Riesz Summability of Factored Infinite Series Including Sequence and Fourier series

Amarnath Kumar Thakur ${ }^{1, *}$, Gopal Krishna.Singh ${ }^{2}$, Anjali Dubey ${ }^{3}$

```
1. Dr CV Raman University, Bilaspur ,India
Email: drakthakurmath@gmail.com.
2. Vindhya Gurukul College, Chunar Mirzapur-231304 ,India.
Email: gopalkrishnaopju@gmail.com
3. Dr CV Raman University, Bilaspur ,India
Email: anjalidubey3006@gmail.com
* Corresponding author
```


Abstract: We established a new theorem under the new condition is known as the theorem of Mazhar and found its

 application to Fourier series.Keywords: Riesz summability, Fourier series, bounded variation, factored infinite series. 2010 AMS Classification number:

1. Introduction. Works on the absolute sum factorization of infinite series and Fourier series is the absolute sum factorization of infinite series and Fourier series is done by several reseachers $\{[1,2,3 \ldots 15]\}$.In[9], it proved the following theorems of which deals by $\left|\bar{N}, g_{n}\right|_{k}$ additive sum of infinite series and factors.
2. Definitions and Notations. A sequence $\left(A_{n}\right)$ is said to be an almost positive increasing sequence if there exists a positive increasing sequence $\left(b_{n}\right)$ and two positive constants R and S respectvely . Such that $R b_{n} \leq A_{n} \leq S b_{n}$,by [1]. The sequence $\left(\mu_{n}\right)$, we write that $\Delta \mu_{n}=\mu_{n}-\mu_{n+1}$ and $\Delta^{2} \mu_{n}=\Delta \mu_{n}-\Delta \mu_{n+1}$, where $\left(\mu_{n}\right)$ is called bounded variation, if $\sum_{n-1}^{\infty}\left|\Delta \mu_{n}\right|<\infty . \operatorname{Let} \sum_{n=0}^{\infty} \alpha_{n}$ with the partial sums $\left(\beta_{n}\right)$. Here q_{n}^{α} be the nth order of Cesàro means $\omega, \omega>-1, \omega>-1$, the sequence ($n e_{n}$), by [6],

$$
\begin{equation*}
q_{n}^{\alpha}=\frac{1}{B_{n}^{\alpha}} \sum_{i=1}^{n} A_{n-i}^{\alpha-i} i a_{i}, \quad\left(q_{n}^{1}=q_{n}\right) \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{n}^{\alpha}=\frac{(\alpha+1)(\alpha+2) \ldots(\alpha+n)}{n!}=O\left(n^{\alpha}\right), B_{n}^{\alpha}=0 \quad \text { for } n>0 \tag{2.2}
\end{equation*}
$$

The series $\sum \alpha_{n}$ is said to be summable $|C, w|_{k}, k \geq 1,,\{$ see [7] $\}$

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left|q_{n}^{\omega}\right|<\infty \tag{2.3}
\end{equation*}
$$

If we take $\omega=1$ then $|C, \omega|_{k}$ it becomes to the form $|C, 1|_{k}$, which is the form of summability. Now $\left(g_{n}\right)$ be a sequence of + ve real numbers is such that

$$
\begin{equation*}
G_{n}=\sum_{i=0}^{n} g_{i} \rightarrow \infty \text { as } n \rightarrow \infty, \quad\left(G_{-i}=g_{-i}=0, i \geq 1\right) \tag{2.4}
\end{equation*}
$$

with sequences transformation such that

$$
\begin{align*}
& \left(\beta_{n}\right) \rightarrow\left(\omega_{n}\right) \\
& \text { and } \omega_{n}=\frac{1}{G_{i}} \sum_{i=0}^{n} g_{i} \beta_{i} \tag{2.5}
\end{align*}
$$

defines the sequence $\left(\omega_{n}\right)$ of Riesz mean or $\left(\bar{N}, g_{n}\right)$ means of the sequence $\left(\beta_{n}\right)$, and its generated coefficient of sequence $\left(g_{n}\right)\{$ see[8] \} .
The series $\sum \alpha_{n}$ is said to be summable $\left|\bar{N}, g_{n}\right|_{k}, k \geq 1$, if $\{$ see [3] $\}$

$$
\sum_{n=1}^{\infty}\left(\frac{G_{n}}{g_{n}}\right)^{k-1}\left|\omega_{n}-\omega_{n-1}\right|^{k}<\infty .
$$

In the special case when $g_{n}=1$ for all n (respectively. $k=1$), $\left|\bar{N}, g_{n}\right|_{k}$, summability is the same as $|C, 1|_{k}, \quad\left(\operatorname{resp} .\left|\bar{N}, g_{n}\right|_{k}\{\right.$ see $\left.[10]\}\right)$ summability. Also if we take $g_{n}=\frac{1}{n+1}$ and $k=1$, then we obtained $|J, \log n, l|$ summability $\{$ see [2] $\}$.
Let f be periodic function with period 2π and Lebesgue integrable over $(-\pi, \pi)$. The trigonometric Fourier series of f is
$f \sim \frac{1}{2}\left[\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x\right]+\sum_{m=1}^{\infty}\left[\left(\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x\right) \cos m x+\left(\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x\right) \sin m x\right]$
3. Known theorem [9]

Let $\left(A_{n}\right)$ be an almost increasing sequence. If the sequence $\left(A_{n}\right),\left(\mu_{n}\right)$ and $\left(g_{n}\right)$ satisfy the conditions

$$
\begin{align*}
& \left|\mu_{m}\right| A_{n}=O(1) \quad, m \rightarrow \infty \tag{3.1}\\
& \sum_{n=1}^{m} n A_{n}\left|\Delta^{2} \mu_{n}\right|=O(1) \quad, m \rightarrow \infty \tag{3.2}\\
& \sum_{n=1}^{m} \frac{G_{n}}{n}=O\left(G_{m}\right) \quad, m \rightarrow \infty \tag{3.3}\\
& \sum_{n=1}^{m} \frac{g_{n}}{G_{n}}\left|z_{n}\right|^{k}=O\left(A_{m}\right) \quad, m \rightarrow \infty \tag{3.4}\\
& \sum_{n=1}^{m} \frac{\left|z_{n}\right|^{k}}{n}=O\left(A_{m}\right) \quad, m \rightarrow \infty \tag{3.5}
\end{align*}
$$

Then the series $\sum \alpha_{n} \mu_{n}$ is summable $\left|\bar{N}, g_{n}\right|_{k}, k \geq 1$.
4. Main theorem. The main aim of this paper is to improve known theorem result under new condition. Now we shall prove

Theorem: Let $\left(A_{n}\right)$ be an almost increasing sequence. If the $\left(A_{n}\right),\left(\mu_{n}\right)$ and $\left(g_{n}\right)$ satisfy the condition (3.1), (3.2), (3.3) and

$$
\begin{align*}
& \sum_{n=1}^{m} \frac{g_{n}}{G_{n}} \frac{\left|z_{n}\right|^{k}}{A_{n}^{k-1}}=O\left(A_{m}\right), m \rightarrow \infty \tag{4.1}\\
& \sum_{n=1}^{m} \frac{\left|z_{n}\right|^{k}}{n A_{n}^{k-1}}=O\left(A_{m}\right), m \rightarrow \infty \tag{4.2}
\end{align*}
$$

Hence the summable $\sum \alpha_{n} \mu_{n}$ is $\left|\bar{N}, g_{n}\right|_{k}, k \geq 1$.

Note: Condition (4.1) is converted to condition (3.4), when $k=1, k>1$, condition (4.1), which is weaker condition of (3.4), but the converse is not true. The fact, if (3.4) is verified, we get

$$
\sum_{n=1}^{m} \frac{g_{n}}{G_{n}} \frac{\left|z_{n}\right|^{k}}{A_{n}^{k-1}}=O\left(\frac{1}{A_{1}^{k-1}}\right) \sum_{n=1}^{m} \frac{g_{n}}{G_{n}}\left|z_{n}\right|^{k}=O(1) \sum_{n=1}^{m} \frac{g_{n}}{G_{n}}\left|t_{n}\right|^{k}=O\left(A_{m}\right)
$$

When $k \geq 1$, the following example is sufficient case but the converse is false.

Let $A_{n}=n^{\delta}, 0<\delta<1$, and then construct a sequence $\left(h_{n}\right)$ such that

$$
h_{n}=\frac{g_{n}}{G_{n}} \frac{\left|z_{n}\right|^{k}}{A_{n}^{k-1}}=A_{n}-A_{n-1}
$$

Hence

$$
\sum_{n=1}^{m} \frac{g_{n}}{G_{n}} \frac{\left|z_{n}\right|^{k}}{A_{n}^{k-1}}=\sum_{n=1}^{m}\left(A_{n}-A_{n-1}\right)=A_{m}=m^{\delta}
$$

Therefore

$$
\begin{aligned}
& \begin{aligned}
\sum_{n=1}^{m} \frac{g_{n}}{G_{n}}\left|z_{n}\right|^{k} & =\sum_{n=1}^{m}\left(A_{n}-A_{n-1}\right) A_{m}^{k-1} \\
& =\sum_{n=1}^{m}\left(n^{\delta}-(n-1)^{\delta}\right) n^{\delta(k-1)} \\
\geq & \delta \sum_{n=1}^{m} n^{\delta} n^{\delta(k-1)}=\delta \sum_{n=1}^{m} n^{\delta k-1)} \sim \frac{m^{\delta k}}{k} \text { as } m \rightarrow \infty
\end{aligned}
\end{aligned}
$$

Its Proved that

$$
\frac{1}{A_{m}} \sum_{n=1}^{m} \frac{g_{n}}{G_{n}}\left|z_{n}\right|^{k} \rightarrow \infty, \quad \text { as } m \rightarrow \infty
$$

to be provided $k>1$. This shows that (3.4) implies (4.1) but converse is not true. If we putt $g_{n}=1$ for all n , we get the identical results of (4.2) and (3.5). The following lemma is necessary for the proof of our theorem.

Lemma [9]: we have

$$
\begin{align*}
& \sum_{n=1}^{m} A_{n}\left|\Delta \mu_{n}\right|<\infty \quad \text {,under the condition of the theorem } \tag{4.3}\\
& n A_{n}\left|\Delta \mu_{n}\right|=O(1) \quad \text { as } \quad n \rightarrow \infty \tag{4.4}
\end{align*}
$$

5. Proof of the main theorem.

Let $\left(L_{n}\right)$ be the sequence of $\left(\bar{N}, g_{n}\right)$ means of thr series $\sum \alpha_{n} \mu_{n}$. Then we have

$$
\begin{align*}
& L_{n}=\frac{1}{G_{n}} \sum_{v=0}^{n} g_{v} \sum_{r=0}^{v} \alpha_{r} \mu_{r} \\
& \quad=\frac{1}{g_{n}} \sum_{i=0}^{n}\left(g_{i}-g_{i-1}\right) \alpha_{r} \mu_{r} \tag{5.1}
\end{align*}
$$

Then, for $n \geq 1$, we get

$$
\begin{equation*}
L_{n}-L_{n-1}=\frac{g_{n}}{G_{n} G_{n-1}} \sum_{i=0}^{n} \frac{g_{i-1} \mu_{i}}{i} i \alpha_{i} \tag{5.2}
\end{equation*}
$$

Applying Abel's transformation to the right hand side of (5.2), we have

$$
\begin{aligned}
& L_{n}-L_{n-1}=\frac{g_{n}}{G_{n} G_{n-1}} \sum_{i=0}^{n-1} \Delta\left(\frac{g_{i-1} \mu_{i}}{i}\right) \sum_{r=1}^{i} r a_{r}+\frac{g_{n} \mu_{n}}{n G_{n}} \sum_{i=1}^{n} n a_{i} \\
& =\frac{(n+1) g_{n} z_{n} \mu_{n}}{n G_{n}}-\frac{g_{n}}{G_{n} G_{n-1}} \sum_{i=0}^{n-1} g_{i} z_{i} \mu_{i} \frac{i+1}{i} \\
& \quad+\frac{g_{n}}{G_{n} G_{n-1}} \sum_{i=1}^{n-1} g_{i} \Delta \mu_{i} z_{i} \frac{i+1}{i}+\frac{g_{n}}{G_{n} G_{n-1}} \sum_{i=1}^{n-1} g_{i} \Delta \mu_{i} z_{i} \cdot \frac{1}{i} \\
& \quad=L_{n, 1}+L_{n, 2}+L_{n, 3}+L_{n, 4}
\end{aligned}
$$

To prove that by Minkowski’s inequality,

$$
\sum_{n=1}^{\infty}\left(\frac{G_{n}}{g_{n}}\right)^{k=1}\left|L_{n, r}\right|^{k}<\infty, \text { for } r=1,2,3,4
$$

We have by applying Abel's transforms,

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left(\frac{G_{n}}{g_{n}}\right)^{k=1}\left|L_{n, 1}\right|^{k} & =O(1) \sum_{n=1}^{m}\left|\mu_{n}\right|^{k-1}\left|\mu_{n}\right| \frac{g_{n}}{G_{n}}\left|z_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m}\left|\mu_{n}\right| \frac{g_{n}}{G_{n}} \frac{\left|z_{n}\right|^{k}}{A_{v}^{k-1}} \\
& =O(1) \sum_{n=1}^{m} \Delta\left|\mu_{n}\right| \sum_{i=1}^{n} \frac{g_{i}}{G_{i}} \frac{\left|z_{i}\right|^{k}}{A_{i}^{k-1}}+O(1)\left|\mu_{m}\right| \sum_{n=1}^{m} \frac{g_{n}}{G_{n}} \frac{\left|z_{n}\right|^{k}}{A_{n}^{k-1}} \\
& =O(1) \sum_{n=1}^{m-1} \Delta\left|\mu_{n}\right| A_{n}+O(1)\left|\mu_{m}\right| A_{m} \\
& =O(1), m \rightarrow \infty
\end{aligned}
$$

By the hypothesis of Lemma and theorem. Similarly $L_{n, 1}$, we have

$$
\begin{aligned}
\sum_{n=2}^{m=1}\left(\frac{G_{n}}{g_{n}}\right)^{k=1}\left|L_{n, 2}\right|^{k} & =O(1) \sum_{n=2}^{m+1} \frac{g_{n}}{G_{n} G_{n-1}}\left(\sum_{i=1}^{n-1} g_{i}\left|z_{i}\right|^{k}\left|\mu_{i}\right|^{k}\right)\left(\frac{1}{G_{n-1}} \sum_{i=1}^{n-1} g_{i}\right)^{k-1} \\
& =O(1) \sum_{i=1}^{m}\left|\mu_{i}\right|^{k-1} \mu_{i}\left|z_{k}\right|^{k} \sum_{n=i+1}^{m+1} \frac{g_{n}}{G_{n} G_{n-1}} \\
& =O(1) \sum_{i=1}^{m}\left|\mu_{i}\right| \frac{g_{i}}{G_{i}} \frac{\left|z_{i}\right|^{k}}{A_{i}^{k-1}} \\
& =O(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

Next, by using (3.3), we get that

$$
\begin{array}{r}
\sum_{n=2}^{m+1}\left(\frac{G_{n}}{g_{n}}\right)^{k=1}\left|L_{n, 3}\right|^{k}=O(1) \sum_{n=2}^{m+1} \frac{g_{n}}{G_{n} G_{n=1}^{k}}\left(\sum_{i=1}^{n-1} g_{i}\left|\Delta \mu_{i}\right|\left|z_{i}\right|\right)^{k} \\
=O(1) \sum_{n=2}^{m+1} \frac{g_{n}}{G_{n} G_{n=1}^{k}}\left(\sum_{i=1}^{n-1} \frac{G_{i}}{i} i\left|\Delta \mu_{v}\right|\left|z_{i}\right|\right)^{k}
\end{array}
$$

$$
\begin{aligned}
& =O(1) \sum_{n=2}^{m+1} \frac{g_{n}}{G_{n} G_{n-1}}\left(\sum_{i=1}^{n-1} \frac{G_{i}}{i}\left(i \mid \Delta \mu_{i}\right)^{k}\left|z_{i}\right|^{k}\right)\left(\frac{1}{G_{n-1}} \sum_{i=1}^{n-1} \frac{G_{i}}{i}\right)^{k-1} \\
& =O(1) \sum_{i=1}^{m} \frac{G_{i}}{i}\left(i\left|\Delta \mu_{i}\right|\right)^{k-1} i\left|\Delta \mu_{i}\right|\left|z_{i}\right|^{k} \sum_{n=i+1}^{m+1} \frac{g_{n}}{G_{n} G_{n-1}} \\
& =O(1) \sum_{i=1}^{m}\left(i\left|\Delta \mu_{i}\right|\right) \frac{\left|z_{i}\right|^{k}}{i A_{i}^{k-1}} \\
& =O(1) \sum_{i=1}^{m} \Delta\left(i\left|\Delta \mu_{i}\right|\right) \sum_{r=1}^{i} \frac{\left|z_{r}\right|^{k}}{r A_{r}^{k-1}}+O(1) m\left|\Delta \mu_{m}\right| \sum_{i=1}^{m} \frac{\left|z_{i}\right|^{k}}{i A_{i}^{k-1}} \\
& =O(1) \sum_{i=1}^{m-1} \Delta\left(i\left|\Delta \mu_{i}\right|\right) A_{i}+O(1) m\left|\Delta \mu_{m}\right| A_{m} \\
& =O(1) \sum_{i=1}^{m-1}\left(i A_{i}\left|\Delta^{2} \mu_{v}\right|\right)+O(1) \sum_{i=1}^{m-1} A_{i}\left|\Delta \mu_{v}\right|+O(1) m\left|\Delta \mu_{m}\right| A_{m} \\
& =O(1), \text { as } m \rightarrow \infty,
\end{aligned}
$$

By the hypothesis of theorem and Lemma. Lastly, by using (3.3) as in $L-(n, 1)$ we have that

$$
\begin{aligned}
& \sum_{n=2}^{\infty}\left(\frac{G_{n}}{g_{n}}\right)^{k=1}\left|L_{n, 4}\right|^{k} \leq \sum_{n=2}^{m+1} \frac{g_{n}}{G_{n} G_{n-1}^{k}}\left(\sum_{i=1}^{n-1} \frac{g_{i}}{i}\left|\mu_{i+1}\right|^{k}\left|z_{i}\right|^{k}\right) \\
&=O(1) \sum_{n=2}^{m+1} \frac{g_{n}}{G_{n} G_{n-1}}\left(\sum_{i=1}^{n-1} \frac{g_{i}}{i}\left|\mu_{i+1}\right|^{k}\left|z_{i}\right|^{k}\right)\left(\frac{1}{G_{n-1}} \sum_{i=1}^{n-1} \frac{G_{i}}{i}\right)^{k-1} \\
&=O(1) \sum_{i=1}^{m} \frac{G_{i}}{i}\left|\mu_{i+1}\right|^{k-1}\left|\mu_{i+1}\right|^{k} \sum_{n=i+1}^{m+1} \frac{g_{n}}{G_{n} G_{n-1}} \\
&=O(1) \sum_{i}^{m}\left|\mu_{i+1}\right| \frac{\left|z_{i}\right|^{k}}{i A_{i}^{k-1}}=O(1) \quad, m \rightarrow \infty \text {. Which is the proof of the theorem. }
\end{aligned}
$$

Remarks:

If we put $g_{n}=1$ for all n , we get a new result with $|C, 1|_{k}$ with additive of an infinite series factors. Furthermore, if we put $k=1$, we get a new result $\left|\bar{N}, g_{n}\right|$ to the additive of an infinite series with factors. Finally, if we put $g_{n}=\frac{1}{n+1}, \mathrm{k}=1$ we get a new result $|J, \log n, 1|$ the additive of the infinite series with factorized.

Declaration of competitive interest.

The author declares that they have no competing interests

Reference:

[1]N.K. Bari, S.B. Stečkin, Best approximation and differential properties of two conjugate functions, Tr. Mosk. Mat. Ob^s. 5 (1956) 483-522 (in Russian).
[2]S.N. Bhatt, An aspect of local propertyof \mid R,logn, $1 \mid$ summability of Fourier series, Tohoku Math. J. (2) 11 (1959) 13-19.
[3]H. Bor, On two summability methods, Math. Proc. Camb. Philos. Soc. 97 (1985) 147-149.
[4]H. Bor, A study on local properties of Fourier series, Nonlinear Anal. 57 (2004) 191-197.
[5]H. Bor, An application of quasi-monotone sequences to infinite series and Fourier series, Anal. Math. Phys. 8 (2018) 77-83.
[6]E. Cesàro, Sur la multiplication des séries, Bull. Sci. Math. 14 (1890) 114-120.
[7]T.M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. Lond. Math. Soc. 7 (1957) 113-141.
[8]G.H. Hardy, Divergent Series, Clarendon Press, Oxford, 1949.
[9]S.M. Mazhar, Absolute summability factors of infinite series, Kyungpook Math. J. 39 (1999) 67-73.
[10]G. Sunouchi, Notes on Fourier analysis. XVIII. Absolute summability of series with constant terms, Tohoku Math. J. (2) 1 (1949) 57-65.
[11]G. K. Singh and A. K. Thakur, Matrix Summability of the Conjugate Series of Derived Fourier series, Ganita 70(2) (2020), 293-301.
[12]A. K. Thakur, K. Baral, G. K. Singh and S. K.Sahu, Estimation of Error of Approximation in Lip $(\alpha, r)(r \geq 1)$

Class by almost Riesz Transform, Aegaeum J, 8(11) (2020) 255-263.
[13]S. Yıldız, On the generalizations of some factors theorems for infinite series and Fourier series, Filomat 33 (2019) 4343-4351.
[14]Ş. Yıldız, An absolute matrix summability of infinite series and Fourier series, Bol. Soc. Parana. Mat. (3) 38 (2020) 49-58.
[15]Ş. Yıldız, A variation on absolute weighted mean summability factors of Fourier series and its conjugate series, Bol. Soc. Parana. Mat. 3(38) (2020) 105-113.

