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Abstract: The major goal of this research is to use the spectral Petrov-Galerkin method (SPGM) to solve the first type of 
Volterra integral equations (VIEs). Three examples will be given to demonstrate how the suggested technique works, in 

comparison to the examples in [1] and [11], where the numerical and exact solutions are quite harmonic, effectively indicating 
the numerical answers. The absolute errors were determined to estimate the validity of the suggested method and to 
demonstrate that it was an effective and valid method. 
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1. Introduction 

Physical issues from all disciplines are frequently turned into integral equations, especially Volterra linear integral 

equations of the first kinds, respectively. Several writers have investigated and applied these equations in order to 

arrive at an analytic and unique numerical solution. In recent years, there has been an increase in interest in VIEs, 

owing to their wide range of applications in mathematical physics (astrophysics, contact problem, heat transfer 

problem, and reactor theory). As a result, since the introduction of the digital computer a few decades ago, most 

traditional analytic integral equations solvers have been developed and constructed. Many researchers have 

created numerical methods for the solution of VIEs using various polynomials, and more researchers have 

developed numerical methods for the solution of VIEs using various polynomials. Islam [14] employed Hermite 

and Chebyshev polynomials to solve linear and nonlinear VIEs. For the numerical solution of VIEs of the second 

kind. This work is concerned with the following first kind of VIEs [7]. 

 

 k x, t u t dt = f x  ,          x ∈  a, b .
x

a
                                  (1.1) 

where the kernel function k(x, t) and the source function f(x)are given smooth functions, u(t) is the unknown 

function. 

 In fact, a simple linear employed in [14] may be used to write any first kind of VIE with smooth kernel into (1.1). 

As a result, our method can be used to VIEs. In any interval where the kernel is smooth, this is defined. We'll look 

at the problem where the solution is (1.1). As a result, it's only appropriate to use very high-order numerical 

approaches like spectral methods to solve problems (1.1). It is well known that there exist numerical techniques 

for solving (1.1), such as collocation methods and the finite element method [3], but only a few papers have 

addressed spectral approximations.The Chebyshev spectral methods are investigated in [12] for the VIEs under 

multiple-precision arithmetic, in [10] the application of the Chebyshev polynomial for solving Fredholm integral 

equations. Some efforts are made to implement the spectral methods to solve the VIEs.Actually, the success of the 

spectral method for VIEs is the main motivation for our work in the first kind of integral equations. 

2 Orthogonal polynomials 

Mathematicians have been interested in orthogonal polynomials in several areas. This interest has often come 

from outside the polynomials community in recent years, with the discovery of their relationship to inetegrable 

systems [9] 

Let        w x φi x φj x = δij
b

a
   (2.1) 

With the Kronecker  delta𝛿𝑖𝑗  defined by 
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δij =  
0 ,    i ≠ j
1 ,    i = j

  

where the weight function 𝑤(𝑥) is continuous and positive on [a, b] such that the moments  

exist. 

Then the inner product of polynomials 𝜑𝑖  and 𝜑𝑗  given by: 

 φi ,φj =  w(x)φi(x)φj(x)dx
b

a
            (2.2) 

for orthogonality 

 φi ,φj = 0, i ≠ j             (2.3) 

In this study, we adopt the weight function w x =
1

 1−x2
 in the interval [𝑎, 𝑏]. 

The construction of 𝜑𝑖 , 𝑖 = 0,1,2,⋯  of approximant: 

uN x =  uj(φj(x) + sjφj+1
N−1
j=0 (x)) ≅ u(x)          (2.4) 

where 𝑠𝑗  constant and  𝜑𝑗  basis function  j = 0,1,2,⋯ , N− 1. 

In this work a trail function of basis Laguerre polynomial and a test function of basis Chebyshev polynomial with 

weight function in this work. 

2.1 Laguerre polynomials 

2.1.1 Defintion 

The Laguerre polynomialsLm (x)are solutions of the Laguerre differential equations and consist of a set of 

orthogonal polynomials all over the interval [0, ∞] expresses the explicit formula for Lm (x) [3,2,6] . 

Lm x =  (−1)im
i=0

m!

 m−i !(i!)2 xi ,                              (2.5) 

The first four of Laguerre polynomials are  

L0 x = 1, L1 x = x,   L2 x =
1

2!
 x2 − 4x + 2 , L3 x =

1

3!
 −x3 + 9x2 − 18x + 6 , 

L4 x =
1

4!
 x4 − 16x3 + 72x2 − 96x + 24 , 

So, the recurrence relationship is 

 m + 1 Lm+1 x =  2m + 1− x Lm x − mLm−1(x)               (2.6) 

Rodrigues formula also can be defined as : 

        Lm x =
ex

m!

dm

dxm (e−xxm )                     (2.7) 

for the weigh function 𝑤 𝑥 = 𝑒−𝑥  the Laguerre polynomials with the orthogonal property  

 

2.2 Chebyshev polynomials  

2.2.1 Defintion 
The Chebyshev polynomials are a recursively defined sequence of orthogonal polynomials connected to de 

Moiver's formula. The Chebyshev polynomials of nth degree have a generic form specified by [15] 

Tn x =   −1 m n!

 2m ! n−2m !
(1 − x2)m xn−2mn/2

m=0            (2.8)  

Where 

 
n

2
 =  

n

2
              if n is even

n + 1

2
         if n is  odd  

  

 

the first four Chebyshev polynomials of the first kind are : 

T0 x = 1,  T1 x = x,  T2 x = 2x2 − 1,  T3 x = 4x3 − 3x 

 

3 The implement of the Spectral Petrov-Galerkin method 

By introducing the integral operator 𝑘 defined as  

ku x =  k x, t u t dt,

x

a

 

Eq.(1.1) can be express as follows: 

ku x = g x ,                   x ∈  0,1                      (3.1) 
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We will adopt the SPGM to solve this underlying problem. 

First, let's look at how SPGM is implemented numerically. PN   is a space containing polynomials defined on [0,1] 

with a maximum degree of N , φj(x)  is the jthe Laguerre polynomial corresponding to the weight function 

w x =
1

 1−x2
 , with 𝑗 = 0,1,⋯ , N. As a consequence, 

PN = span  φ0(x),φ1(x),⋯ ,φN (x) . 
Define the polynomial space 𝑉𝑁  as show, 

VN =  u: uϵPN . 
Find uN ∈ VN  such that   

  (kuN , vN )w = (g, vN )w ,                       ∀vN ∈ PN−1   (3.2) 

Where  

(ku, v)w =   k(x, t)u t v x w x dtdx

x

0

1

0

 

is continuous inner product, set  

uN x =  𝑢𝑗 (φj(x) + 𝑠𝑗φj+1(x))

N−1

j=0

, 

when 𝜉𝑖 𝑥  , 𝑖 = 0,1,⋯ ,𝑁 − 1  is a Chebyshev polynomial test function with a weight function from space, 

Laguerre polynomial 𝜑𝑗  𝑥   , 𝑗 = 0,1,⋯ ,𝑁 − 1 is used. We get the following result from (2.2) 

 

 (ξi x , k(φj(x) + φj+1(x)))w𝑢𝑗 =  ξi x , g x  
w

N−1
j=0      (3.3) 

   AUN−1 = gN−1,        (3.4)  

        where  

a i, j =    k x, t  φj t + φj+1 t  

x

0

dt ξj x w x dx,

1

0

gN−1 i =  ξi x g x w x dx

1

0

 

   .

 
 
 
 
 
 
 
 
 

 ξ0,φ0 + φ1 w ξ0 ,φ1 + φ2 w ξ0,φ2 + φ3 w     …      ξ0,φN−1 + φN w

 ξ1,φ0 + φ1 w ξ1 ,φ1 + φ2 w ξ1,φ2 + φ3 w     …      ξ1,φN−1 + φN w

 ξ2,φ0 + φ1 w ξ2 ,φ1 + φ2 w ξ2,φ2 + φ3 w     …      ξ2,φN−1 + φN w

 ξ3,φ0 + φ1 w ξ0 ,φ1 + φ2 w ξ3,φ2 + φ3 w     …      ξ3,φN−1 + φN w

.

.

.
 ξN−1 ,φ0 + φ1 w ξN−1,φ1 + φ2 w ξN−1,φ2 + φ3 w  …   ξN−1,φN−1 + φN w  

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

u0

u1

u2

u3

.

.

.
uN−1 

 
 
 
 
 
 
 

=   

 
 
 
 
 
 
 
 
 
 g, ξ0 

 g, ξ1 

 g, ξ2 

 g, ξ3 
.
.
.

 g, ξN−1  
 
 
 
 
 
 
 
 

 

4 Theoretical analysis of SPGM to linear VIEs first kind  

Define a weighted space as [4] 

Lw
2  I = {v: v is measureable and ‖v‖w < ∞}, 

where, 

I ⊆ [a, b] 

‖v‖w = ( w x v2 x dx)
b

a

1

2
. 

Further, define 

Hw
m I = {v: Dkv ∈ Lw

2 (I),     0 ≤  k ≤ m}, 

equipped with norm  

‖v‖m,w = (  Dkv 
w

2
)m

k=0

1/2

, 

with  Dkv =
dk v

dxk . 

When w x =
1

 1−𝑥2
,   Lw

2  I ,   Hw
m (I) and ‖. ‖w  are denoted simply by L2(I) ,Hm (I) and ‖. ‖ , respectively. 

First, we define the orthogonal projection 𝜋𝑁: Lw
2 (I) → 𝑃𝑁  such that for any 𝑢 ∈ Lw

2 (I). 

Let 𝐵 be a Banach space with the norm ‖. ‖ and 𝐵∗ be its dual space of continuous linear functional .for each 

positive integer 𝑛, we assume that 𝐴𝑛 ⊂ 𝐵,𝐵𝑛 ⊂ 𝐵∗, and 𝐴𝑛 ,𝐵𝑛  are finite dimensional vector spaces with dim 

An = dim Bn  also An ,Bn  satisfy condition (H) : for each x ∈ B and y ∈ B∗, there exist xn ∈ An , yn ∈ Bn  such that 

‖𝑥𝑛 − 𝑥‖ → 0 as 𝑛 → ∞ and  ‖𝑦𝑛 − 𝑦‖ → 0 as 𝑛 → ∞ , when the SPGM for Eq.(1.1) is a numerical method for 

find un ∈ Bn  such that : 
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  (kuN , vN )w = (g, vN )w ,                ∀ vn ∈ Bn              (4.1) 

 Definition 4.1:[9] For each x ∈ B, an element 𝑃𝑛𝑥 ∈ 𝐴𝑛  is called the generalized best approximation    from 𝐴𝑛  to 

𝑥 with respect to Bn , by the equation  

 x − pnx, vn = 0 ,                           ∀ vn ∈ Bn  

Definition 4.2: [8]  An , Bn  are called a regular pair if a linear operator Pn : An → Bn  exist and PnAn = Bn  

   also satisfying the following conditions: 

     (H1): ‖xm‖ ≤ C1 xn , Pnxn 
1/2 ,      ∀ xn ∈ An  

     (H2): ‖Pnxm‖ ≤ C2‖xn‖          ,      ∀ xn ∈ An  

Where C1and C2 are positive constant independent of 𝑛 . If a pair of sequence {An} and {Bn} satisfies (H1) and 

(H2) , we call {An , Bn } a regular pair. If a regular pair {An , Bn} satisfies dim An = dim Bnand condition (H), then 

the corresponding generalized projectionPn  satisfies:  

(1) For all 𝑥 ∈ 𝐵, ‖𝑃𝑛𝑥 − 𝑥‖ → 0 as 𝑛 → ∞, 

(2) There is constant 𝐶 > 0 such that,   ‖𝑃𝑛‖ < 𝐶,                  𝑛 = 1,2,… 

(3) For some constant 𝐶 > 0 independent of 𝑛,      ‖𝑃𝑛𝑥 − 𝑥‖ ≤ 𝐶‖𝑢𝑛𝑥 − 𝑥‖ 

where 𝑢𝑛  is the best approximation from  𝐴𝑛  to 𝑥. 

The SPGM for equation (3.2) is a numerical method for finding  

𝑢𝑛 ∈ 𝐴𝑛   such that: 

(kun , vn )w = (f, vn)w∀ vn ∈ Bn    (4.2) 

If {𝐴𝑛 ,𝐵𝑛} is a regular pair with a linear operator 𝑃𝑛 :𝐴𝑛 → 𝐵𝑛 , then equation (4.2) become as : 

(kun , Pn xn) =(f, Pnxn)∀ xm ∈ Am    (4.3) 

furthermore, equation (4.3) 

Pn kun = Pn f 

Now, assume un ∈ An  and {φj + φj+1}j=0
N−1 are basis for An  is trail space and {𝜉𝑖}𝑖=0

𝑁−1  are test space is a basis for 

𝐵𝑛  with weight function. Therefore the SPGM on [a , b] for equation (3.2) is : 

(kun , ξi)w = (f, ξi)w     ,              i = 0,1,⋯ , N− 1 

 
 Let                                                    𝑢𝑁 𝑥 =  𝑢𝑗 (𝜑𝑗 (𝑥) + 𝜑𝑗+1(𝑥))𝑁−1

𝑗=0 , 

 Then equation (3.2) leads to determining {𝑢𝑖}𝑖=0
𝑁−1 as the solution of the linear system: 

 

   k x, t un t 

x

a

dt ξi x w(x)dx =  f x ξi x w(x)dx

b

a

b

a

i = 0,1,2,⋯ , N− 1 

 uj(  k x, t  φj(t) + φj+1(t) 

x

a

b

a

N−1

j=0
ξi(x)w(x)dt)dx =  f x ξi x w x dx

b

a

 

The SPGM using regular pair {An , Bn } of piecewise polynomial space are called Petrov-Galerkin elements 

Fj =  f x ξj x dx
b

a
 ,    Aij =   k x, t (φj t + φj+1(t))ξi(x)w(x)dtdx

x

a

b

a
 

Proposition 4.1:[5] For each 𝑥 ∈ 𝑋, the generalized best approximation from Xn  to 𝑥 with respect to Yn  exists 

uniquely if and only if  

Yn ∩ Xn
⊥ = {0}     (4.4) 

under this condition, Pn  is a projection; i.e., Pn
2 = Pn . 

Proof. Since dim 𝑋𝑛 =dim 𝑌𝑛 . we assume that 𝑋𝑛  and 𝑌𝑛  have bases {φ𝑖}𝑖=0
𝑁  and {ξ𝑖}𝑖=0

𝑁 . 

Let x ∈ X be given, to show that is a unique Pnx ∈ Xn  satisfying equation (3.3), we equivalently prove that linear 

system  

 ci φi , ξj =  x, ξj 
N−1
i=0         i, j = 0,1,2,⋯ , N− 1       (4.5) 

 Has a unique solution {c𝑖}𝑖=0
𝑁−1. This is equivalent to showing that coefficient matrix A =  φi , ξj  is nonsingular. 

To prove the exists yn ∈ Yn ∩ Xn
⊥ . Since yn ∈ Yn ∩ Xn

⊥ . Since yn ∈ Yn , we can write yn =  cjξj
N−1
j=0  .By the fact 

thatyn ∈ Xn
⊥  , we have  
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 cj φi , ξj = 0

N−1

j=0

, i = 0,1,⋯ , N− 1. 

Since the matrix 𝐴 is nonsingular, then  cj = 0 for j = 0,1,2,⋯ , N− 1.Thus, 𝑦𝑛 = 0 and Yn ∩ Xn
⊥ =  0 . 

Conversely, assume 𝐴 is nonsingular, then {c𝑖}𝑖=0
𝑁−1, not all zero, such that  

 cj φi , ξj = 0 ,

N−1

j=0

 i = 0,1,⋯ , N− 1. 

Let yn =  cj
N−1
j=0 ξj . Thus, 𝑦𝑛 ≠ 0 and yn ∈ Yn ∩ Xn

⊥ . This implies that Yn ∩ Xn
⊥ ≠ {0}. 

Now to show that Pn  is a projection, have just proved that under condition (3.4), every 𝑥 ∈ 𝑋, we havePnx ∈ Xn  

that satisfies equation (3.3). For any x ∈ X, we have 𝑃𝑛𝑥 ∈ 𝑋𝑛 ⊆ 𝑋, thus, by definition, 

 Pnx − Pn
2x, yn = 0∀  yn ∈ Yn . 

From this equation and (3.3), we find that Pn
2x ∈ Xn satisfies  

 x − Pn
2x, yn = 0 ∀yn ∈ Yn  

By the uniqueness, we conclude that every  x ∈ X 

                                                                  Pn
2x = Pnx. 

That is Pn  is a projection. 

Proposition 4.2:[5] Suppose that there is a linear operator πn Xn = Yn  and  

‖Xn‖ ≤ Cn xn ,πnxn 
1

2∀xn ∈ Xn , 

where the constant Cn > 0 , depend on 𝑛 but not on 𝑥𝑛 . Then, equation (3.4) holds, thus, every x ∈ X has a unique 

best approximation from 𝑋𝑛  with respect to 𝑌𝑛 . 

Proof. Let yn ∈ Yn ∩ Xn
⊥  . Since πnXn = Yn . For this particular 𝑦𝑛  there existsxn ∈ Xn  such that  

πnXn = Yn  . By assumption. 

‖xn‖ ≤ Cn xn ,πn Xn 
1

2 = Cn xn , yn 
1

2 = 0. 

The last equality holds because 𝑦𝑛 ∈ 𝑋𝑛
⊥ .  This implies that 𝑥𝑛 = 0 . Thus 𝑦𝑛 = 𝜋𝑛𝑋𝑛 = 0 . Which show that 

equation (4.4) holds.                   

Theorem 4.1:[9]Let 𝑋 be a Banach space and k: X → Xbe a compact linear operator, assume that 1 is not an 

eigenvalue of the operatorK, suppose that Xn  and 𝑌𝑛  satisfy condition (H) and {Xn , Yn } is regular pair Then there 

exists an N0 > 0 such that for n > N0  , equation (3.6) has a unique solution un ∈ Xn  for any given f ∈ Xthat 

satisfies  

‖un − u‖ ≤ C inf
xn ϵXn

‖u − xn‖ , n > N0 

Where 𝑢 ∈ 𝑋  is the unique solution (1.1) and C > 0 is a constant independent of 𝑛. 

Proof. By Proposition 4.1pn  converges point wise to identity operator I 𝑖𝑛 x. Hence, it follows from Theorem 4.1 

that there exists an integer N0 > 0 for which  

‖𝑢𝑛 − 𝑢‖ ≤ 𝐶‖𝑝𝑛𝑢 − 𝑢‖ , 𝑛 > 𝑁0 

Using this estimate and Proposition 4.1 we conclude the statement of this theorem. Assume that 𝑋 is a Hilbert 

space and let 𝑋𝑛 = 𝑌𝑛  . In this case, PGM. It has been pointed out earlier that let 𝜋𝑛  be the identity operator in 𝑋, 

then {Xn , Xn } is a regular pair. In other words, in the case of the PGM, the conditions for which {Xn , Xn } is a 

regular pair are trivially satisfied, thus Theorem 3.6 holds for the PGM. Finally, we show that PGM in a Hilbert 

space 𝑋 is also an example of the PGM, assume 𝐾:𝑋 → 𝑋 is and denote A ≔ I− K. Let Xn = span{φ1,… ,φN }⊆
𝑋with dim Xn = N.In the PGM.  
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 Kun  , yn =  f, yn    for all ynϵYn . 

We let Yn ≔span {Aφ1,⋯ , AφN }. Then we obtain  

 𝐴𝑢𝑛 − 𝑓,𝐴𝜑𝑙 = 0 , 𝑙 = 1,⋯ ,𝑁 − 1          (4.6) 

This linear system gives the PGM (1.1), which is to find 𝑢𝑛 ∈ 𝑋𝑛 such that 

‖Aun − f‖ = inf
xn∈Xn

‖Axn − f‖. 

On the other hand, equation (3.6) is equivalent to the following: 

 A∗Aun − A∗f,𝜑𝑙 = 0         
That is, the equation (1.1) is equivalent to the PGM for the equation 

I− K u = A∗f, 
where  

K ≔ K + K∗ − K∗K. 
Since K  is a compact operator in X. 

Numerical examples 

To verify the proposed method, we consider some VIEs, because the exact solution for these problems is available 

in the literature. For all the examples, the solutions obtained by the proposed method and are thus compared with 

exact solutions using two polynomial, Laguerre polynomials are trail function and Chebyshev polynomial is the 

test function. The convergence of each VIEs is calculated by. 

E = |UEx − Uap  | < 𝛿 

where,   UEX  exact solution and  Uap  approximation solution. 

 

Example 1 :Consider the following integral equation [1]; 

 ex+tu t dt = xex

x

0

, 

With the exact solution 𝑢 𝑥 = 𝑒−𝑥 , for 𝑜 ≤ 𝑥 ≤ 1.  

                    Table 1 Numerical result with analytical solution of Example 1 for N=10 

X Exact solution Approximate solution Absolute Error Absolute Error [1] 

0 1.0000e+00 9.9999e-01 5.9158e-06 1.0416e-02 

0.1 9.0484e-01 9.0484e-01 3.6852e-06 1.3148e-02 

0.2 8.1873e-01 8.1873e-01 1.2239e-06 1.6630e-03 

0.3 7.4082e-01 7.4081e-01 4.3978e-06 1.5820e-03 

0.4 6.7032e-01 6.7032e-01 2.0253e-06 9.8100e-03 

0.5 6.0653e-01 6.0653e-01 2.8246e-06 6.3180e-03 

0.6 5.4881e-01 5.4882e-01 5.0127e-06 7.9750e-03 

0.7 4.9659e-01 4.9659e-01 1.4682e-06 1.0090e-03 

0.8 4.4933e-01 4.4932e-01 5.2803e-06 9.5900e-04 

0.9 4.0657e-01 4.0657e-01 4.1253e-06 5.9500e-03 

1 3.6788e-01 3.6791e-01 2.7103e-05 6.7500e-04 

 

L∞=2.7103e-05.L2=2.9803e-05. 



The Spectral Petrov-Galerkin Method for Solving Integral Equations of the First Kind 

 

 

 

7862  

 

 

Example 2 :Consider the following integral equation [1] 

 cos x − t u t dt = xsinx,

x

0

  0 ≤ x ≤ 1 

With exact solution u x = 2sinx, 

               Table 2 Numerical result with analytical solution of Example 2  for N=10 

X Exact solution Approximate solution  Absolute Error  Absolute Error [1] 

0 0 1.2508e-05 1.2508e-05 1.0417e-02 

0.1 1.9967e-01 1.9966e-01 8.9861e-06 2.0970e-03 

0.2 3.9734e-01 3.9735e-01 9.3692e-06 1.4397e-02 

0.3 5.9104e-01 5.9106e-01 1.5180e-05 1.4165e-02 

0.4 7.7884e-01 7.7884e-01 1.2156e-07 2.3370e-03 

0.5 9.5885e-01 9.5883e-01 1.9479e-05 8.4840e-03 

0.6 1.1293e+00 1.1293e+00 2.1473e-05 2.6190e-03 

0.7 1.2884e+00 1.2884e+00 4.0628e-06 1.2379e-02 

0.8 1.4347e+00 1.4347e+00 3.7726e-05 1.1739e-02 

0.9 1.5667e+00 1.5667e+00 1.4824e-05 3.2800e-03 

1 1.6829e+00 1.6828e+00 1.8931e-04 4.7800e-02 

 

L2=1.8931e-04.L∞=1.9722e-04 
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Example 3 :Consider the following integral equation [11] 

  x2 − t + 2 u t dt = (x2 − x + 2)sin⁡(x) + 1− cos⁡(x);

x

0

                     0 ≤ 𝑥 ≤ 1 

With exact solution u x = cos⁡(x), 
               Table 2 Numerical result with analytical solution of Example 3  for N=6 

X Exact solution Approximate solution  Absolute Error  Absolute Error [11] 

0 1.0000e+00 1.0001e+00 5.6818e-05 0 

0.2 9.5534e-01 9.8005e-01 2.1138e-05 6.7424e-03 

0.4 8.7758e-01 9.2108e-01 1.6887e-05 5.1717e-04 

0.6 7.6484e-01 8.2534e-01 6.9503e-06 6.4905e-03 

0.8 6.2161e-01 6.9668e-01 2.7696e-05 1.5496e-03 

1 1.6829e+00 5.4042e-01 1.1321e-04 5.8153e-03 

 

L2=1.3599e-04.L∞= 1.1321e-04 
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Conclusions 

We presented the spectral Petrov-Galerkin method (SPGM) in this study, which uses Laguerre polynomials as a 

trial function and Chebyshev polynomials with a weight function as a test function. In comparison to the cases in 

[1], and [11] provided in Tables 1-3, the approach was used when N was different. The numerical and exact 

solutions are quite harmonic, as shown in Figures 1-3, which effectively communicates the numerical solutions. 

The numerical results are in good agreement with the exact solutions. We evaluated  L2and L∞  norms norms errors 

to test the accuracy of the suggested method. The method that has been proposed is both effective and reliable. 
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