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Abstract: 

We studied a 𝜉-conformally flat trans-Sasakian manifold admitting a semi-symmetric non-

metric connection. Some interesting results on a 𝛽-Kenmotsu manifold admitting the semi-

symmetric non-metric connection concluded as well. 
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1.  Introduction 

The study of semi-symmetric connection in a Riemannian manifold was introduced by Yano 

[16]. Agashe and Chafle [1] introduced the notion of semi-symmetric non-metric connection. 

Later on it was studied by several geometers (see [5, 2, 15] and their references). 

On the other, a class of almost contact metric manifold namely trans-Sasakian manifold [11] 
established as a generalization of 𝛼-Sasakian [14] and 𝛽-Kenmotsu [10] manifold. A trans-

Sasakian structure of type (0, 0), (𝛼, 0) and (0, 𝛽) are cosymplectic, 𝛼-Sasakian and 𝛽-
Kenmotsu respectively. For detail study of trans-Sasakian manifold, we refer to [6, 9, 12]. In 

this paper, we study some properties of conformal curvature tensor on a trans-Sasakian 

manifold admitting the semi-symmetric non-metric connection. The conformal curvature 

tensor 𝐶 on a (2𝑛+1)-dimensional Riemannian manifold is defined as under [7]. 

𝐶(𝑋, 𝑌)𝑍 = 𝑅(𝑋,  𝑌)𝑍 −
1

(2𝑛 − 1)
[𝑆(𝑌,  𝑍)𝑋 − 𝑆(𝑋,  𝑍)𝑌 +  {𝑔(𝑌, 𝑍)𝑄𝑋 − 𝑔(𝑋, 𝑍)𝑄𝑌] 

                          +
𝑟

2𝑛(2𝑛−1)
[𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌],                            (1.1) 

where 𝑆 and 𝑄 are Ricci-tensor and Ricci-operator respectively. 

The paper is organized as under. Section-2 contains some preliminaries. In Section-3, it is 

proved that a 𝛽-Kenmotsu manifold is 𝜉-conformally flat with respect to semi-symmetric 

non-metric connection if and only if it is 𝜉-conformally flat with respect to the Levi-civita 

connection. We also found the Ricci  tensor with respect to the Levi-civita connectionin a 𝜉-
conformally flat trans-Sasakian manifold admitting semi-symmetric non-metric connection. 

Here we deduce that a 𝜉-conformally flat 𝛽-Kenmotsu manifold admitting semi-symmetric 

non-metric connection is an 𝜂−Einstein manifold. It is proved that in a 𝜉-conformally flat 

trans-Sasakian manifold admitting semi-symmetric non-metric connection, 𝜉𝛽=0. 
 

2. Preliminaries 

Let 𝑀 be a (2𝑛+1)-dimensional almost contact metric manifold (see [3, 4, 7, 8]) equipped 

with almost contact metric structure 𝜑, 𝜉, 𝜂, 𝑔, where 𝜑 is (1,1) tensor field, 𝜉 is a vector field, 

𝜂 is 1-form and 𝑔 is Riemannian metric such that  

𝜑²=−𝐼+𝜂⊗𝜉, 𝜂(𝜉)=1, 𝜑𝜉=0,   𝜂𝜊𝜑=0       (2.1) 

𝑔(𝜑𝑋, 𝜑𝑌)=𝑔(𝑋, 𝑌)−𝜂(𝑋)𝜂(𝑌),                             (2.2) 
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𝑔(𝜑𝑋, 𝑌)=−𝑔(𝑋,𝜑𝑌), 𝑔(𝑋,𝜉)=𝜂(𝑋),                             (2.3) 

 
 

for all 𝑋, 𝑌∈𝑇𝑀.An almost contact metric manifold 𝑀 is called trans-Sasakian manifold if 

 

            (∇𝑋𝜑)𝑌=𝛼{𝑔(𝑋,𝑌)𝜉−𝜂(𝑌)𝑋}+𝛽{𝑔(𝜑𝑋,𝑌)𝜉−𝜂(𝑌)𝜑𝑋}      (2.4) 

 
where ∇ is Levi-civita connection of Riemannian metric 𝑔 and 𝛼 and 𝛽 are smooth functions 

on 𝑀.The equation (2.4) together with equations (2.1), (2.2) and (2.3), we have 

𝛻𝑋𝜉=−𝛼𝜑𝑋+𝛽[𝑋−𝜂(𝑋)𝜉],               (2.5) 

(𝛻𝑋𝜂)𝑌=−𝛼𝑔(𝜑𝑋,𝑌)+𝛽𝑔(𝜑𝑋,𝜑𝑌)               (2.6) 

 
In a trans-Sasakian manifold, we also have [9, 12] 

 𝑅(𝑋, 𝑌)𝜉=(𝛼2−𝛽2)(𝜂(𝑌)𝑋−𝜂(𝑋)𝑌)+2𝛼𝛽(𝜂(𝑌)𝜑𝑋−𝜂(𝑋)𝜑𝑌)+ (𝑌𝛼)𝜑𝑋 

                     −(𝑋𝛼)𝜑𝑌+ (𝑌𝛽)𝜑2𝑋−(𝑋𝛽)𝜑²𝑌          (2.7) 

 

 𝑅(𝜉, 𝑌)𝑋=  (𝛼2−𝛽2)(𝑔(𝑋, 𝑌)𝜉−𝜂(𝑋)𝑌)+2𝛼𝛽(𝑔(𝜑𝑋, 𝑌)𝜉+𝜂(𝑋)𝜑𝑌)+ (𝑋𝛼) 𝜑𝑌 

                     +g(𝜑𝑋, Y) ( 𝑔𝑟𝑎𝑑 𝛼)+𝑋𝛽(𝑌−𝜂(𝑌)ξ)−g(𝜑𝑋,𝜑Y)(𝑔𝑟𝑎𝑑𝛽),                   (2.8) 

 

    𝑅(𝜉, 𝑋)𝜉=(𝛼2−𝛽2−𝜉𝛽)(𝜂𝑋𝜉−𝑋)                                                                                             (2.9) 

    and 2𝛼𝛽+ξ𝛼=0,                                                                                                                        (2.10)                         
where R is the curvature tensor. 

𝑆(𝑋, ξ)  =(2𝑛(𝛼2  −𝛽2)−𝜉𝛽)𝜂(𝑋)−(2𝑛−1)𝑋𝛽−(𝜑𝑋)𝛼,                         (2.11) 

 

𝑄𝜉= (2𝑛(𝛼2  −𝛽2)−𝜉𝛽)𝜉−(2𝑛−1) 𝑔𝑟𝑎𝑑𝛽+𝜑(𝑔𝑟𝑎𝑑𝛼),                         (2.12) 

 
Where 𝑆 is the Ricci-curvature and 𝑄 is the Ricci-operator of trans-Sasakian manifold of type 

(𝛼, 𝛽). 𝑆 and 𝑄 are related to each other by 

𝑆(𝑋,𝑌)=𝑔(𝑄𝑋,𝑌). 
 

Under the condition 𝜑(𝑔𝑟𝑎𝑑𝛼)=(2𝑛−1)(𝑔𝑟𝑎𝑑𝛽),we have 

                                                      
                                                             𝜉𝛽=0.            (2.13) 

Hence 

                                                           𝑆(𝑋,  ξ)  = (2𝑛(𝛼2  −𝛽2)−𝜉𝛽)𝜂𝑋,             (2.14) 

                                                                       𝑄𝜉= (2𝑛(𝛼2  −𝛽2)−𝜉 )𝜉.             (2.15) 

 
In an almost contact metric manifold 𝑀, 𝜂−Einstein characterized as under: 

 
𝑆(𝑋, 𝑌)=𝑎𝑔(𝑋, 𝑌)+𝑏𝜂(𝑋)𝜂(𝑌), 

 
where 𝑎 and 𝑏 are smooth functions on 𝑀. A 𝜂−Einstein manifold becomes Einstein if 𝑏=0. 
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Let {𝑒1, 𝑒, ……., 𝑒𝑛 =𝜉} is a local orthonormal basis of vector fields in an 𝑛-dimensional almost 

contact manifold 𝑀. Definitely, then {𝜑𝑒1, 𝜑𝑒2, ………., 𝜑𝑒𝑛−1, 𝜉} is also a local orthonormal 

basis. Hence, we have 
 

∑ 𝑔(𝑒𝑖 ,  𝑒𝑖) 

𝑛

𝑖=1

=  ∑ 𝑔(𝜑𝑒𝑖 ,  𝜑𝑒𝑖) + 𝑔(𝜉,  𝜉) = 𝑛,  

𝑛−1

𝑖=1

 

A linear connection  ∇̃ in an almost contact metric manifold 𝑀 is said to be 

• semi-symmetric connection [16] if its torsion tensor satisfies 

                                         𝑇(𝑋,  𝑌) = 𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌 

• non-metric connection [1] if 

                                          (∇̃)𝑔 ≠ 0. 

 

 

A semi-symmetric non-metric connection �̃� [1] in an almost contact metric manifold 𝑀 is 

defined as  

                                                   ∇̃𝑋𝑌 = ∇𝑋𝑌 + 𝜂(𝑌)𝑋.                                                      (2.16) 

Let  R̃ and 𝑅 be the curvature tensors of the semi-symmetric non-metric connection ∇̃ and the 

Levi-civita connection ∇ respectively. Then it is well known that 

                 �̃�(𝑋,  𝑌)𝑍 = 𝑅(𝑋,  𝑌)𝑍 + 𝐴(𝑋,  𝑍)𝑌 − 𝐴(𝑌,  𝑍)𝑋,                                           (2.17) 

where 𝐴 is a tensor field of type (0,2) given by 

                            𝐴(𝑋,  𝑌) = (∇̃𝑋𝜂)𝑌 = (∇𝑋𝜂)𝑌 − 𝜂(𝑋)𝜂(𝑌)                                          (2.18) 

  From (2.17), we deduce that 

S̃(𝑋,  𝑌) = 𝑆(𝑋,  𝑌) − 2𝑛𝐴(𝑋,  𝑌),              (2.19) 

r̃ = 𝑟 − 2𝑛 𝑡𝑟𝑎𝑐𝑒𝐴,                          (2.20) 

where �̃� and 𝑆 are Ricci-tensors and rr̃ and 𝑟 are scalar curvatures of the semi-symmetric non-

metric connection ∇̃ and the Levi-civita connection ∇ respectively. 

On a trans-Sasakian manifold with respect to semi symmetric non-metric connection, we 

have [13] 
 

Lemma 2.1 Let 𝑀 be a trans-Sasakian manifold with respect to semi-symmetric non-metric 

connection, then 

(�̃�𝑋𝜑) (𝑌) = 𝛼{𝑔(𝑋,  𝑌)ξ − 𝜂(𝑌)𝑋} + 𝛽{𝑔(𝜑𝑋, Y)ξ − 𝜂(𝑌)𝜑𝑋} − 𝜂(𝑌)𝜑𝑋,   (2.21)               

�̃�𝑋𝜉 = X − 𝛼𝜑𝑋 + 𝛽{X − 𝜂(𝑋)𝜉},                                          (2.22) 

 

          (∇̃𝑋𝜂)𝑌 = −𝛼𝑔(𝜑𝑋, Y) + 𝛽𝑔(𝜑𝑋, 𝜑𝑌) − 𝜂(𝑋)𝜂(𝑌),              (2.23) 

 

�̃�(𝑋,  𝑌)𝑍 = 𝑅(𝑋,  𝑌)𝑍 + 𝛼{𝑔(𝜑𝑌, 𝑍)𝑋 − 𝑔(𝜑𝑋,  𝑍)𝑌} − 𝛽{𝑔(𝑌,  𝑍)𝑋 − 𝑔(𝑋,  𝑍)𝑌} 
+(𝛽 + 1)𝜂(𝑍){𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌}                         (2.24) 

We also have the following theorem [13]. 

 

Theorem 2.2 In an (2𝑛+1)-dimensional trans-Sasakian manifold, the Ricci-tensor �̃� and the 

scalar curvature  r̃  with respect to semi-symmetric non-metric connection  ∇̃ are given by 
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𝑆(𝑋,  𝑌) = 𝑆 (𝑋, 𝑌 ) + 2𝑛[𝛼𝑔 (𝜑𝑋, 𝑌 )] − 𝛽𝑔 (𝑋,  𝑌) + (𝛽 + 1)𝜂(𝑋) 𝜂(𝑌)],         (2.25) 

                        �̃� = 𝑟 − 2𝑛(2𝑛𝛽 −  1).                                                              (2.26) 

 

3.  𝛏−conformally flat trans-Sasakian manifolds admitting semi-symmetric non-metric 

connection 

The relation between the conformal curvature tensor with respect to semi-symmetric non-

metric connection and the conformal curvature tensor with respect to Levi-civita connection 

on a trans-Sasakian manifold is as follows[13] 

        �̃�(𝑋, 𝑌)𝑍 = 𝐶(𝑋, 𝑌)𝑍 −
𝛼

(2𝑛−1)
[{𝑔(𝜑𝑌, 𝑍)𝑋 − 𝑔(𝜑𝑋, 𝑍)𝑌} 

+2𝑛{𝑔(𝑌, 𝑍)𝜑𝑋 − 𝑔(𝑋, 𝑍)𝜑𝑌}] +
(1 + 𝛽)

(2𝑛 − 1)
[{𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌} 

                      +𝜂(𝑍){𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋} + 2𝑛{𝜂(𝑌)𝑔(𝑋, 𝑍) − 𝜂(𝑋)𝑔(𝑌, 𝑍)}ξ],                     (3.1) 

where C̃ and C are the conformal curvature tensor admitting semi-symmetric non-metric 

connection and the conformal curvature tensor admitting Levi-civita connection respectively. 

Taking Z=ξ in the equation (5.3.1),we get 
 

        �̃�(𝑋, 𝑌) ξ = 𝐶(𝑋, 𝑌) ξ −
2𝑛𝛼

(2𝑛−1)
[𝜂(𝑌) 𝜑𝑋 − 𝜂(𝑋) 𝜑𝑌].                                        (3.2) 

On taking 𝛼=0in the equation (5.3.2), we have                                              
                                    �̃�(𝑋, 𝑌)ξ = 𝐶(𝑋, 𝑌)ξ,                   (3.3) 

which leads to the following theorem: 

 

Theorem 3.1 A β-kenmotsu manifold is ξ-conformally flat admitting semi-symmetric non-

metric connection if and only if it is ξ-conformally flat with respect to the Levi-civita 

connection. 

On taking Z=ξ in the equation (1.1),we get 

   C(X, Y)ξ = 𝑅(𝑋, 𝑌) ξ −
1

(2𝑛−1)
[𝑆(𝑌,  ξ) 𝑋 − 𝑆(𝑋,  ξ) 𝑌 + 𝜂(𝑌) 𝑄𝑋 − 𝜂(𝑋) 𝑄𝑌] 

                     +
𝑟

2𝑛(2𝑛−1)
[𝜂(𝑌) 𝑋 − 𝜂(𝑋) 𝑌],                               (3.4) 

and taking account of equations (2.7) and (2.11),we get 
 

C(X,Y)ξ = (𝛼2 − 𝛽2) (𝜂(𝑌) 𝑋 − 𝜂(𝑋) 𝑌) + 2𝛼𝛽(𝜂(𝑌) 𝜑𝑋 − 𝜂(𝑋) 𝜑𝑌) 

  + (𝑌𝛼) 𝜑𝑋 − (𝑋𝛼) 𝜑𝑌 + (𝑌𝛽)𝜑2𝑋 − (𝑋𝛽) 𝜑2𝑌 

  −
1

(2𝑛 − 1)
[{(2𝑛(𝛼2 − 𝛽2) − ξ𝛽) 𝜂(𝑌) − ((2𝑛 − 1)𝑌𝛽 + (𝜑𝑌)𝛼)}𝑋 

        − {(2𝑛 (𝛼2 − 𝛽2) − ξ𝛽) 𝜂(𝑋)  − ((2𝑛 − 1)𝑋𝛽 + (𝜑𝑋)𝛼)}𝑌 

        + (𝜂(𝑌)𝑄𝑋 − 𝜂(𝑋)𝑄𝑌)] +
𝑟

2𝑛(2𝑛 − 1)
[𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌].

On simplifying, we get 

𝐶(𝑋, 𝑌)𝜉 =
1

(2𝑛 − 1)
(

𝑟

2𝑛
− ((𝛼2 − 𝛽2) − 𝜉𝛽)) (𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌) 

                                         +2𝛼𝛽(𝜂(𝑌)𝜑𝑋 − 𝑛(𝑋)𝜑𝑌) + ((𝑌𝛼)𝜑𝑋 − (𝑋𝛼)𝜑𝑌) 

                                         +((𝑌𝛽)𝜂(𝑋) − (𝑋𝛽)𝜂(𝑌))𝜉 +
1

(2𝑛−1)
((𝜑𝑌)𝛼𝑋 − (𝜑𝑋)𝛼𝑌) 

                                         −
1

(2𝑛−1)
(𝜂(𝑌)𝑄𝑋 − 𝜂(𝑋)𝑄𝑌).                                              (3.5)

              

Putting the value of 𝐶(𝑋,𝑌)𝜉 in the equation (3.2), we get 
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�̃�(𝑋, 𝑌)ξ =
1

(2𝑛 − 1)
(

𝑟

2𝑛
− ((𝛼2 − 𝛽2) − ξ𝛽)) (𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌) 

                                       + (2𝑎𝛽 −
2𝑛𝛼

(2𝑛−1)
) (𝜂(𝑌)𝜑𝑋 − 𝜂(𝑋)𝜑𝑌) 

                                       +((𝑌𝛼)𝜑𝑋 − (𝑋𝛼)𝜑𝑌) + ((𝑌𝛽)𝜂(𝑋) − (𝑋𝛽)𝜂(𝑌))ξ 

                                            +
1

(2𝑛−1)
 ((𝜑𝑌)𝛼𝑋 − (𝜑𝑋)𝛼𝑌) −

1

(2𝑛−1)
(𝜂(𝑌)𝑄𝑋 − 𝜂(𝑋)𝑄𝑌).       (3.6) 

 

Since the manifold under consideration is 𝜉-conformally flat with respect to semi-symmetric 

non-metric connection, hence equation (3.6) yields.  

 𝜂(𝑌)𝑄𝑋 = (
𝑟

2𝑛
− ((𝛼2 − 𝛽2) − ξ𝛽)) (𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌) 

                                +(2(2𝑛 − 1)𝛼𝛽 − 2𝑛𝛼)(𝜂(𝑌)𝜑𝑋 − 𝜂(𝑋)𝜑𝑌) 

                                +(2𝑛 − 1)((𝑌𝛼)𝜑𝑋 − (𝑋𝛼)𝜑𝑌) 

                            +(2𝑛 − 1)((𝑌𝛽)𝜂(𝑋) − (𝑋𝛽)𝜂(𝑌))ξ 

     +((𝜑𝑌)𝛼𝑋 − (𝜑𝑋)𝛼𝑌) + 𝜂(𝑋)𝑄𝑌 

On taking 𝑌=𝜉 in the above equation, we get 

𝑄𝑋 = (
𝑟

2𝑛
− ((𝛼2 − 𝛽2) − ξ𝛽)) 𝑋 + {(2𝑛 + 1)(𝛼2 − 𝛽2) + (2𝑛 − 1)ξ𝛽 −

𝑟

2𝑛
} 𝜂(𝑋)ξ 

                  −2𝑛𝛼(𝜑𝑋) − (2𝑛 − 1)(𝑋𝛽)ξ − (𝜑𝑋)𝛼ξ − (2𝑛 − 1)𝜂(𝑋)𝑔𝑟𝑎𝑑 𝛽 +

𝜂(𝑋)𝜑(𝑔𝑟𝑎𝑑𝛼). 

 
Taking account of S(X, Y) = 𝑔(QX, Y) in the above equation, we get 

         𝑆(𝑋, 𝑌) = (
𝑟

2𝑛
− ((𝛼2 − 𝛽2) − ξ𝛽)) 𝑔(𝑋, 𝑌) 

                    

                     + {(2𝑛 + 1)(𝛼2 − 𝛽2) + (2𝑛 − 1)ξ𝛽 −
𝑟

2𝑛
} 𝜂(𝑋)𝜂(𝑌) − 2𝑛𝛼𝑔(𝜑𝑋, 𝑌) 

 

                    − {(2𝑛 − 1)(𝑋𝛽) + (𝜑𝑋)𝛼}𝜂(𝑌) − {(2𝑛 − 1)(𝑌𝛽) + (𝜑𝑌)𝛼}𝜂(𝑌).                 (3.7) 

Hence we have 

 

Theorem 3.2 In a ξ-conformally flat trans-Sasakian manifold admitting semi-symmetric non-

metric connection, Ricci tensor with respect to Levi-civita connection is given by the equation 

(3.7).  

It is known that a trans-Sasakian manifold of kind (0,  𝛽) is a β-Kenmotsu manifold and in a β-

Kenmotsu manifold, β is constant. Hence in a β-Kenmotsu manifold equation (3.7) reduces to  

                          𝑆(𝑋, 𝑌) = (
𝑟

2𝑛
+ 𝛽2) 𝑔(𝑋, 𝑌) − {(2𝑛 + 1)𝛽2 +

𝑟

2𝑟
} 𝜂(𝑋)𝜂(𝑌).                     (3.8) 

This leads to the following corollary: 

Corollary 3.3 A ξ-conformally flat β-Kenmotsu manifold admitting semi-symmetric non-metric 

connection is an η-Einstein manifold. 

Let {e1, e2,………..e2n,, e2n+1=ξ} is a local orthonormal basis of vector fields in an n-dimensional 

almost contact manifold 𝑀. Contracting equation (3.7) and using  

∑ 𝑆(𝑒𝑖 ,  𝑒𝑖) = 𝑟,

2𝑛+1

𝑖=1

 



Turkish Journal of Computer and Mathematics Education Vol. 09 No .01 (2018), 191-197 

Research Article 

196 

 

 

 

∑ 𝑔(𝑒𝑖 ,  𝑒𝑖) = 2𝑛 + 1

2𝑛+1

𝑖=1

 

and                                                                   𝜂(ei) = 0, 
 

 
we get ξ𝛽=0. 
 

Hence, we have 

 

Corollary 3.4 In a ξ-conformally flat trans-Sasakian manifold admitting semi-symmetric 

non-metric connection, ξβ=0. 
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