Proof. Let $G(n)^{v}$ be the graph obtained from $G(n)$ by switching the vertex v. Letv $=v_{i}$, $1 \leq \mathrm{i} \leq \mathrm{n}$.Let S and S^{\prime} be a minimumisolate dominating set and minimum inverse isolate dominating set with respect to S of $G(n)^{v}$, respectively. Clearly $n \geq 6$. We now consider the following cases.
Case 1. $\mathrm{n}=5$
Then $G(5)=K_{5}$ and hence $G(5)^{v} \cong K_{1} \cup K_{4}$, whichhas theisolate vertex v. By Theorem 1. 7 , there does not exist an inverse dominating set and hence $\gamma_{0}{ }^{-1}\left(G(5)^{\mathrm{V}}\right)=0$.

Case 2. $\mathrm{n}=6$
Clearly $S=\left\{v_{i+3}\right\}$ is the unique minimum isolate dominating set of $G(n)^{v_{i}}$ and the corresponding minimum inverse dominating set S^{\prime} is either $\left\{v_{i}, v_{i+1}, v_{i+2}\right\}$ or $\left\{v_{i}, v_{i+1}, v_{i-2}\right\}$ or $\left\{v_{i}, v_{i+1}, v_{i-1}\right\}$ or $\left\{v_{i}, v_{i+2}, v_{i-2}\right\}$ or $\left\{v_{i}, v_{i+2}, v_{i-1}\right\}$ or $\left\{v_{i}, v_{i-2}, v_{i-1}\right\}$, where the suffixes modulo n and $1 \leq \mathrm{i} \leq \mathrm{n}$ and $\delta\left(\left\langle S^{\prime}\right\rangle\right)=0$. This implies that S^{\prime} is an inverse isolate dominating set of $\mathrm{G}(6)^{v}$. Hence $\gamma_{0}{ }^{-1}\left(G(6)^{\mathrm{v}}\right)=3$.
Case $3.7 \leq n \leq 10$
If $\mathrm{n}=7$, then $\mathrm{S}=\left\{\mathrm{v}_{\mathrm{i}+1}, \mathrm{v}_{\mathrm{i}+4}\right\}$ is a minimum isolate dominating set and the corresponding minimum inverse dominating S^{\prime} is $\left\{\mathrm{v}_{\mathrm{i}-1}, \mathrm{v}_{\mathrm{i}+3}\right\}$ where the suffixes modulo $\mathrm{n}, 1 \leq \mathrm{i} \leq \mathrm{n}$ and $\delta\left(\left\langle S^{\prime}\right\rangle\right)=0$. If $8 \leq \mathrm{n} \leq 10$, then $\mathrm{S}=\left\{\mathrm{v}_{\mathrm{i}-2}, \mathrm{v}_{\mathrm{i}+3}\right\}$ is a minimum isolate dominating set and the corresponding minimum inverse dominating S^{\prime} is either $\left\{v_{i-1}, v_{i+4}\right\} \operatorname{or}\left\{v_{i-3}, v_{i+2}\right\}$ where the suffixes modulo $\mathrm{n}, 1 \leq \mathrm{i} \leq \mathrm{n}$. In both cases $\delta\left(\left\langle S^{\prime}\right\rangle\right)=0$, which implies that S^{\prime} is an inverse isolate dominating set ofG $(\mathrm{n})^{\mathrm{v}}$. Hence $\gamma_{0}{ }^{-1}\left(\mathrm{G}(\mathrm{n})^{\mathrm{v}}\right)=2$

Case 4. $\mathrm{n}=11$
Here $S=\left\{v_{i+3}, v_{i-3}\right\}$ is the unique minimum isolate dominating set of $G^{v}(n)$ and the corresponding inverse dominating set S^{\prime} is either $\left\{v_{i}, v_{i+1}, v_{i-2}\right\}$ or $\left\{v_{i}, v_{i+1}, v_{i-1}\right\}$ or $\left\{v_{i}, v_{i+2}, v_{i-2}\right\}$ or $\left\{v_{i}, v_{i+2}, v_{i-1}\right\}$ or $\left\{v_{i+1}, v_{i+2}, v_{i-4}\right\}$ or $\left\{v_{i+1}, v_{i+4}, v_{i-4}\right\}$ or $\left\{v_{i+1}, v_{i+4}, v_{i-2}\right\}$ or $\left\{v_{i+1}, v_{i+5}, v_{i-4}\right\}$ or $\left\{v_{i+1}, v_{i+5}, v_{i-2}\right\}$ or $\left\{v_{i+1}, v_{i+5}, v_{i-1}\right\}$ or $\left\{v_{i+1}, v_{i-5}, v_{i-4}\right\}$ or $\left\{v_{i+1}, v_{i-5}, v_{i-2}\right\}$ or $\left\{v_{i+2}, v_{i+5}, v_{i-2}\right\}$ or $\left\{v_{i+2}, v_{i+5}, v_{i-1}\right\} \quad$ or $\quad\left\{v_{i+2}, v_{i-5}, v_{i-2}\right\} \quad$ or $\quad\left\{v_{i+2}, v_{i-4}, v_{i-2}\right\}$ or $\left\{v_{i+2}, v_{i-4}, v_{i-1}\right\} \quad$ or $\left\{v_{i+4}, v_{i+5}, v_{i-1}\right\} \quad$ or $\left\{v_{i+4}, v_{i-5}, v_{i-1}\right\} \quad$ or $\quad\left\{v_{i+4}, v_{i-4}, v_{i-1}\right\} \quad$ or $\left\{v_{i+4}, v_{i+5}, v_{i-1}\right\}$, where the suffixes modulo n. In all possible cases $\delta\left(\left\langle S^{\prime}\right\rangle\right)=0$, which implies that S^{\prime} is an inverse isolate dominating set of $\mathrm{G}(11)^{\mathrm{v}}$. Hence $\gamma_{0}{ }^{-1}\left(\mathrm{G}(11)^{\mathrm{v}}\right)=3$.

Case $5.12 \leq \mathrm{n} \leq 16$
In this case, $S=\left\{v_{i-1}, v_{i}, v_{i+1}\right\}$ is a minimum isolate dominating set and the corresponding minimum inverse dominating set S^{\prime} is $\left\{\mathrm{v}_{\mathrm{i}-3}, \mathrm{v}_{\mathrm{i}+3}, \mathrm{v}_{\mathrm{i}+8}\right\}$, where the suffixes modulo n and $\delta\left(\left\langle S^{\prime}\right\rangle\right)=0$, which implies that S^{\prime} is an inverse isolate dominating set of $\mathrm{G}(\mathrm{n})^{\mathrm{v}}$. Hence $\gamma_{0}{ }^{-1}\left(G(n)^{v}\right)=3$.
Case 6. $\mathrm{n} \geq 17$
In this case, a minimum isolate dominating set $S=\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}, \mathrm{v}_{\mathrm{i}-2}\right\}$ and the corresponding inverse dominating set S^{\prime} is given by, $S^{\prime}=\left\{v_{i+3}, v_{i+8}, v_{i+13}, \ldots, v_{i-3}\right\}$ for $n \equiv 0,1(\bmod 5)$ andS $S^{\prime}=$ $\left\{\mathrm{v}_{\mathrm{i}+3}, \mathrm{v}_{\mathrm{i}+8}, \mathrm{v}_{\mathrm{i}+13}, \ldots, \mathrm{v}_{\mathrm{i}-2}\right\}$ forn $\equiv 2,3,4(\bmod 5)$, where the suffixes modulo n and also $\delta\left(\left\langle S^{\prime}\right\rangle\right)=$ 0 . This implies that S^{\prime} is an inverse isolate dominating set of $G(n)^{v}$. Hence $\gamma_{0}{ }^{-1}\left(G(n)^{v}\right)=$ $\left\lceil\frac{\mathrm{n}-1}{5}\right\rceil$.The theorem follows from all the six cases.
Theorem2. 4.Let G be the Cartesian product of $G(n)$ and K_{2}.Then $\gamma_{0}{ }^{-1}(G)$ $=\left\{\begin{array}{l}\left\lceil\frac{n}{3}\right\rceil \quad \text { if } n \equiv 1(\bmod 6) \\ 2\left\lceil\frac{n}{6}\right\rceil \text { if } n \not \equiv 1(\bmod 6)\end{array}\right.$.

Proof. Let $\mathrm{G}=\mathrm{G}(\mathrm{n}) \times \mathrm{K}_{2}$. Let $\mathrm{V}(\mathrm{G}(\mathrm{n}))=\left\{\mathrm{v}_{1}, \quad \mathrm{v}_{2}, \ldots, \quad \mathrm{v}_{\mathrm{n}}\right\} \quad \operatorname{andE}(\mathrm{G}(\mathrm{n}))=$ $\left\{v_{i} v_{i+1}, v_{i} v_{i+2}, v_{i} v_{i-1}, v_{i} v_{i-2} / 1 \leq i \leq n\right\}$ be the vertex set and edge set of $G(n)$ respectively where the suffixes modulo n. Let $\mathrm{V}\left(\mathrm{K}_{2}\right)=\left\{\mathrm{v}_{\mathrm{a}}, \mathrm{v}_{\mathrm{b}}\right\}$ and $\mathrm{E}\left(\mathrm{K}_{2}\right)=\left\{\mathrm{v}_{\mathrm{a}} \mathrm{v}_{\mathrm{b}}\right\}$. By the definition of Cartesian product $\mathrm{V}(\mathrm{G})=\left\{\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{a}}\right),\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{b}}\right) / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ and $\mathrm{E}(\mathrm{G})=\left\{\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{a}}\right)\left(\mathrm{v}_{\mathrm{j}}, \mathrm{v}_{\mathrm{b}}\right) / \mathrm{i}=\mathrm{j}\right.$ $\operatorname{andv}_{\mathrm{a}} \mathrm{v}_{\mathrm{b}} \in \mathrm{E}\left(\mathrm{K}_{2}\right)$ or $\mathrm{a}=\mathrm{b}$ andv $\left.\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{j}} \in \mathrm{E}(\mathrm{G}(\mathrm{n}))\right\}$.Denote $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{a}}\right)$ by $\mathrm{v}_{\mathrm{i}, \mathrm{a}}$ and $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{b}}\right)$ by $\mathrm{v}_{\mathrm{i}, \mathrm{b}}, 1 \leq \mathrm{i} \leq \mathrm{n}$. We now consider the following two cases.
Case 1. $\mathrm{n} \equiv 1$ (mod6)
In this case a minimumisolate dominating set $S=\left\{\mathrm{v}_{\mathrm{i}, \mathrm{a}}, \mathrm{v}_{\mathrm{i}+3, \mathrm{~b},}, \mathrm{v}_{\mathrm{i}+6, \mathrm{a}}, \ldots\right.$, $\left.v_{i+(n-4), b}, v_{i+(n-1), a}\right\}$, where the suffixes modulo nand the corresponding inverse dominating setS ${ }^{\prime}=\left\{\mathrm{V}_{\mathrm{j}, \mathrm{a}}, \mathrm{v}_{\mathrm{j}+3, \mathrm{~b}}, \mathrm{v}_{\mathrm{j}+6, \mathrm{a}}, \ldots, \mathrm{v}_{\mathrm{j}+(\mathrm{n}-4), \mathrm{b}}, \mathrm{v}_{\mathrm{j}+(\mathrm{n}-3), \mathrm{a}}\right\}$, where the suffixes modulo n andi $\neq \mathrm{j}$. Clearly $\delta\left(\left\langle S^{\prime}\right\rangle\right)=0$, which implies that S^{\prime} is an inverse isolate dominating set of G . Hence $\gamma_{0}{ }^{-1}(\mathrm{G})=\left[\frac{n}{3}\right]$.

Case 2. n $\not \equiv 1$ (mod6)

In this case the isolate dominating sets S of G is $\left\{v_{i, a}, v_{i+3, b}, v_{i+6, a}, \ldots, v_{i+(n-6), a}\right.$, $\left.v_{i+(n-3), b}\right\}$ for $n \equiv 0(\bmod 6),\left\{v_{i, a}, v_{i+3, b}, v_{i+6, a}, \ldots, v_{i+(n-3), a}, v_{i+(n-2), b}\right\}$ for $n \equiv 2,3(\bmod 6)$, $\left\{v_{i, a}, v_{i+3, b}, \quad v_{i+6, a}, \quad \ldots, \quad v_{i+(n-4), a}, \quad v_{i+(n-2), b}\right\} \quad$ for $\quad n \equiv 4(\bmod 6) \quad$ and
$\left\{v_{i, a}, v_{i+3, b}, v_{i+6, a}, \ldots, v_{i+(n-5), a}, v_{i+(n-2), b}\right\}$ for $n \equiv 5(\bmod 6)$ and the corresponding inverse dominating sets are $\left\{v_{j, a}, v_{j+3, b}, \quad v_{j+6, a}, \ldots, v_{j+(n-6), a}, v_{j+(n-3), b}\right\},\left\{v_{j, a}, \quad v_{j+3, b}, \quad v_{j+6, a}, \ldots\right.$, $\left.v_{j+(n-3), a}, v_{j+(n-2), b}\right\}, \quad\left\{v_{j, a}, \quad v_{j+3, b}, \quad v_{j+6, a}, \ldots, \quad v_{j+(n-4), a}, \quad v_{j+(n-2), b}\right\}$ and $\quad\left\{v_{j, a}, \quad v_{j+3, b}\right.$, $\left.\mathrm{v}_{\mathrm{j}+6, \mathrm{a}}, \ldots, \mathrm{v}_{\mathrm{j}+(\mathrm{n}-5), \mathrm{a}}, \mathrm{v}_{\mathrm{j}+(\mathrm{n}-2), \mathrm{b}}\right\}$, where the suffixes modulo n andi$\neq \mathrm{j}$.In all possible cases $\delta\left(\left\langle S^{\prime}\right\rangle\right)=$ 0 , which implies that S^{\prime} is an inverse isolate dominating set of G . $\operatorname{Hence}_{0}{ }^{-1}(\mathrm{G})=2\left\lceil\frac{\mathrm{n}}{6}\right\rceil$.

$$
\mathrm{G}(10) \times \mathrm{K}_{2}
$$

3. Inverse isolate domination on four-regular graph with girth 4

Note: We denote the graph $G(n, 4,4)$ by $G^{*}(n)$ in this section.
Theorem 3. 1. For the graph $G^{*}(n), \gamma_{0}^{-1}\left(G^{*}(n)\right)=\left\{\begin{array}{l}4 \text { if } n=8 \\ \left\lceil\frac{n}{5}\right\rceil+1 \text { if } n \equiv 4(\bmod 5) \\ \left\lceil\frac{n}{5}\right\rceil \text { if } n \not \equiv 4(\bmod 5)\end{array}\right.$.

Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of $G(n)$ and such that $v_{1} v_{2} \ldots v_{n} v_{1}$ form a cycle. By the definition of 4-regular graph with girth $4, n \geq 7$. Let S and S^{\prime} be the isolate dominating set and inverse isolate dominating set respectively. We now consider the following three cases.
Case 1. $\mathrm{n}=8$
In this case a minimum isolate dominating set of $G^{*}(n)$ is, $S=\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{5}, \mathrm{v}_{7}\right\}$ and the corresponding minimum inverse isolate dominating set $\mathrm{S}^{\prime}=\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{6}, \mathrm{v}_{8}\right\}$. Clearly $\delta\left(\left\langle S^{\prime}\right\rangle\right)=0$, which implies that S^{\prime} is an inverse isolate dominating set of $G^{*}(8)$. This implies that $\gamma_{0}{ }^{-1}\left(\mathrm{G}^{*}(8)\right)=4$.
Case 2. $\mathrm{n} \equiv 4(\bmod 5)$
In this case a minimum isolate dominating set set of $G^{*}(n)$ is, $\mathrm{S}=$ $\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+5}, \mathrm{v}_{\mathrm{i}+10}, \ldots, \mathrm{v}_{\mathrm{i}+(\mathrm{n}-2)} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ and the corresponding minimuminverse dominating set S^{\prime} $=\left\{\mathrm{v}_{\mathrm{j}}, \mathrm{v}_{\mathrm{j}+5}, \mathrm{v}_{\mathrm{j}+10}, \ldots, \mathrm{v}_{\mathrm{j}+(\mathrm{n}-2)} / \mathrm{j}=\mathrm{i}+1\right\}$, where the suffixes modulo n and $\delta\left(\left\langle S^{\prime}\right\rangle\right)=0$. Hence S^{\prime} is an inverse isolate dominating set of $G^{*}(n)$. This implies that $\gamma_{0}{ }^{-1}\left(\mathrm{G}^{*}(\mathrm{n})\right)=\left\lceil\frac{\mathrm{n}}{5}\right\rceil+1$.
Case 3. n $\not \equiv 4(\bmod 5)$
In this case the minimum isolate dominating set S is $\left\{v_{i}, v_{i+5}, v_{i+10}, \ldots, v_{i+(n-5)}\right\}$ forn \equiv $0(\bmod 5), \quad\left\{v_{i}, v_{i+5}, v_{i+10}, \ldots, v_{i+(n-1)}\right\}$ for $n \equiv 1,3(\bmod 5)$ and $\left\{v_{i}, v_{i+5}, v_{i+10}, \ldots\right.$, $\left.v_{i+(n-2)}\right\}$ for $n \equiv 2(\bmod 5)$. Then the corresponding minimuminverse dominating sets S^{\prime} is $\left\{v_{j}\right.$, $\left.\mathrm{v}_{\mathrm{j}+5}, \mathrm{v}_{\mathrm{j}+10}, \ldots, \mathrm{v}_{\mathrm{j}+(\mathrm{n}-5)}\right\}$ forn $\equiv 0(\bmod 5),\left\{\mathrm{v}_{\mathrm{j}}, \mathrm{v}_{\mathrm{j}+5}, \mathrm{v}_{\mathrm{j}+10}, \ldots, \mathrm{v}_{\mathrm{j}+(\mathrm{n}-3)}\right\}$ for $\mathrm{n} \equiv 1,3(\bmod 5)$ $\operatorname{and}\left\{\mathrm{v}_{\mathrm{j}}, \mathrm{v}_{\mathrm{j}+5}, \mathrm{v}_{\mathrm{j}+10}, \ldots, \mathrm{v}_{\mathrm{j}+(\mathrm{n}-2)}\right\}$ for $\mathrm{n} \equiv 2(\bmod 5)$, where the suffixes modulo n and $\mathrm{j}=\mathrm{i}+1$ and $\delta\left(\left\langle S^{\prime}\right\rangle\right)=0$. Hence S^{\prime} is an inverse isolate dominating set of $G^{*}(n)$. This implies that $\gamma_{0}{ }^{-1}\left(G^{*}(n)\right)=\left\lceil\frac{n}{5}\right\rceil$.
Thus the theorem follows from cases 1,2 and 3 .
Theorem3. 2.For the graph $\left(\overline{\mathrm{G}^{*}(\mathrm{n})}\right), \gamma_{0}{ }^{-1}\left(\overline{\mathrm{G}^{*}(\mathrm{n})}\right)=\left\{\begin{array}{l}3 \text { if } \mathrm{n}=7 \\ 2 \text { if } \mathrm{n} \geq 8\end{array}\right.$.
Proof. Let $\left(\overline{G^{*}(n)}\right)$ be the complement graph of $G(n)$.Let $V\left(\overline{G^{*}(n)}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Fori $=1$ to n, v_{i} is adjacent to v_{j} in $\left(\overline{G^{*}(n)}\right), 1 \leq j \leq n j \neq i \pm 1, i \pm 3$. Let S be aminimum isolate dominating set and S^{\prime} be aminimuminverse isolate dominating set with respect to S in $\left(\overline{\mathrm{G}^{*}(\mathrm{n})}\right)$. We now consider the following two cases.
Case 1. $\mathrm{n}=7$
In this case the resulting graph $\left(\overline{\mathrm{G}^{*}(7)}\right) \cong \mathrm{C}_{7}$. By Theorem 2. $2, \gamma_{0}{ }^{-1}\left(\overline{\mathrm{G}^{*}(\mathrm{n})}\right)=3$

$\left(\overline{\mathrm{G}^{*}(8)}\right)$
Case 2. $\mathrm{n} \geq 8$
Clearly the resulting $\operatorname{graph}\left(\overline{\mathrm{G}^{*}(\mathrm{n})}\right)$ is a $(\mathrm{n}-5)$-regular graph. A minimumisolate dominating $\operatorname{set}_{\mathrm{i}}=\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right\}$, where the suffixes modulo $\mathrm{n}, 1 \leq \mathrm{i} \leq \mathrm{n}$ and the corresponding minimum inverse dominating set S_{i}^{\prime} is $\left\{v_{j}, v_{j+1}\right\}$, where the suffixes modulo $n, 1 \leq j \leq n, j \neq i, i+$ 1 and also $\delta\left(\left\langle S^{\prime}\right\rangle\right)=0$, which implies that S^{\prime} is an inverse isolate dominating set of $\overline{\mathrm{G}^{*}(\mathrm{n})}$. Hence $\gamma_{0}{ }^{-1}\left(\overline{\mathrm{G}^{*}(\mathrm{n})}\right)=2$.
Thus the theorem follows from cases 1 and 2 .
Theorem 3. 3. For the graph $G^{v}(n)$,
$\gamma_{0}{ }^{-1}\left(G^{*}(n)\right)^{v}=\left\{\begin{array}{l}5 \text { if } n=8 \\ 2 \text { if } n=9 \\ {\left[\frac{n}{5}\right]+1 \text { if } n \equiv 4(\bmod 5) \text { and } n \geq 10} \\ {\left[\frac{n}{5}\right] \text { if } n \not \equiv 4(\bmod 5) \text { and } n=7, n \geq 10}\end{array}\right.$.
Proof. Let $\left[G^{*}(n)\right]^{v}$ be the graph obtained by switching of the vertex v. Without loss of generality, let $\mathrm{v}=v_{i}$. Let S and S^{\prime} be the isolate dominating set and inverse isolate dominating set of $\left[G^{*}(n)\right]^{v}$, respectively. We now considerthe following four cases.
Case 1. $\mathrm{n}=7$
The minimum isolate dominating set of $\left[G^{*}(7)\right]^{v_{i} \text { is }} \mathrm{S}=\left\{v_{i+2}, v_{i-3}\right\}$ and the corresponding inverse dominating sets are $S^{\prime}=\left\{v_{i+3}, v_{i-2}\right\}$ respectively. Claerly $\delta\left(\left\langle S^{\prime}\right\rangle\right)=0$. Hence S^{\prime} is an inverse isolate dominating set of $\left[G^{*}(7)\right]^{v_{i}}$. Hence $\gamma_{0}{ }^{-1}\left(\left[G^{*}(7)\right]^{v_{i}}\right)=2$.
Case 2. $\mathrm{n}=8$
In this case the isolate dominating set of $\left[G^{*}(8)\right]^{v_{i}}$ is $\mathrm{S}=\left\{\mathrm{v}_{\mathrm{i}+2}, v_{i+4}, v_{i-2}\right\}$ and the corresponding inverse dominating set $S^{\prime}=\left\{v_{i}, v_{i+1}, v_{i+3}, v_{i-3}, v_{i-1}\right\}$. Clearly $\delta\left(\left\langle S^{\prime}\right\rangle\right)=0$. Hence S^{\prime} is an inverse isolate dominating set of $\left[G^{*}(8)\right]^{v_{i}}$. Hence $\gamma_{0}{ }^{-1}\left(G^{*}(5)\right)^{v}=5$.
Case 3. $\mathrm{n}=9$
In this case the minimum isolate dominating setof $\left[G^{*}(9)\right]^{v_{i}}$ is $S=\left\{v_{i+2}, v_{i-2}\right\}$ and the corresponding inverse dominating sets $\mathrm{S}^{\prime}=\left\{\mathrm{v}_{\mathrm{i}+1}, v_{i+4}, v_{i-3}, v_{i-1}\right\}$.Clearly $\delta\left(\left\langle S^{\prime}\right\rangle\right)=0$, which implies that S^{\prime} is an inverse isolate dominating set of $\left[G^{*}(9)\right]^{v_{i}}$. Hence $\gamma_{0}{ }^{-1}\left(\left[G^{*}(9)\right]^{v_{i}}\right)=2$.
Case $4 . \mathrm{n} \geq 10$ and $\mathrm{n} \equiv 4(\bmod 5)$

The minimumisolate dominating set of $\left[G^{*}(n)\right]^{v_{i}}$ is $S=\left\{v_{i}, v_{i+3}, v_{i-2}\right\}$ and the corresponding inverse dominating set $\mathrm{S}^{\prime}=\left\{\mathrm{v}_{\mathrm{i}+2}, \mathrm{v}_{\mathrm{i}+}, \mathrm{v}_{\mathrm{i}+12}, \ldots, \mathrm{v}_{\mathrm{i}-3}\right\}$, where the suffixes modulo n.Clearly $\delta\left(\left\langle S^{\prime}\right\rangle\right)=0$. Therefore S^{\prime} is aninverse isolate dominating set of $\left[G^{*}(n)\right]^{v_{i}}$. Hence ${ }_{0}{ }^{-1}\left(\left[G^{*}(n)\right]^{v_{i}}\right)=\left\lceil\frac{n}{5}\right\rceil+1$.
Case 5. $n=7, n \geq 10$ and $n \not \equiv 4(\bmod 5)$
The minimum isolate dominating set of $\left[G^{*}(n)\right]^{v_{i} \text { is } S}=\left\{v_{\mathrm{i}}, v_{i+3}, v_{i-2}\right\}$ and the corresponding inverse dominating set S^{\prime} is $\left\{v_{i+2}, v_{i+}, \ldots, v_{i-1}\right\}$ for $n \equiv 1(\bmod 5)$ and $\left\{v_{i+2}, v_{i+7}, \ldots, v_{i-3}\right\}$ for $n \equiv 0,2,3(\bmod 5)$, where the suffixes modulo n. Clearly $\delta\left(\left\langle S^{\prime}\right\rangle\right)=$ 0 . Therefore S^{\prime} is an inverse isolate dominating set of $\left[G^{*}(n)\right]^{v_{i}}$. Hence $\gamma_{0}{ }^{-1}\left(\left[G^{*}(n)\right]^{v_{i}}\right)=\left[\frac{\mathrm{n}}{5}\right]$.
Theorem 3. 4. Let G be a graph obtained by the addition of $G^{*}(n)$ and K_{2}. Then $\gamma_{0}{ }^{-1}(G)=1$.
Proof. Let $G=G^{*}(n)+K_{2}$. Let $V\left(G^{*}(n)\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $V\left(K_{2}\right)=\left\{u_{1}, u_{2}\right\}$.Then $E\left(G^{*}(n)\right)=\left\{v_{i} v_{i+1}, v_{i} v_{i+3}, v_{i} v_{i-1}, v_{i} v_{i-3} / 1 \leq i \leq n\right\}$ and $E\left(K_{2}\right)=\left\{u_{1} u_{2}\right\}$.By the definition of additionof two graphs, we have $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}, u_{1}, u_{2}\right\}$ andE $(G)=\left\{v_{i} v_{i+1}, v_{i} v_{i+3}\right.$, $\left.v_{i} v_{i-1}, v_{i} v_{i-3}, u_{1} v_{i}, u_{2} v_{i}, u_{1} u_{2} / 1 \leq i \leq n\right\}$. Clearly a minimumisolate dominating set $S=\left\{u_{1}\right\}$ and the minimum inverse isolate dominating set with respect to S is $\mathrm{S}^{\prime}=\left\{\mathrm{u}_{2}\right\}$. Also $\delta\left(\left\langle S^{\prime}\right\rangle\right)=0$. Hence S^{\prime} is an inverse isolate dominating set of G. Therefore $\gamma_{0}{ }^{-1}(G)=1$.
Theorem3. 5.Let G be the corona product of $G^{*}(n)$ and K_{2}.Then $\gamma_{0}{ }^{-1}(G)=n$.
Proof.Let G be a graph obtained bythe corona product of $G^{*}(n)$ and K_{2}. Let $V\left(G^{*}(n)\right)=\left\{u_{i} /\right.$ $1 \leq i \leq n\}$ be the vertex set such that $u_{1} u_{2} \ldots u_{n} u_{1}$ is a cycle. Let $\left\{v_{i}, w_{i}\right\}$ be the vertex set of $i^{\text {th }}$ copy of K_{2}. Join u_{i} with v_{i} and $w_{i}, 1 \leq i \leq n$. The resulting graph is $G^{*}(n) \odot K_{2}$. Clearly $V(G)=$ $\left\{u_{i}, v_{i}, w_{i} / 1 \leq i \leq n\right\}$ and $E(G)=\left\{u_{i} u_{i \pm 1} u_{i} u_{i \pm 3}, u_{i} v_{i}, u_{i} w_{i}, v_{i} w_{i} / 1 \leq i \leq n\right\}$, where the suffixes modulo n. To dominate the vertices v_{i} and w_{i}, we must select either u_{i} or v_{i} or $w_{i}, 1 \leq i \leq n$. Hence a minimum dominating set must contains n vertices.Clearly $S=\left\{v_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\}$ is a minimum isolate dominating set. Now $S^{\prime}=\left\{u_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ is a minimum inverse isolate dominating set with respect to S . Also $\delta\left(\left\langle S^{\prime}\right\rangle\right)=0$. Therefore S^{\prime} is an inverse isolate dominating set of G. Hence $\gamma_{0}{ }^{-1}(G)=n$.
Example 3. 6. Consider the graph $\mathrm{G}^{*}(8) \odot K_{2}$ in Fig. 4. 1. Clearly $\mathrm{S}=$ $\left\{\mathrm{u}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{u}_{6}, \mathrm{v}_{7}, \mathrm{v}_{8}\right\}$ is a minimum isolate dominating set. The corresponding minimum inverse isolate dominating set $\mathrm{S}^{\prime}=\left\{\mathrm{w}_{1}, \mathrm{u}_{2}, \mathrm{w}_{3}, \mathrm{u}_{4}, \mathrm{w}_{5}, \mathrm{u}_{6}, \mathrm{w}_{7}, \mathrm{u}_{8}\right\}$. Hence $\gamma_{0}{ }^{-1}\left(\mathrm{G} *(8) \odot K_{2}\right)=$ 8.

Fig. 4. $1 \mathrm{G}^{*}(8) \odot K_{2}$
Theorem 3. 7. Let G be the graph obtained by the rooted product of $G^{*}(n)$ and K_{2}. Then $\gamma_{0}{ }^{-1}(G)=n$.
Proof. Let G be the graph obtained by the rooted product of $G^{*}(n)$ and K_{2}. The vertex set of $\mathrm{G}^{*}(\mathrm{n})$ and K_{2} are $\mathrm{V}\left(\mathrm{G}^{*}(\mathrm{n})\right)=\left\{\mathrm{u}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ and $\mathrm{V}\left(\mathrm{K}_{2}\right)=\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}}\right\}$, we get the resulting graph G with $\mathrm{V}(\mathrm{G})=\left\{\mathrm{u}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ and $\mathrm{E}(\mathrm{G})=\left\{\mathrm{E}\left(G^{*}(n)\right), \mathrm{u}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$. To dominate the vertices u_{i} and w_{i}, we must select either u_{i} or $\mathrm{w}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}$. Hence a minimum dominating set contains n vertices.Clearly a minimum isolate dominating set S is $\left\{u_{i}, \mathrm{w}_{\mathrm{i}+1}, \mathrm{u}_{\mathrm{i}+2}, \mathrm{w}_{\mathrm{i}+3}, \ldots, \mathrm{u}_{\mathrm{i}-2}\right.$, $\left.w_{i-1}\right\}$ if n is odd and $\left\{u_{i}, w_{i+1}, u_{i+2}, w_{i+3}, \ldots, w_{i-2}, u_{i-1}\right\}$ if n is even. The corresponding inverse dominating set S^{\prime} is $\left\{w_{i}, u_{i+1}, w_{i+2}, u_{i+3}, \ldots, w_{i-2}, u_{i-1}\right\}$ if n is odd and $\left\{w_{i}, u_{i+1}, w_{i+2}\right.$,
$\left.\mathrm{u}_{\mathrm{i}+3}, \ldots, \mathrm{u}_{\mathrm{i}-2}, \mathrm{w}_{\mathrm{i}-1}\right\}$ if n is even, where the suffixes modulo n and $1 \leq \mathrm{i} \leq \mathrm{n}$. In both cases $\delta\left(\left\langle S^{\prime}\right\rangle\right)=0$. Therefore S^{\prime} is an inverse isolate dominating set of G. Hence $\gamma_{0}{ }^{-1}(\mathrm{G})=\mathrm{n}$.
Example 3. 8. Consider the graph $G^{*}(8) \times K_{2}$ in Fig. 4. 2. Clearly $S=\left\{u_{1}, w_{2}, u_{3}, w_{4}, u_{5}, w_{6}\right.$, $\left.\mathrm{u}_{7}, \mathrm{w}_{8}\right\}$ is a minimum isolate dominating set. The corresponding minimum inverse isolate dominating set $S^{\prime}=\left\{\mathrm{w}_{1}, \mathrm{u}_{2}, \mathrm{w}_{3}, \mathrm{u}_{4}, \mathrm{w}_{5}, \mathrm{u}_{6}, \mathrm{w}_{7}, \mathrm{u}_{8}\right\}$. Hence $\gamma_{0}{ }^{-1}(G)=8$

Fig. 4. 2. G

References

[1] Bray, Nicolas and Weisstein, Eric W. "Domination Number". From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/DominationNumber.html
[2] G. Chartrand, Lesniak, Graphs and Digraphs, fourth ed.,CRC press, BoCa Raton, 2005.
[3] R. Frucht and F. Harary, On the corona of two graphs, Aequations Math,322-325,1970
[4] Godsil C. D, Mckay B. D., A new graph product and its spectrum, Bull. Austral. Math. Soc., 18(1): 21 - 28, 1978.
[5] W. Haynes, S. T. Hedetniemi, P. J. Slater, Domination in Graphs. Advanced Topices, Marcel Dekker, New York, 1998.
[6] S. T. Hedetniemi, R. Laskar (Eds.) Topices in domination in graphs, Discrete Math. 86,1990.
[7] C. Jayasekaran. On Interchange Similar self vertex switching, Int. Journal of Algorithms, Computing and Mathematics, Vol.3, No. 3, 27 -36, August 2010.
[8] C. Jayasekaran and A. Vijila Rani, InverseIsolate Domination Number of a Graph
[9] V. R. Kulli and S. C. Sigarkant, Inverse domination in graphs, Nat. Acad Sci. Letters, Vol. 14, 473-475, 1991.
[10] N. Mohanapriya, S. Vimal Kumar, J. Vernold Vivin, M. Venkatachalam, Domination in 4regular Graphs with Girth 3, Proceedings of the National Accademy of Sciences, India section A: Physical Sciences 85, 259 - 264, 2015.
[11] I. Sahul Hamid and S. Balamurugan. Isolate domination in graphs. Arab Journal of Mathematical Sciences, Vol. 22, (2), 232-241, 2016.
[12] J. J. Seidel, A survey of two graphs, Proceedings of the Inter National Coll. Tomo, Acc, Naz. Lincei, 1976, 481 - 511.

