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Abstract:In this paper, fractional calculus approach is applied in solving differential equation 

which is associated with an electrical circuit i.e. RLC circuit using hypergeometric series. 

The solution of the fractional differential equation of RLC circuit comes in the form 

ofMittag-Leffler function and the Ali’s et.al.[8] results are special cases of our main result. 
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1.Introduction:Thefractional calculus is a generalization of ordinary differentiation to non-

integer case. In other words, the fractional calculus operators deal with integrals and 

derivatives of arbitrary (i.e. real or complex) order. The name “fractional calculus” is actually 

a misnomer; the designation, “integration and differentiation of arbitrary order” is more 

appropriate. The classical calculus was independently discovered in seventeenth century by 

Isaac Newton and Gottfried Wilhelm Leibnitz[11]. The question raised by Leibnitz for the 

existence of fractional derivative of order half was an ongoing topic amongst mathematicians 

for more than three hundred years, consequently several aspects of fractional calculus were 

developed and studied. The first accurate use of a derivative of non-integer order is due to the 

French mathematician S. F. Lacroix [5] in 1819 who expressed the derivative of non-integer 

order ½ in terms of Legendre’s factorial symbol .  

Γ(𝑎) = ∫ 𝑡𝛼−1𝑒−𝑡𝑑𝑡∞
0  

Starting, with a function 𝑦 = 𝑥𝑚, Lacroix [5]expressed it as follows 𝑑𝑛𝑦𝑑𝑥𝑛 = 𝑚!(𝑚 − 𝑛)! 𝑥𝑚−𝑛 = Γ(𝑚 + 1)Γ(𝑚 − 𝑛 + 1) 𝑥𝑚−𝑛 

Replacing with 
12 and putting 𝑚 = 1, he obtained the derivative of order 

12 of the 

function 𝑥. 𝑑1 2⁄ 𝑦𝑑𝑥1 2⁄ = Γ(2)Γ(3/2) 𝑥1 2⁄ = 2√𝜋 √𝑥 
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The credit of first application of fractional calculus goes to Abel’s [6] who employed 

it in the solution of an integral equation which emerged in the formulation of the tautochrone 

problem of finding the shape of a frictionless wire lying in a vertical plane such that the time 

of slide of a bead placed on the wire to the lowest point of the wire is the same regardless of 

position of the bead on the wire.  

Abel’s [6] solutions attracted a group of mathematicians and scientists to this branch of 

knowledge and first logical definition of fractional derivative was given by 

Riemann−Liouville[10]. Later on several attempts were made to define different forms of 

fractional integral and derivatives.On the other hand, several applications of the calculus of 

fractional order were sought by various mathematicians, engineers and scientists. The efforts 

were so rewarding that the subject of fractional calculus itself was categorized as applicable 

mathematics. The definitions of fractional derivative as under: 

Definition 1. (Riemann Liouville operator [10]): Let f be a continuous function, 𝛼 ∈𝑅+, 𝑎𝑛𝑑 𝑡 ∈ 𝑅. 𝑇ℎ𝑒 fractional integral of order 𝛼 is defined as:                              𝐽𝛼𝑓 (𝑡) =1Γ(𝛼) ∫ (𝑡 − 𝑢)𝛼−1𝑡0 𝑓(𝑢)𝑑𝑢 ... (1.1)Definition 2. Pick some𝛼 ∈ 𝑅+,  let n be the nearest integer 

Greater than 𝛼. The Riemann – Liouville [10] fractional derivative of order 𝛼 of a function f 

(t) is givenby:𝐷𝛼𝑓 (𝑡) =  𝑑𝑛𝑑𝑡𝑛 𝐽𝑛−𝛼 𝑓(𝑡) = 1Γ(n − 𝛼) ( 𝑑𝑑𝑡)𝑛 ∫ (𝑡 − 𝑢)𝑛−𝛼−1𝑡0 𝑓(𝑢)𝑑𝑢…(1.2) 

 Definition 3.Pick some𝛼 ∈ 𝑅+,  let n be the nearest integer greater than 𝛼. The Caputo 

fractional derivative [7] of order 𝛼 of a function f (t) is given by:                                                𝐷∗𝛼𝑓 (𝑡) = 𝐽𝑛−𝛼 𝑑𝑛𝑑𝑡𝑛  𝑓(𝑡) = 1Γ(n − 𝛼) ∫ (𝑡 − 𝑢)𝑛−𝛼−1𝑡0 𝑓𝑛(𝑢)𝑑𝑢…(1.3) 

The applications of the Mittag-Leffler function and its extension are discussed in [2] recently 

in a rapidly increasing numbers of papers, related to fractional calculus and fractional order 

differential and integral equations and systems modling in various phenomena. 

Definition4.Mittag – Leffler function[2]: The definition of Mittag-Leffler function is given 

by Mittag – Leffler[2] in 1903 which is defined as: 𝐸𝛼(𝑡) = ∑ 𝑡𝑘Γ(𝛼𝑘+1)∞𝑘=0  … (1.4) 

Where 𝛼𝜖𝑐, 𝑅𝑒(𝛼) > 0 

Its Laplace transform is given as: ∑ Γ(𝑘+1)Γ(𝛼𝑘+1) 1𝑆𝑘+1∞𝑘=0 … (1.5) 

 The generalization of Mittag – Lefflerfunction introduced by Wiman [4] in 1905  which is 

given as: 𝐸𝛼,𝛽(𝑡) = ∑ 𝑡𝑘Γ(𝛼𝑘+𝛽)∞𝑘=0 ,  𝑅𝑒(𝛼) > 0,𝑅𝑒(𝛽) > 0… (1.6) 

Its Laplace transform is as follows: ∑ Γ(𝑘+1)Γ(𝛼𝑘+𝛽)∞𝑘=0 1𝑆𝑘+1… (1.7) 

 After that Prabhakar [3] introduced the definition of generalization of generalized Mittag-

Leffler function in 1971 in the following form 𝐸𝛼,𝛽𝛾 (𝑡) = ∑ (𝛾)𝑘Γ(𝛼𝑘+𝛽) 𝑡𝑘𝑘!∞𝑘=0 … (1.8) 
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Where  𝛼, 𝛽, 𝛾 ∈ 𝐶, 𝑅𝑒(𝛼) > 0, 𝑅𝑒(𝛽) > 0 

Its Laplace transform is as under: ∑ (𝛾)𝑘Γ(𝛼𝑘+𝛽)∞𝑘=0 1𝑆𝑘+1 … (1.9) 

A general hypergeometric series[9] with p upper or numerator parameters and q lower or 

denominator parameters is denoted and defined as 

follows: 𝐹𝑞 [𝑎1, … , 𝑎𝑝;𝑏1, … , 𝑏𝑞;𝑧]𝑝0 = 𝐹𝑞𝑝0 ((ap); (bq); z) =  𝐹𝑞𝑝0 (z)   =  ∑ (𝑎1 )𝑟….( 𝑎𝑝)𝑟(𝑏1 )𝑟….( 𝑏𝑞)𝑟∞𝑟 = 0 𝑧𝑟𝑟!…(1.10) 

where(𝑎𝑗)𝑟  and (𝑏𝑗)𝑟are the Pochhammer symbolsof the series in is defined when none of 

the (𝑏𝑗)𝑟’s, j = 1, 2, ….,q, is a negative integer or zero. If a   𝑏𝑗is a negative integer or zero 

then(𝑏𝑗)𝑟 will be zero for some r. A 𝑏𝑗can be zero provided there is a numerator parameter 𝑎𝑘such that (𝑎𝑘)𝑟become zero first before(𝑏𝑗)𝑟become zero.If any numerator parameter 𝑎𝑗is 

a negative integer  or zero then terminates and becomes a polynomial in z. From the ratio test 

it is evident that the series is convergent for all z if q ≥ 𝑝,it is convergent for |𝑧| < 1 if p = q 

+1 and divergent  if p > q + 1. When p = q+1 and |𝑧| = 1 the series can converge in some 

cases. Let 𝛽 =  ∑ 𝑎𝑗 − ∑ 𝑏𝑗.𝑞𝑗=1𝑝𝑗=1 It can be shown that when p = q + 1 the series is absolutely 

convergent for |𝑧| = 1 if R(𝛽)< 0, conditionally convergent for z = -1 if 0 ≤R(𝛽)< 1 and 

divergent for |𝑧| = 1  if 1 ≤ R(𝛽).  Some special cases of a  𝐹𝑞𝑝0 are  the following when there 

is no upper or lower parameters we have,  𝐹000 (; ;  ±𝑧) =  ∑ ( ± 𝑧)𝑟𝑟 ! = 𝑒±𝑧∞𝑟=0 .…(1.11) 

Thus 𝐹0    00 (.)is an exponential series. 𝐹010 (α ; ; z) = ∑ 𝛼𝑟∞𝑟=0 𝑧𝑟𝑟 ! = (1 − 𝑧)−𝛼for |𝑧| <1. …(1.12)This is the binomial series. 𝐹1.10 (. )is known as confluent hypergeometric series and 𝐹1.20 (. ) is known as Gauss’ hypergeometric series[9]. 

2.Electrical Circuit[8]: 

In this section, we present the three elements of RLC electrical circuit where C is a 

capacitance, L is an inductance, R is a resistance and we consider here only positive value of 

all these constants. 

The constitutive equations associated with three elements of RLC electrical circuit are 

defined as under: 

The voltage drop across resistance R=𝑈𝑅(𝑡) = 𝑅𝐼(𝑡), 

Where I (t) is current.  

 The voltage drop across inductor L= 𝑈𝐿(𝑡) = 𝐿 𝑑𝐼𝑑𝑡 
And the voltage drop across capacitance C= 𝑈𝑐(𝑡) = 1𝑐 ∫ 𝐼(𝑣)𝑑𝑣𝑡0  

Kirchhoff law:The algebraic sum of the voltage drop around any closed circuit is equal to 

resultant EMF in the circuit. 

By applying the Kirchhoff law in the non-homogeneous second order ordinary differential 

equations. We get  

RC
𝑑2𝑈𝑐(𝑡)𝑑𝑡2 + 𝑑𝑈𝑐(𝑡)𝑑𝑡 + 𝑅𝐿 𝑈𝑐(𝑡) = 𝑑𝑑𝑡 𝜃(𝑡)… (2.1)  

Where 𝑈𝑐(𝑡) is the voltage on the capacitor, it is the similar on the inductor as we can see in 

figure, because these are connected in parallel [8]. 



Turkish Journal of Computer and Mathematics Education   Vol.11 No.03(2020), 1459- 1465 

 

 

 

1462 

 

 

 

Research Article  

 

 
 

Again, consider another non-homogeneous second order ordinary differential equation 

associated with current on the inductor as follows: 

RLC
𝑑2𝐼𝐿(𝑡)𝑑𝑡2 + 𝐿 𝑑𝐼𝐿(𝑡)𝑑𝑡 + 𝑅𝐼𝐿(𝑡) = 𝜃(𝑡)… (2.2) 

Using the constitutive equation for the inductor, these two non-homogeneous second order 

ordinary differential equations can be led to correspondent integro-differential equations, then 

we get  𝑅 𝑑𝑖𝑐(𝑡)𝑑𝑡 + 1𝑐 𝑖𝑐(𝑡) + 𝑅𝐿𝐶 ∫ 𝑖𝑐(𝑡0 𝑣)𝑑𝑣 = 𝑑𝑑𝑡 𝜃(𝑡)… (2.3) 𝑅𝐶 𝑑𝑈𝐿(𝑡)𝑑𝑡 + 𝑈𝐿(𝑡) + 𝑅𝐿 ∫ 𝑈𝐿(𝑡0 𝑣)𝑑𝑣 = 𝜃(𝑡)… (2.4) 

We consider the initial condition 𝐼𝑐(𝑡) = 0 at 𝑡 = 0 i.e. the initial current on the capacitor is 

zero and we get the solution in terms of an exponential function [8] 

3. Fractional integro-differential equation: 

The fractional integro-differential equation with current on the capacitor is as : 

R
𝑑𝛼𝑑𝑡𝛼 𝑖𝑐(𝑡) + 1𝑐 𝑖𝑐(𝑡) + 𝑅𝐿𝐶 1Γ(𝛼) ∫ (𝑡 − 𝑣)𝛼−1𝑡0 𝑖𝑐(𝑣)𝑑𝑣 = 𝑑𝜃(𝑡)𝑑𝑡 … (3.1) 

The classical integro-differential equation associated with the RLC electrical circuit because 

for 𝛼=1 we improve the result get in equation (3.1). Its replacement is very important in 

discussing the corresponding numerical problem for a particular value of the parameter 

because the solution is obtained in terms of a closed expression [8] 

The Laplace integral transform 𝐿[𝑖𝑐(𝑡)] = 𝐹(𝑠) = ∫ 𝑒−𝑠𝑡∞0 𝑖𝑐(𝑡)𝑑𝑡 , 𝑅𝑒(𝑠) > 0… (3.2) 

Let 𝜃(𝑡)= hypergeometricfunction in equation (3.2) 𝑅 𝑑𝛼𝑑𝑡𝛼 𝑖𝑐(𝑡) + 1𝑐 𝑖𝑐(𝑡) + 𝑅𝐿𝐶 1Γ(𝛼) ∫ (𝑡 − 𝑣)𝛼−1𝑡
0 𝑖𝑐(𝑣)𝑑𝑣 = 𝑑𝜃(𝑡)𝑑𝑡  𝑅 𝑑𝛼𝑑𝑡𝛼 𝑖𝑐(𝑡) + 1𝑐 𝑖𝑐(𝑡) + 𝑅𝐿𝐶 1Γ(𝛼) ∫ (𝑡 − 𝑣)𝛼−1𝑡0 𝑖𝑐(𝑣)𝑑𝑣 = 𝑑𝑑𝑡 [ 𝐹𝑞𝑝0 (t)] … (3.3) 
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𝑅 𝑑𝛼𝑑𝑡𝛼 𝑖𝑐(𝑡) + 1𝑐 𝑖𝑐(𝑡) + 𝑅𝐿𝐶 1Γ(𝛼) ∫ (𝑡 − 𝑣)𝛼−1𝑡
0 𝑖𝑐(𝑣)𝑑𝑣 = 𝑑𝑑𝑡 [∑ (𝑎1 )𝑘….( 𝑎𝑝)𝑘(𝑏1 )𝑘….( 𝑏𝑞)𝑘∞𝑘 = 0 𝑡𝑘𝑘!]… (3.4) 𝑅 𝑑𝛼𝑑𝑡𝛼 𝑖𝑐(𝑡) + 1𝑐 𝑖𝑐(𝑡) + 𝑅𝐿𝐶 1Γ(𝛼) ∫ (𝑡 − 𝑣)𝛼−1𝑡0 𝑖𝑐(𝑣)𝑑𝑣 = [∑ (𝑎1 )𝑘….( 𝑎𝑝)𝑘(𝑏1 )𝑘….( 𝑏𝑞)𝑘∞𝑘 = 0 𝑘𝑡𝑘−1Γ(𝑘+1)]… (3.5) 

Applying the Laplace transform of the both sides, we get 𝑅𝑠𝛼𝐹(𝑠) + 𝐹(𝑠)𝐶 + 𝑅𝐿𝐶 𝐹(𝑠)𝑆𝛼 = ∑ (𝑎1 )𝑘….( 𝑎𝑝)𝑘(𝑏1 )𝑘….( 𝑏𝑞)𝑘∞𝑘 = 0 𝑘Γ(𝑘)Γ(𝑘+1) 1𝑠𝑘… (3.6) 𝐹(𝑠)[𝑅𝑠𝛼+
1𝐶+

𝑅𝐿𝐶 𝑆𝛼] = ∑ (𝑎1 )𝑘….( 𝑎𝑝)𝑘(𝑏1 )𝑘….( 𝑏𝑞)𝑘∞𝑘 = 0 1𝑠𝑘… (3.7) 𝑅𝐹(𝑠) = ∑ (𝑎1 )𝑘….( 𝑎𝑝)𝑘(𝑏1 )𝑘….( 𝑏𝑞)𝑘∞𝑘 = 0 1𝑠𝑘 1[𝑆𝛼+ 1𝑅𝐶+ 1𝐿𝐶 𝑆𝛼]… (3.8) 

Let 𝑎 = 1𝑅𝐶  ,   𝑏 = 1𝐿𝐶  𝑅𝐹(𝑠) = ∑ (𝑎1 )𝑘….( 𝑎𝑝)𝑘(𝑏1 )𝑘….( 𝑏𝑞)𝑘∞𝑘 = 0 1𝑠𝑘[𝑆𝛼+𝑎+ 𝑏𝑆𝛼]… (3.9) 𝑅𝐹(𝑠) = ∑ (𝑎1 )𝑘….( 𝑎𝑝)𝑘(𝑏1 )𝑘….( 𝑏𝑞)𝑘∞𝑘 = 0 𝑆𝛼−𝑘[𝑆2𝛼+𝑎𝑆𝛼+𝑏]… (3.10) 𝐹(𝑠) = 1𝑅 ∑ (𝑎1 )𝑘….( 𝑎𝑝)𝑘(𝑏1 )𝑘….( 𝑏𝑞)𝑘∞𝑘 = 0 𝑆𝛼−𝑘[𝑆2𝛼+𝑎𝑆𝛼+𝑏]… (3.11) 

Taking the inverse Laplace transform of the both sides, then we have 𝑖𝑐(𝑡) = 1𝑅 ∑ (𝑎1 )𝑘….( 𝑎𝑝)𝑘(𝑏1 )𝑘….( 𝑏𝑞)𝑘∞𝑘 = 0 𝐿−1 { 𝑆𝛼−𝑘+1−1𝑆2𝛼+𝐴𝑆𝛼+𝐵}… (3.12) 

We know the following relation by [12] 𝐿−1 { 𝑆𝛾−1𝑆𝛼+𝐴𝑆𝛽+𝐵} = 𝑡𝛼−𝛾 ∑ (−𝐴)𝑟∞𝑟=0 𝑡(𝛼−𝛽)𝑟𝐸𝛼,𝛼+1−𝛾+(𝛼−𝛽)𝑟𝑟+1 (−𝐵𝑡𝛼)… (3.13) 

Valid for | 𝐴𝑆𝛽𝑆𝛼+𝐵| < 1, 𝛼 ≥ 𝛽 

Using the relation (3.13), we get, 𝐿−1 { 𝑆𝛼−𝑘+1−1𝑆2𝛼+𝑎𝑆𝛼+𝑏} = 𝑡𝛼+𝑘−1 ∑ (−𝑎)𝑟∞𝑟=0 𝑡𝛼𝑟𝐸2𝛼,𝛼+𝑘+𝛼𝑟𝑟+1 (−𝑏𝑡2𝛼)… (3.14) 

Comparing the above these equations (3.13) and (3.14), then we get 𝑖𝑐(𝑡) = 1𝑅 ∑ (𝑎1 )𝑘….( 𝑎𝑝)𝑘(𝑏1 )𝑘….( 𝑏𝑞)𝑘∞𝑘 = 0 𝐿−1 { 𝑆𝛼−𝑘+1−1𝑆2𝛼+𝑎𝑆𝛼+𝑏}… (3.15) 

𝑖𝑐(𝑡) = 1𝑅 ∑ (𝑎1 )𝑘. . . ( 𝑎𝑝)𝑘(𝑏1 )𝑘 … ( 𝑏𝑞)𝑘
∞

𝑘 = 0 {𝑡𝛼+𝑘−1 ∑(−𝑎)𝑟∞
𝑟=0 𝑡𝛼𝑟𝐸2𝛼,𝛼+𝑘+𝛼𝑟𝑟+1 (−𝑏𝑡2𝛼)}             … (3.16)  

Here  𝐸𝜇,𝑤𝜌 (𝑡) is the Mittag-Leffler function of three parameters  

Special Cases: 1. When 𝜃(𝑡) = 𝐹120 (a1, a2;  b1; t)=∑ (𝑎1 )𝑘( 𝑎2)𝑘(𝑏1 )𝑘∞𝑘 = 0 𝑡𝑘𝑘!is a Gauss’s 

Hypergeometric function [9] then equation (3.16) reduces to 𝑖𝑐(𝑡) = 1𝑅 ∑ (𝑎1 )𝑘( 𝑎2)𝑘(𝑏1 )𝑘∞𝑘 = 0 {𝑡𝛼+𝑘−1 ∑ (−𝑎)𝑟∞𝑟=0 𝑡𝛼𝑟𝐸2𝛼,𝛼+𝑘+𝛼𝑟𝑟+1 (−𝑏𝑡2𝛼)}…(3.17) 

2.  When 𝜃(𝑡) = 𝐹110 (a1;  b1; t)=∑ (𝑎1 )𝑘(𝑏1 )𝑘∞𝑘 = 0 𝑡𝑘𝑘!is a confluenthypergeometric function[9]then 

equation (3.17) reduces to 
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𝑖𝑐(𝑡) = 1𝑅 ∑ (𝑎1 )𝑘(𝑏1 )𝑘
∞

𝑘 = 0 {𝑡𝛼+𝑘−1 ∑(−𝑎)𝑟∞
𝑟=0 𝑡𝛼𝑟𝐸2𝛼,𝛼+𝑘+𝛼𝑟𝑟+1 (−𝑏𝑡2𝛼)}                         … (3.18) 

3. When we put (𝑎1 )𝑘, … , (𝑎𝑝)𝑘 = 1 and (𝑏1 )𝑘, … , (𝑏𝑞)𝑘 = 1 and k=1 in equation (3.17) 

then we get the Ali’s [8] result 𝑖𝑐(𝑡) = 1𝑅 {𝑡𝛼 ∑ (−𝑎)𝑟∞𝑟=0 𝑡𝛼𝑟𝐸2𝛼,𝛼+1+𝛼𝑟𝑟+1 (−𝑏𝑡2𝛼)}…(3.19) 

4. When we put (𝑎1 )𝑘, … , (𝑎𝑝)𝑘 = 1 and (𝑏1 )𝑘, … , (𝑏𝑞)𝑘 = 1 and k=2 

in equation (3.17) then we get the Ali’s [8] result 𝑖𝑐(𝑡) = 1𝑅 {𝑡𝛼+1 ∑ (−𝑎)𝑟∞𝑟=0 𝑡𝛼𝑟𝐸2𝛼,𝛼+2+𝛼𝑟𝑟+1 (−𝑏𝑡2𝛼)}…(3.20) 
This completes the analysis. 

4. Conclusion:The applications of fractional calculus can be seen in many areas.It has been 

played an important role in electrical engineering. In this paper we have obtained the closed 

form solution of fractional integro-differential equation associated with RLC circuitusing the 

hypergeometric functions in terms of Mittag-Leffler function and Ali’s [8] results are special 

cases of our result. 
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