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1. Introduction. Works on the absolute sum factorization of infinite series and Fourier series is the absolute 

sum factorization of infinite series and Fourier series is done by several reseachers {[1,2,3…15]}.In[9], it 

proved the following theorems of which deals by 
kngN ,  additive sum of infinite series and factors. 

2. Definitions and Notations. A sequence ( )nA  is said to be an almost positive increasing sequence if 

there exists  a positive increasing  sequence  ( )nb   and two positive constants R and S  respectvely . 

Such that nnn bSAbR ≤≤  ,by [1]. The sequence ( )nµ , we write that 1+−=∆ nnn µµµ  

and∆2𝜇𝜇𝑛𝑛 = ∆𝜇𝜇𝑛𝑛 − ∆𝜇𝜇𝑛𝑛+1  ,where ( )nµ  is called bounded variation, if ∑ |∆𝜇𝜇𝑛𝑛| < ∞∞
𝑛𝑛−1  . Let∑ 𝛼𝛼𝑛𝑛∞

𝑛𝑛=0  

with the partial sums ( )nβ . Here α
nq  be the nth order of Cesàro means ω , ,1−>ω 𝜔𝜔 > −1 , the 

sequence ( )nne ,by [6], 
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The series  ∑ nα  is said to be summable |𝐶𝐶,𝑤𝑤|𝑘𝑘  ,𝑘𝑘 ≥ 1 ,, {see [7]}
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If we take     1=ω     then   
k

C ω,    it becomes to the form  
k

C 1,  , which is the form of 

summability. Now  ( )ng  be a sequence of +ve real numbers is such that 

∑
=

∞→=
n

i
in gG

0
as  ( )1,0, ≥==∞→ −− igGn ii                                                     (2.4) 

 
 
 with sequences transformation such that  
( ) ( )nn ωβ →       

    and ∑
=

=
n

i
ii

i
n g

G 0

1 βω                                                                                                                   (2.5)                                                                                                   

defines the sequence ( )nω  of  Riesz mean or ( )ngN , means of the sequence  ( )nβ , and its 

generated  coefficient of sequence ( )ng { see[8] }.  

The series ∑ nα  is said to be summable   ,1,, ≥kgN
kn  if {see [3]}  
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In the special case when 1=ng for all n  (respectively. 1=k ),  ,,
kngN summability is  the same as 

,1,
k

C  ( resp. 
kngN ,  {see [10]}) summability. Also if we take 

1
1
+

=
n

gn  and  ,1=k  then we 

obtained 1,log, nJ   summability {see [2]}. 

Let   f   be periodic function with period π2  and Lebesgue integrable over  ( )ππ ,−  . The 
trigonometric Fourier series of f  is  

∑ ∫∫∫
∞

= −−− 
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3. Known theorem[9] 
Let ( )nA  be an almost increasing sequence. If the sequence ( )nA , ( )nµ  and ( )ng  satisfy the conditions 
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   Then the series ∑ nn µα  is summable .1,, ≥kgN

kn  

4. Main theorem. The main aim of this paper is to improve known theorem result under new condition. 
Now we shall prove  
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Theorem: Let ( )nA   be an almost increasing sequence. If the ( )nA , ( )nµ  and ( )ng  satisfy    

            the condition (3.1), (3.2), (3.3) and  
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              Hence the summable ∑ nn µα
 
is .1,, ≥kgN

kn  

Note: Condition (4.1) is converted to condition (3.4), when 1=k , 𝑘𝑘 > 1 , condition (4.1),which  is weaker  
condition of  (3.4), but the converse is not true. The fact, if (3.4) is verified, we get 
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When ,1≥k the following example is sufficient case but the converse is false.  

Let  ,10, <<= δδnAn  and   then construct a sequence ( )nh such that  
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Its Proved that  
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to be provided 1>k . This shows that (3.4) implies (4.1) but converse is not true. If we putt 1=ng   for all n, we 

get the identical results of (4.2) and (3.5). The following lemma is necessary for the proof of our theorem. 

 

 

 

Lemma [9]: we have 
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µ       ,under the condition of the theorem                                                               (4.3) 

        )1(OnA nn =∆µ    as   ∞→n                                                                                                                 (4.4) 

 

5. Proof  of  the main theorem. 

Let   ( )nL  be the sequence of   ( )ngN ,     means of thr series∑ nn µα . Then we have   
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Applying Abel’s transformation to the right hand side of (5.2), we have  
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To prove that  by Minkowski’s inequality,  
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We have by applying Abel’s transforms,  
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  By the hypothesis of Lemma and theorem . Similarly 1,nL , we have  
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Next, by using (3.3), we get that  
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By the hypothesis of  theorem and Lemma. Lastly, by using (3.3) as in  )1,(nL−  we have that  

∑ ∑ ∑
∞

=

+

=
+

−

=−

=









≤









2

1

2
1

1

11
4,

1

n

m

n

k
i

k
i

n

i

i
k
nn

nk
n

k

n

n z
i

g
GG
g

L
g
G

µ
 

                           

11

11

1

2
1

1

11

1)1(
−

−

=−

+

=
+

−

=−
















= ∑∑ ∑

kn

i

i

n

m

n

k
i

k
i

n

i

i

nn

n

i
G

G
z

i
g

GG
g

O µ
 

                          
∑∑
+

+= −
+

=

−
+=

1

1 1
1

1

1
1)1(

m

in nn

nk
i

m

i

k
i

i

GG
g

i
G

O µµ   

                          )1()1( 11 O
Ai
z

O k
i

k
i

m

i
i == −+∑ µ  , ∞→m .Which is the proof of the theorem. 

Remarks: 

If we put 1=ng  for all n, we get a new result with 
k

C 1, with additive of an infinite series factors. 

Furthermore, if we put 1=k , we get a new result ngN , to the additive of an infinite series with factors. 

Finally, if we put 
1

1
+

=
n

gn  , k=1 we get a new result 1,log, nJ  the additive of the infinite series with 

factorized.  
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