Riesz Summability of Factored Infinite Series Including Sequence and Fourier series

Amarnath Kumar Thakur^{1,*}, Gopal Krishna.Singh², Anjali Dubey³

 Dr CV Raman University, Bilaspur ,India Email: drakthakurmath@gmail.com.
 Vindhya Gurukul College, Chunar Mirzapur-231304 ,India. Email: gopalkrishnaopju@gmail.com
 Dr CV Raman University, Bilaspur ,India Email: anjalidubey3006@gmail.com

* Corresponding author

Abstract: We established a new theorem under the new condition is known as the theorem of Mazhar and found its

application to Fourier series.

Keywords: Riesz summability, Fourier series, bounded variation, factored infinite series. 2010 AMS Classification number: Primary 42B05, 42B08

- 1. Introduction. Works on the absolute sum factorization of infinite series and Fourier series is the absolute sum factorization of infinite series and Fourier series is done by several reseachers {[1,2,3...15]}.In[9], it proved the following theorems of which deals by $|\overline{N}, g_n|_k$ additive sum of infinite series and factors.
- 2. Definitions and Notations. A sequence (A_n) is said to be an almost positive increasing sequence if there exists a positive increasing sequence (b_n) and two positive constants R and S respectively. Such that $R b_n \leq A_n \leq S b_n$, by [1]. The sequence (μ_n) , we write that $\Delta \mu_n = \mu_n - \mu_{n+1}$ and $\Delta^2 \mu_n = \Delta \mu_n - \Delta \mu_{n+1}$, where (μ_n) is called bounded variation, if $\sum_{n=1}^{\infty} |\Delta \mu_n| < \infty$. Let $\sum_{n=0}^{\infty} \alpha_n$ with the partial sums (β_n) . Here q_n^{α} be the nth order of Cesàro means ω , $\omega > -1$, $\omega > -1$, the sequence (ne_n) , by [6],

$$q_{n}^{\alpha} = \frac{1}{B_{n}^{\alpha}} \sum_{i=1}^{n} A_{n-i}^{\alpha-i} i a_{i}, \qquad (q_{n}^{1} = q_{n})$$
(2.1)

where

$$B_{n}^{\alpha} = \frac{(\alpha+1)(\alpha+2)..(\alpha+n)}{n!} = O(n^{\alpha}), \quad B_{n}^{\alpha} = 0 \quad \text{for } n > 0.$$
(2.2)

The series $\sum \alpha_n$ is said to be summable $|C, w|_k$, $k \ge 1$, {see [7]}

$$\sum_{n=1}^{\infty} \frac{1}{n} \left| q_n^{\omega} \right| < \infty \tag{2.3}$$

If we take $\omega = 1$ then $|C, \omega|_k$ it becomes to the form $|C, 1|_k$, which is the form of summability. Now (g_n) be a sequence of +ve real numbers is such that

$$G_n = \sum_{i=0}^n g_i \to \infty \text{ as } n \to \infty, \qquad (G_{-i} = g_{-i} = 0, i \ge 1)$$
(2.4)

with sequences transformation such that

$$(\beta_n) \to (\omega_n)$$

and $\omega_n = \frac{1}{G_i} \sum_{i=0}^n g_i \ \beta_i$ (2.5)

defines the sequence (ω_n) of Riesz mean or (\overline{N}, g_n) means of the sequence (β_n) , and its generated coefficient of sequence (g_n) { see[8] }.

The series
$$\sum_{n=1}^{\infty} \alpha_n$$
 is said to be summable $\left| \overline{N}, g_n \right|_k, k \ge 1$, if {see [3]}
 $\sum_{n=1}^{\infty} \left(\frac{G_n}{g_n} \right)^{k-1} \left| \omega_n - \omega_{n-1} \right|^k < \infty.$

In the special case when $g_n = 1$ for all n (respectively. k = 1), $|\overline{N}, g_n|_k$, summability is the same as $|C,1|_k$, (resp. $|\overline{N}, g_n|_k$ {see [10]}) summability. Also if we take $g_n = \frac{1}{n+1}$ and k = 1, then we obtained $|J, \log n, 1|$ summability {see [2]}.

Let f be periodic function with period 2π and Lebesgue integrable over $(-\pi, \pi)$. The trigonometric Fourier series of f is

$$f \sim \frac{1}{2} \left[\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx \right] + \sum_{m=1}^{\infty} \left[\left(\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx \right) \cos mx + \left(\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx \right) \sin mx \right]$$

3. Known theorem[9]

Let (A_n) be an almost increasing sequence. If the sequence (A_n) , (μ_n) and (g_n) satisfy the conditions

$$|\mu_m| A_n = O(1) \quad , m \to \infty \tag{3.1}$$

$$\sum_{n=1}^{m} nA_n \left| \Delta^2 \mu_n \right| = O(1) \quad , \ m \to \infty$$
(3.2)

$$\sum_{n=1}^{m} \frac{G_n}{n} = O(G_m) \quad , m \to \infty$$
(3.3)

$$\sum_{n=1}^{m} \frac{g_n}{G_n} |z_n|^k = O(A_m) \quad , m \to \infty$$
(3.4)

$$\sum_{n=1}^{m} \frac{\left|z_{n}\right|^{k}}{n} = O(A_{m}) \quad , m \to \infty$$
(3.5)

Then the series $\sum \alpha_n \mu_n$ is summable $\left| \overline{N}, g_n \right|_k, k \ge 1$.

4. **Main theorem.** The main aim of this paper is to improve known theorem result under new condition. Now we shall prove

Theorem: Let (A_n) be an almost increasing sequence. If the $(A_n)(\mu_n)$ and (g_n) satisfy

the condition (3.1), (3.2), (3.3) and

$$\sum_{n=1}^{m} \frac{g_n}{G_n} \frac{\left|z_n\right|^k}{A_n^{k-1}} = O\left(A_m\right) \quad , m \to \infty$$

$$\tag{4.1}$$

$$\sum_{n=1}^{m} \frac{\left|z_{n}\right|^{k}}{nA_{n}^{k-1}} = O\left(A_{m}\right) \quad , m \to \infty$$

$$\tag{4.2}$$

Hence the summable $\sum \alpha_n \mu_n$ is $\left| \overline{N}, g_n \right|_k, k \ge 1$.

Note: Condition (4.1) is converted to condition (3.4), when k = 1, k > 1, condition (4.1), which is weaker condition of (3.4), but the converse is not true. The fact, if (3.4) is verified, we get

$$\sum_{n=1}^{m} \frac{g_n}{G_n} \frac{|z_n|^k}{A_n^{k-1}} = O\left(\frac{1}{A_1^{k-1}}\right) \sum_{n=1}^{m} \frac{g_n}{G_n} |z_n|^k = O(1) \sum_{n=1}^{m} \frac{g_n}{G_n} |t_n|^k = O(A_m) \quad .$$

When $k \ge 1$, the following example is sufficient case but the converse is false.

Let $A_n = n^{\delta}$, $0 < \delta < 1$, and then construct a sequence (h_n) such that

$$h_n = \frac{g_n}{G_n} \frac{|z_n|^k}{A_n^{k-1}} = A_n - A_{n-1},$$

Hence

$$\sum_{n=1}^{m} \frac{g_n}{G_n} \frac{|z_n|^k}{A_n^{k-1}} = \sum_{n=1}^{m} (A_n - A_{n-1}) = A_m = m^{\delta},$$

Therefore

$$\sum_{n=1}^{m} \frac{g_n}{G_n} |z_n|^k = \sum_{n=1}^{m} (A_n - A_{n-1}) A_m^{k-1}$$
$$= \sum_{n=1}^{m} (n^{\delta} - (n-1)^{\delta}) n^{\delta(k-1)}$$
$$\geq \delta \sum_{n=1}^{m} n^{\delta} n^{\delta(k-1)} = \delta \sum_{n=1}^{m} n^{\delta k-1} \sim \frac{m^{\delta k}}{k} \text{ as } m \to \infty$$

Its Proved that

$$\frac{1}{A_m}\sum_{n=1}^m \frac{g_n}{G_n} |z_n|^k \to \infty, \qquad \text{as } m \to \infty ,$$

to be provided k > 1. This shows that (3.4) implies (4.1) but converse is not true. If we putt $g_n = 1$ for all n, we get the identical results of (4.2) and (3.5). The following lemma is necessary for the proof of our theorem.

Lemma [9]: we have

$$\sum_{n=1}^{m} A_n \left| \Delta \mu_n \right| < \infty \quad \text{,under the condition of the theorem}$$

$$nA_n \left| \Delta \mu_n \right| = O(1) \quad \text{as} \quad n \to \infty$$

$$(4.4)$$

5. Proof of the main theorem.

Let (L_n) be the sequence of (\overline{N}, g_n) means of thr series $\sum \alpha_n \mu_n$. Then we have

$$L_{n} = \frac{1}{G_{n}} \sum_{\nu=0}^{n} g_{\nu} \sum_{r=0}^{\nu} \alpha_{r} \mu_{r}$$

$$= \frac{1}{g_{n}} \sum_{i=0}^{n} (g_{i} - g_{i-1}) \alpha_{r} \mu_{r}$$
(5.1)

Then, for $n \ge 1$, we get

$$L_{n} - L_{n-1} = \frac{g_{n}}{G_{n} G_{n-1}} \sum_{i=0}^{n} \frac{g_{i-1} \mu_{i}}{i} i \alpha_{i}$$
(5.2)

Applying Abel's transformation to the right hand side of (5.2), we have

$$\begin{split} L_n &- L_{n-1} = \frac{g_n}{G_n G_{n-1}} \sum_{i=0}^{n-1} \Delta \left(\frac{g_{i-1} \mu_i}{i} \right) \sum_{r=1}^i r \ a_r + \frac{g_n \mu_n}{n G_n} \sum_{i=1}^n n \ a_i \\ &= \frac{(n+1)g_n \ z_n \mu_n}{n G_n} - \frac{g_n}{G_n G_{n-1}} \sum_{i=0}^{n-1} \ g_i \ z_i \ \mu_i \ \frac{i+1}{i} \\ &+ \frac{g_n}{G_n G_{n-1}} \sum_{i=1}^{n-1} g_i \ \Delta \mu_i \ z_i \frac{i+1}{i} + \frac{g_n}{G_n G_{n-1}} \sum_{i=1}^{n-1} g_i \ \Delta \ \mu_i \ z_i . \frac{1}{i} \\ &= L_{n,1} + L_{n,2} + L_{n,3} + L_{n,4} \end{split}$$

To prove that by Minkowski's inequality,

$$\sum_{n=1}^{\infty} \left(\frac{G_n}{g_n} \right)^{k=1} \left| L_{n,r} \right|^k < \infty \text{ , for } r = 1, 2, 3, 4.$$

We have by applying Abel's transforms,

$$\begin{split} \sum_{n=1}^{\infty} \left(\frac{G_n}{g_n}\right)^{k-1} \left|L_{n,1}\right|^k &= O(1) \sum_{n=1}^m \left|\mu_n\right|^{k-1} \left|\mu_n\right| \frac{g_n}{G_n} \left|z_n\right|^k \\ &= O(1) \sum_{n=1}^m \left|\mu_n\right| \frac{g_n}{G_n} \frac{\left|z_n\right|^k}{A_v^{k-1}} \\ &= O(1) \sum_{n=1}^m \Delta \left|\mu_n\right| \sum_{i=1}^n \frac{g_i}{G_i} \frac{\left|z_i\right|^k}{A_i^{k-1}} + O(1) \left|\mu_m\right| \sum_{n=1}^m \frac{g_n}{G_n} \frac{\left|z_n\right|^k}{A_n^{k-1}} \\ &= O(1) \sum_{n=1}^{m-1} \Delta \left|\mu_n\right| A_n + O(1) \left|\mu_m\right| A_m \\ &= O(1) \quad , \ m \to \infty, \end{split}$$

By the hypothesis of Lemma and theorem . Similarly ${\cal L}_{{\boldsymbol n},{\boldsymbol 1}},$ we have

$$\sum_{n=2}^{m=1} \left(\frac{G_n}{g_n}\right)^{k=1} \left|L_{n,2}\right|^k = O(1) \sum_{n=2}^{m+1} \frac{g_n}{G_n G_{n-1}} \left(\sum_{i=1}^{n-1} g_i \left|z_i\right|^k \left|\mu_i\right|^k\right) \left(\frac{1}{G_{n-1}} \sum_{i=1}^{n-1} g_i\right)^{k-1}$$
$$= O(1) \sum_{i=1}^m \left|\mu_i\right|^{k-1} \mu_i \left|z_k\right|^k \sum_{n=i+1}^{m+1} \frac{g_n}{G_n G_{n-1}}$$
$$= O(1) \sum_{i=1}^m \left|\mu_i\right| \quad \frac{g_i}{G_i} \frac{\left|z_i\right|^k}{A_i^{k-1}}$$
$$= O(1) \text{ as } m \to \infty,$$

Next, by using (3.3), we get that

$$\sum_{n=2}^{m+1} \left(\frac{G_n}{g_n}\right)^{k=1} \left|L_{n,3}\right|^k = O(1) \sum_{n=2}^{m+1} \frac{g_n}{G_n G_{n=1}^k} \left(\sum_{i=1}^{n-1} g_i \left|\Delta \mu_i\right| \left|z_i\right|\right)^k$$
$$= O(1) \sum_{n=2}^{m+1} \frac{g_n}{G_n G_{n=1}^k} \left(\sum_{i=1}^{n-1} \frac{G_i}{i} i \left|\Delta \mu_\nu\right| \left|z_i\right|\right)^k$$

$$= O(1) \sum_{n=2}^{m+1} \frac{g_n}{G_n G_{n-1}} \left(\sum_{i=1}^{n-1} \frac{G_i}{i} \left(i |\Delta \mu_i| \right)^k ||z_i|^k \right) \left(\frac{1}{G_{n-1}} \sum_{i=1}^{n-1} \frac{G_i}{i} \right)^{k-1}$$

$$= O(1) \sum_{i=1}^m \frac{G_i}{i} \left(i |\Delta \mu_i| \right)^{k-1} i |\Delta \mu_i| ||z_i|^k \sum_{n=i+1}^{m+1} \frac{g_n}{G_n G_{n-1}}$$

$$= O(1) \sum_{i=1}^m \left(i |\Delta \mu_i| \right) \frac{|z_i|^k}{i A_i^{k-1}}$$

$$= O(1) \sum_{i=1}^m \Delta \left(i |\Delta \mu_i| \right) \sum_{r=1}^i \frac{|z_r|^k}{r A_r^{k-1}} + O(1) m |\Delta \mu_m| \sum_{i=1}^m \frac{|z_i|^k}{i A_i^{k-1}}$$

$$= O(1) \sum_{i=1}^{m-1} \Delta \left(i |\Delta \mu_i| \right) A_i + O(1) m |\Delta \mu_m| A_m$$

$$= O(1) \sum_{i=1}^{m-1} \left(iA_i |\Delta^2 \mu_\nu| \right) + O(1) \sum_{i=1}^{m-1} A_i |\Delta \mu_\nu| + O(1) m |\Delta \mu_m| A_m$$

$$= O(1) \text{ , as } m \to \infty ,$$

By the hypothesis of theorem and Lemma. Lastly, by using (3.3) as in L-(n,1) we have that

$$\begin{split} \sum_{n=2}^{\infty} \left(\frac{G_n}{g_n}\right)^{k=1} \left|L_{n,4}\right|^k &\leq \sum_{n=2}^{m+1} \frac{g_n}{G_n G_{n-1}^k} \left(\sum_{i=1}^{n-1} \frac{g_i}{i} \left|\mu_{i+1}\right|^k \left|z_i\right|^k\right) \\ &= O(1) \sum_{n=2}^{m+1} \frac{g_n}{G_n G_{n-1}} \left(\sum_{i=1}^{n-1} \frac{g_i}{i} \left|\mu_{i+1}\right|^k \right) \left(\frac{1}{G_{n-1}} \sum_{i=1}^{n-1} \frac{G_i}{i}\right)^{k-1} \\ &= O(1) \sum_{i=1}^m \frac{G_i}{i} \left|\mu_{i+1}\right|^{k-1} \left|\mu_{i+1}\right|^k \sum_{n=i+1}^{m+1} \frac{g_n}{G_n G_{n-1}} \\ &= O(1) \sum_{i=1}^m \left|\mu_{i+1}\right| \frac{\left|z_i\right|^k}{i A_i^{k-1}} = O(1) \quad , \ m \to \infty \text{ .Which is the proof of the theorem.} \end{split}$$

Remarks:

If we put $g_n = 1$ for all n, we get a new result with $|C,1|_k$ with additive of an infinite series factors. Furthermore, if we put k = 1, we get a new result $|\overline{N}, g_n|$ to the additive of an infinite series with factors. Finally, if we put $g_n = \frac{1}{n+1}$, k=1 we get a new result $|J, \log n, 1|$ the additive of the infinite series with factorized.

Declaration of competitive interest.

The author declares that they have no competing interests

Reference:

[1]N.K. Bari, S.B. Stečkin, Best approximation and differential properties of two conjugate functions, Tr. Mosk. Mat. Ob^s. 5 (1956) 483–522 (in Russian).

[2]S.N. Bhatt, An aspect of local property of R.logn, I summability of Fourier series. Tohoku Math. J. (2) 11 (1959) 13-19.

[3]H. Bor, On two summability methods, Math. Proc. Camb. Philos. Soc. 97 (1985) 147-149.

[4]H. Bor, A study on local properties of Fourier series, Nonlinear Anal. 57 (2004) 191-197.

[5]H. Bor, An application of quasi-monotone sequences to infinite series and Fourier series, Anal. Math. Phys. 8 (2018) 77-83.

[6]E. Cesàro, Sur la multiplication des séries, Bull. Sci. Math. 14 (1890) 114-120.

[7]T.M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. Lond. Math. Soc. 7 (1957) 113-141.

[8]G.H. Hardy, Divergent Series, Clarendon Press, Oxford, 1949.

[9]S.M. Mazhar, Absolute summability factors of infinite series, Kyungpook Math. J. 39 (1999) 67-73.

[10]G. Sunouchi, Notes on Fourier analysis. XVIII. Absolute summability of series with constant terms, Tohoku Math. J. (2) 1 (1949) 57-65.

[11]G. K. Singh and A. K. Thakur, Matrix Summability of the Conjugate Series of Derived Fourier series, Ganita 70(2) (2020), 293-301.

[12]A. K. Thakur, K. Baral, G. K. Singh and S. K.Sahu, Estimation of Error of Approximation in Lip

 $(\alpha, r)(r \ge 1)$ Class by almost Riesz Transform, Aegaeum J, 8(11) (2020) 255-263.

[13]S. Yıldız, On the generalizations of some factors theorems for infinite series and Fourier series, Filomat 33 (2019) 4343-4351.

[14]S. Yıldız, An absolute matrix summability of infinite series and Fourier series, Bol. Soc. Parana. Mat. (3) 38 (2020) 49-58.

[15]S. Yıldız, A variation on absolute weighted mean summability factors of Fourier series and its conjugate series, Bol. Soc. Parana. Mat. 3(38) (2020) 105-113.